[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN1927766A - Method of preparing pyroelectric ceramics - Google Patents

Method of preparing pyroelectric ceramics Download PDF

Info

Publication number
CN1927766A
CN1927766A CN 200610124643 CN200610124643A CN1927766A CN 1927766 A CN1927766 A CN 1927766A CN 200610124643 CN200610124643 CN 200610124643 CN 200610124643 A CN200610124643 A CN 200610124643A CN 1927766 A CN1927766 A CN 1927766A
Authority
CN
China
Prior art keywords
pyroelectric
sintering
solution
mgnb
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200610124643
Other languages
Chinese (zh)
Other versions
CN100366576C (en
Inventor
姜胜林
郭婷
曾亦可
张海波
谢甜甜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CNB2006101246432A priority Critical patent/CN100366576C/en
Publication of CN1927766A publication Critical patent/CN1927766A/en
Application granted granted Critical
Publication of CN100366576C publication Critical patent/CN100366576C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种制备热释电陶瓷的方法,包括:①将MgO和Nb2O5按质量比1∶1混合均匀,保温合成MgNb2O6;②根据化学式Pb1+d [(ZrxTi1-x) 1-y (Mg1/3Nb2/3) y]O3+z at%Mn,0.65≤x≤0.95,0≤y≤0.3,0≤d≤0.1,0≤z≤5,将MgNb2O6与PbO、ZrO2、TiO2和Mn(NO3) 2溶液混合,Mn(NO3) 2溶液的质量浓度为2%;③将混合物预烧后进行粉碎、过筛、预成型和成型,再保温烧结,烧结采用双坩埚密封气氛叠烧,使烧结过程在饱和铅气氛中进行;④将烧结后的材料进行磨片、清洗、被银和烧电极;⑤将材料放在100~120℃硅油中加3~5KV/mm电场极化15~30分钟,然后保压冷却至室温。本发明以Mn(NO3) 2溶液的形式进行了有效的锰掺杂,制备出的PMN-PZT热释电陶瓷具有高的热释电系数,低的介电损耗和合适的介电常数,具有良好综合热释电性能,符合制作热释电红外探测器的要求。

Figure 200610124643

The invention discloses a method for preparing pyroelectric ceramics, comprising: ① mixing MgO and Nb 2 O 5 uniformly at a mass ratio of 1:1, and synthesizing MgNb 2 O 6 with heat preservation; ② according to the chemical formula Pb 1+d [(Zr x Ti 1-x ) 1-y (Mg 1/3 Nb 2/3 ) y ]O 3 +z at%Mn, 0.65≤x≤0.95, 0≤y≤0.3, 0≤d≤0.1, 0≤z ≤5, mix MgNb 2 O 6 with PbO, ZrO 2 , TiO 2 and Mn(NO 3 ) 2 solution, the mass concentration of Mn(NO 3 ) 2 solution is 2%; Sieve, preform and form, and then heat-preserve and sinter. The sintering adopts a double-crucible sealed atmosphere to overlap the sintering process, so that the sintering process is carried out in a saturated lead atmosphere; ④ Grind, clean, silver and sinter the sintered material; The material is placed in silicone oil at 100-120°C and polarized with an electric field of 3-5KV/mm for 15-30 minutes, and then cooled to room temperature under pressure. The present invention carries out effective manganese doping in the form of Mn(NO 3 ) 2 solution, and the prepared PMN-PZT pyroelectric ceramic has high pyroelectric coefficient, low dielectric loss and suitable dielectric constant, It has good comprehensive pyroelectric performance and meets the requirements for making pyroelectric infrared detectors.

Figure 200610124643

Description

一种制备热释电陶瓷的方法A method for preparing pyroelectric ceramics

技术领域technical field

本发明属于热释电陶瓷材料的制备方法,特别涉及高性能富锆铌镁酸铅-锆钛酸铅(PMN-PZT)陶瓷的制备。The invention belongs to a method for preparing pyroelectric ceramic materials, in particular to the preparation of high-performance zirconium-rich lead magnesium niobate-lead zirconate titanate (PMN-PZT) ceramics.

背景技术Background technique

在各种材料中,热释电陶瓷材料由于具有制作工艺简单、成本低廉、性能稳定可靠、容易加工、机械性能好、耐电强度高等一系列优点,使其在高温、大面积、大批量、高功率及环境恶劣的条件下使用显示了优越性。热释电陶瓷中最常用的有钛酸铅、锆钛酸铅和掺杂稀土元素改性的锆钛酸铅陶瓷。目前商业化生产中主要应用的是常规型陶瓷,这种陶瓷通常是在PZT二元系陶瓷中加入第三相形成三元系统,再通过各种微量添加改善热电性能。材料的特征是在很宽的温度范围内有线性的热释电系数和较高的热电优值,材料的机械强度高,加工性能好,一致性和重复性好,在制作探测器的工业化生产工艺中成品率高。Among various materials, pyroelectric ceramic materials have a series of advantages such as simple manufacturing process, low cost, stable and reliable performance, easy processing, good mechanical properties, and high electric strength, making them suitable for high temperature, large area, large batch, The use under high power and harsh environment conditions shows its superiority. The most commonly used pyroelectric ceramics are lead titanate, lead zirconate titanate and lead zirconate titanate ceramics modified with rare earth elements. At present, conventional ceramics are mainly used in commercial production. This kind of ceramics is usually formed by adding a third phase to PZT binary system ceramics to form a ternary system, and then improve the thermoelectric performance through various trace additions. The material is characterized by a linear pyroelectric coefficient and a high thermoelectric figure of merit in a wide temperature range. The material has high mechanical strength, good processing performance, good consistency and repeatability, and is suitable for industrial production of detectors. The yield rate in the process is high.

为了提高探测器的性能,突破常规型热释电陶瓷对探测器性能的局限,人们尝试利用材料的一些特殊性能。由于材料在相界附近或在相变时由于组成的不稳定或结构的变化,往往会出现很好的的各种热电、介电性能。用相变时的热释电效应来实现这一目的就成为研究的目标。富锆的PZT材料由于存在一个从低温三方相到高温三方相的相变,即铁电-铁电相变,并且在相变时材料的自发极化有变化,从而体现非常高的热释电系数,相变过程中材料的的介电常数变化不大,均保持比较低的水平,所以在此相变区材料具有比较好的热释电探测优值。富锆的PZT材料以其特殊的性能成为研究的热释电探测器应用研究的热点之一。In order to improve the performance of the detector and break through the limitations of conventional pyroelectric ceramics on the performance of the detector, people try to use some special properties of the material. Because the material is near the phase boundary or due to the instability of the composition or the change of the structure during the phase transition, various good thermoelectric and dielectric properties often appear. Realizing this purpose with the pyroelectric effect during phase transition becomes the research goal. The zirconium-rich PZT material exhibits a very high pyroelectricity due to a phase transition from a low-temperature trigonal phase to a high-temperature trigonal phase, that is, a ferroelectric-ferroelectric phase transition, and the spontaneous polarization of the material changes during the phase transition. The coefficient, the dielectric constant of the material during the phase change process does not change much, and remains at a relatively low level, so the material in this phase change region has a relatively good value for pyroelectric detection. Zirconium-rich PZT materials have become one of the hotspots in the application of pyroelectric detectors due to their special properties.

对于PMN-PZT(铌镁酸铅-锆钛酸铅)系列材料,之前的研究都集中在准同相界附近压电性能的研究,或者集中在相图中靠近PT一边的热释电性能研究。Shaw C.P.和Whatmore R.W.等人研究了富锆区的PMN-PZT的热释电性能,通过改变PMN、PT在PMN-PZT固溶体中的比例来研究PMN-PZT陶瓷FRL-FRH(低温铁电相一高温铁电相)相变温度的变化,以及相应的介电性能和热释电性能,同时他们还发现锰掺杂能使PMN-PZT陶瓷的介电常数、介电损耗有效的下降。从热释电材料的重要参数中热释电探测优值的表达式FD=p/Cv(εtanδ)1/2中可以看出,性能良好的热释电材料应具有高的热释电系数p、低的介电损耗tanδ和合适的介电常数ε,所以锰掺杂能有效地改善PMN-PZT陶瓷的热释电性能。For the PMN-PZT (lead magnesium niobate-lead zirconate titanate) series materials, previous studies have focused on the piezoelectric properties near the quasi-phase boundary, or on the pyroelectric properties near the PT side of the phase diagram. Shaw CP and Whatmore RW et al. studied the pyroelectric properties of PMN-PZT in the zirconium-rich region, and studied PMN-PZT ceramics F RL -F RH (low-temperature ferroelectricity by changing the ratio of PMN and PT in PMN-PZT solid solution Phase-high-temperature ferroelectric phase) phase transition temperature changes, as well as the corresponding dielectric properties and pyroelectric properties. At the same time, they also found that manganese doping can effectively reduce the dielectric constant and dielectric loss of PMN-PZT ceramics. It can be seen from the expression F D =p/Cv(εtanδ) 1/2 of the pyroelectric detection figure of merit among the important parameters of pyroelectric materials that a pyroelectric material with good performance should have a high pyroelectric coefficient p, low dielectric loss tanδ and appropriate dielectric constant ε, so manganese doping can effectively improve the pyroelectric performance of PMN-PZT ceramics.

发明内容Contents of the invention

本发明的目的在于提供一种制备热释电陶瓷的方法,利用该方法所制备的热释电陶瓷具有较低的损耗和介电常数、较高的热释电系数,具有较高探测优值。The object of the present invention is to provide a method for preparing pyroelectric ceramics, the pyroelectric ceramics prepared by the method have lower loss and dielectric constant, higher pyroelectric coefficient, and higher detection merit .

本发明提供的一种制备热释电陶瓷的方法,其步骤包括:A kind of method for preparing pyroelectric ceramic provided by the invention, its step comprises:

(1)将MgO和Nb2O5按质量比1∶1混合均匀,在900~1100℃保温4~6h,合成MgNb2O6(1) Mix MgO and Nb 2 O 5 evenly in a mass ratio of 1:1, and keep warm at 900-1100°C for 4-6 hours to synthesize MgNb 2 O 6 ;

(2)根据化学式Pb1+d[(ZrxTi1-x)1-y(Mg1/3Nb2/3)y]O3+z at%Mn,式中,0.65≤x≤0.95,0≤y≤0.3,0≤d≤0.1,0≤z≤5,用合成的MgNb2O6与PbO、ZrO2、TiO2和Mn(NO3)2溶液按化学式中的化学计量比混合,其中,Mn(NO3)2溶液的质量浓度为2%;(2) According to the chemical formula Pb 1+d [(Zr x Ti 1-x ) 1-y (Mg 1/3 Nb 2/3 ) y ]O 3 +z at% Mn, where 0.65≤x≤0.95, 0≤y≤0.3, 0≤d≤0.1, 0≤z≤5, mix the synthesized MgNb 2 O 6 with PbO, ZrO 2 , TiO 2 and Mn(NO 3 ) 2 solution according to the stoichiometric ratio in the chemical formula, Wherein, the mass concentration of Mn(NO 3 ) 2 solution is 2%;

(3)将混合物在800~900℃保温4~6小时进行预烧;预烧后进行粉碎、过筛、预成型和成型,然后1250~1300℃保温2~3小时进行烧结,烧结采用双坩埚密封气氛叠烧,使烧结过程在饱和铅气氛中进行;(3) Heat the mixture at 800-900°C for 4-6 hours for pre-sintering; after pre-sintering, crush, sieve, preform and form, and then sinter at 1250-1300°C for 2-3 hours, using double crucibles for sintering Sealed atmosphere superimposed firing, so that the sintering process is carried out in a saturated lead atmosphere;

(4)将烧结后的材料进行磨片、清洗、被银和烧电极;(4) Grinding, cleaning, silvering and firing the sintered material;

(5)将材料放在100~120℃硅油中加3~5KV/mm电场极化15~30分钟,然后保压冷却至室温。(5) Put the material in silicone oil at 100-120°C and apply an electric field of 3-5KV/mm to polarize for 15-30 minutes, then keep the pressure and cool to room temperature.

本发明制备出的PMN-PZT热释电陶瓷具有高的热释电系数,低的介电损耗和合适的介电常数,具有良好综合热释电性能,符合制作热释电红外探测器的要求。其性能参数如表1。The PMN-PZT pyroelectric ceramic prepared by the present invention has high pyroelectric coefficient, low dielectric loss and suitable dielectric constant, has good comprehensive pyroelectric performance, and meets the requirements for making pyroelectric infrared detectors . Its performance parameters are shown in Table 1.

        表1富锆PMN-PZT材料性能参数   室温时   FRL-FRH相变时   介电常数εr   197   300   介电损耗tan δ   0.15%   0.45%   热释电系数p(C/cm2℃)   3.5×10-8   35×10-8   探测优值FD(Pa-1/2)   8.7×10-5   40.5×10-5 Table 1 Performance parameters of zirconium-rich PMN-PZT materials at room temperature F RL -F RH phase transition Dielectric constant ε r 197 300 Dielectric loss tan δ 0.15% 0.45% Pyroelectric coefficient p(C/cm 2 ℃) 3.5×10 -8 35×10 -8 Detection figure of merit F D (Pa -1/2 ) 8.7×10 -5 40.5×10 -5

附图说明Description of drawings

图1为本发明制备热释电陶瓷方法的工艺流程图;Fig. 1 is the process flow chart of the present invention's preparation pyroelectric ceramic method;

图2为不同锰含量的PMN-PZT材料烧结样品自然表面的SEM照片,其中图(a)0at%Mn,图(b)1at%Mn,图(c)2at%Mn;Fig. 2 is the SEM photograph of the natural surface of the PMN-PZT material sintered sample of different manganese content, wherein figure (a) 0at%Mn, figure (b) 1at%Mn, figure (c) 2at%Mn;

图3为不同烧结温度的PMN-PZT材料烧结样品自然表面的SEM照片,其中,图(a)1250℃,图(b)1265℃,图(c)1300℃。Figure 3 is the SEM photographs of the natural surface of PMN-PZT material sintered samples at different sintering temperatures, in which, picture (a) is 1250°C, picture (b) is 1265°C, and picture (c) is 1300°C.

具体实施方式Detailed ways

本发明制备方法的步骤包括:The steps of the preparation method of the present invention comprise:

1、采用先驱体合成工艺,首先用分析纯的MgO和Nb2O5按质量比1∶1混合均匀,在900~1100℃保温4~6h,合成MgNb2O61. Using the precursor synthesis process, first use analytically pure MgO and Nb 2 O 5 to mix uniformly at a mass ratio of 1:1, and keep warm at 900-1100°C for 4-6 hours to synthesize MgNb 2 O 6 .

2、根据化学式Pb1+d[(ZrxTi1-x)1-y(Mg1/3Nb2/3)y]O3+z at%Mn(其中,0.65≤x≤0.95,0≤y≤0.3,0≤d≤0.1,0≤z≤5),用合成的MgNb2O6与PbO、ZrO2、TiO2和Mn(NO3)2溶液按化学式中的化学计量比混合。其中,锰掺杂是选用的是质量浓度为2%的Mn(NO3)2溶液。目前文献报道中锰元素的加入多是选用MnCO3、MnO2或Mn(CH3COO)2的固态形式,其缺点是在混合、干燥过程中会出现锰元素析出损失和混合不均等问题,这会严重影响最后成品的化学计量比,进而影响其性能的一致性及可重复性。本发明选用质量浓度为2%的Mn(NO3)2溶液,使锰的加入更加容易,有效改善了析出损失和混合不均等问题。2. According to the chemical formula Pb 1+d [(Zr x Ti 1-x ) 1-y (Mg 1/3 Nb 2/3 ) y ]O 3 +z at% Mn (wherein, 0.65≤x≤0.95, 0≤ y≤0.3, 0≤d≤0.1, 0≤z≤5), mix the synthesized MgNb 2 O 6 with PbO, ZrO 2 , TiO 2 and Mn(NO 3 ) 2 solutions according to the stoichiometric ratio in the chemical formula. Wherein, the Mn(NO 3 ) 2 solution with a mass concentration of 2% is selected for manganese doping. Most of the addition of manganese in the current literature reports is in the solid form of MnCO 3 , MnO 2 or Mn(CH 3 COO) 2 . The disadvantage is that there will be problems such as the loss of manganese element precipitation and uneven mixing during the mixing and drying process. It will seriously affect the stoichiometric ratio of the final product, thereby affecting the consistency and repeatability of its performance. The present invention selects the Mn(NO 3 ) 2 solution with a mass concentration of 2%, which makes the addition of manganese easier and effectively improves the problems of precipitation loss and uneven mixing.

3、采用PZT陶瓷的二次烧成工艺。800~900℃保温4~6小时预烧;粉碎、过筛、成型,其中成型过程包括预成型和成型两步以保证试样的均匀性和致密性;1250~1300℃保温2~3小时烧结,烧结时采用双坩埚密封气氛叠烧的方式,小坩埚内所铺锆粉中混(加)入PbO粉,使烧结在饱和铅气氛中进行,以有效抑制铅挥发。3. The secondary firing process of PZT ceramics is adopted. 800-900°C heat preservation for 4-6 hours pre-calcination; crushing, sieving, forming, the forming process includes two steps of pre-forming and forming to ensure the uniformity and compactness of the sample; 1250-1300°C heat preservation for 2-3 hours for sintering , During sintering, double-crucible sealed atmosphere stacking method is adopted, and PbO powder is mixed (added) into the zirconium powder paved in the small crucible, so that the sintering is carried out in a saturated lead atmosphere, so as to effectively suppress lead volatilization.

4、将烧结后的试样磨片、清洗、被银、烧电极。4. The sintered sample is ground, cleaned, covered with silver, and fired.

5、将试样放在100~120℃硅油中加3~5KV/mm电场极化15~30分钟,然后保压冷却至室温以保证极化的充分性。5. Place the sample in silicone oil at 100-120°C and polarize with an electric field of 3-5KV/mm for 15-30 minutes, then keep pressure and cool to room temperature to ensure sufficient polarization.

所制备的热释电陶瓷的基本结构组成是:Pb1+d[(ZrxTi1-x)1-y(Mg1/3Nb2/3)y]O3+z at%Mn,其中,0.65≤x≤0.95,0≤y≤0.3,0≤d≤0.1,0≤z≤5。The basic structural composition of the prepared pyroelectric ceramics is: Pb 1+d [(Zr x Ti 1-x ) 1-y (Mg 1/3 Nb 2/3 ) y ]O3+z at% Mn, wherein, 0.65≤x≤0.95, 0≤y≤0.3, 0≤d≤0.1, 0≤z≤5.

本发明通过改变烧结温度和锰掺杂量总结出较好的配方和制备工艺。The invention summarizes a better formula and preparation process by changing the sintering temperature and manganese doping amount.

下面通过具体实例,进一步说明本发明的特点和效果:Below by concrete example, further illustrate feature and effect of the present invention:

实例1:Example 1:

采用先驱体合成工艺,首先用分析纯的MgO和Nb2O5按质量比1∶1混合均匀,在1000℃保温6h合成MgNb2O6。然后,根据化学式Pb1.01[(Zr0.90Ti0.10)0.85(Mg1/3Nb2/3)0.15]·O3,用合成的MgNb2O6与PbO、ZrO2、TiO2按化学式中的化学计量比配料,经球磨、粉碎、过筛后采用PZT陶瓷的二次烧成工艺,在800℃保温6小时预烧,将预烧合成的粉料进行粉碎、过筛、成型(其中成型过程包括预成型和成型两步),然后采用双坩埚密封气氛叠烧的方式在1265℃保温2小时烧结。将烧结后的试样磨片、清洗、被银、烧电极。然后将试样放在120℃硅油中加3KV/mm电场极化30分钟后保压冷却至室温,短路放置24小时后测试。其性能见表3。Using the precursor synthesis process, the analytically pure MgO and Nb 2 O 5 were mixed uniformly at a mass ratio of 1:1, and MgNb 2 O 6 was synthesized at 1000°C for 6 hours. Then, according to the chemical formula Pb 1.01 [(Zr 0.90 Ti 0.10 ) 0.85 (Mg 1/3 Nb 2/3 ) 0.15 ]·O 3 , use the synthesized MgNb 2 O 6 and PbO, ZrO 2 , TiO 2 according to the chemical formula in the chemical formula Metering ratio ingredients, after ball milling, crushing, and sieving, adopt the secondary firing process of PZT ceramics, pre-fire at 800°C for 6 hours, and crush, sieve, and shape the pre-fired powder (the molding process includes Two steps of preforming and molding), and then sintering at 1265°C for 2 hours in a sealed atmosphere with double crucibles. Grind the sintered sample, clean it, coat it with silver, and burn the electrode. Then place the sample in silicone oil at 120°C and add a 3KV/mm electric field to polarize for 30 minutes, then keep pressure and cool to room temperature, and test after short-circuiting for 24 hours. Its performance is shown in Table 3.

实例2-6:Example 2-6:

按照化学式Pb1.01[(Zr0.90Ti0.10)0.85(Mg1/3Nb2/3)0.15]O3+x at%Mn(NO3)2配料,其中,Mn(NO3)2溶液的质量浓度为2%,x=1.0、2.0、3.0、4.0、5.0,如表2。其余同实例1。其性能见表3。According to the chemical formula Pb 1.01 [(Zr 0.90 Ti 0.10 ) 0.85 (Mg 1/3 Nb 2/3 ) 0.15 ]O 3 +x at% Mn(NO 3 ) 2 ingredients, wherein, the mass concentration of Mn(NO 3 ) 2 solution 2%, x=1.0, 2.0, 3.0, 4.0, 5.0, as shown in Table 2. All the other are the same as example 1. Its performance is shown in Table 3.

                             表2   实例   2   3   4   5   6   Mn(NO3)2含量(at%)   1.0   2.0   3.0   4.0   5.0 Table 2 example 2 3 4 5 6 Mn(NO 3 ) 2 content (at%) 1.0 2.0 3.0 4.0 5.0

                     表3不同锰掺杂PMN-PZT热释电材料性能参数   Mn含量(at%)   介电常数   介电损耗   室温热释电系数p(10-8C/cm2℃)  FRL-FRH相变温度时pmax(10-8C/cm2℃)   0   355   2.13%   1.3  7   1.0   282   0.60%   1.9  17   2.0   256   0.28%   2.8  29   3.0   197   0.15%   3.5  35   4.0   191   0.20%   2.0  22   5.0   195   0.51%   1.2  11 Table 3 Performance parameters of different manganese-doped PMN-PZT pyroelectric materials Mn content (at%) Dielectric constant Dielectric loss Room temperature pyroelectric coefficient p(10 -8 C/cm 2 ℃) p max at F RL -F RH phase transition temperature (10 -8 C/cm 2 ℃) 0 355 2.13% 1.3 7 1.0 282 0.60% 1.9 17 2.0 256 0.28% 2.8 29 3.0 197 0.15% 3.5 35 4.0 191 0.20% 2.0 twenty two 5.0 195 0.51% 1.2 11

实例7-9:Example 7-9:

按Pb1.01[(Zr0.90Ti0.10)0.85(Mg1/3Nb2/3)0.15]O3+2at%Mn(NO3)2配料,分别在1250℃、1265℃、1300℃保温2h烧结,如表4。其余同实例1。其性能见表5。According to the ingredients of Pb 1.01 [(Zr 0.90 Ti 0.10 ) 0.85 (Mg 1/3 Nb 2/3 ) 0.15 ]O 3 +2at% Mn(NO 3 ) 2 , they were sintered at 1250°C, 1265°C, and 1300°C for 2 hours respectively. As in Table 4. All the other are the same as example 1. Its performance is shown in Table 5.

                 表4   实例   7   8   9   烧结温度(℃)   1250   1265   1300 Table 4 example 7 8 9 Sintering temperature (℃) 1250 1265 1300

                 表5不同烧结温度PMN-PZT热释电材料性能参数   烧结温度(℃)   介电常数   介电损耗   室温热释电系数p(10-8C/cm2℃)  FRL-FRH相变温度时pmax(10-8C/cm2℃)   1265   202   0.35%   1.5  18   1275   197   0.23%   2.8  29   1300   223   0.58%   1.2  13 Table 5 Performance parameters of PMN-PZT pyroelectric materials at different sintering temperatures Sintering temperature (℃) Dielectric constant Dielectric loss Room temperature pyroelectric coefficient p(10 -8 C/cm 2 ℃) p max at F RL -F RH phase transition temperature (10 -8 C/cm 2 ℃) 1265 202 0.35% 1.5 18 1275 197 0.23% 2.8 29 1300 223 0.58% 1.2 13

Claims (1)

1, a kind of method for preparing pyroelectric ceramics, its step comprises:
(1) with MgO and Nb 2O 5Mix at 1: 1 by mass ratio, at 900~1100 ℃ of insulation 4~6h, synthetic MgNb 2O 6
(2) according to chemical formula Pb 1+d[(Zr xTi 1-x) 1-y(Mg 1/3Nb 2/3) y] O 3+ zat%Mn, in the formula, synthetic MgNb is used in 0.65≤x≤0.95,0≤y≤0.3,0≤d≤0.1,0≤z≤5 2O 6With PbO, ZrO 2, TiO 2And Mn (NO 3) 2The stoichiometric ratio that solution is pressed in the chemical formula is mixed, wherein, and Mn (NO 3) 2The mass concentration of solution is 2%;
(3) mixture was carried out pre-burning in 4~6 hours 800~900 ℃ of insulations; Pulverize after the pre-burning, sieve, premolding and moulding, sintering was carried out in 1250~1300 ℃ of insulations in 2~3 hours then, sintering adopts folded burning of two crucibles sealing atmosphere, and sintering process is carried out in saturated plumbous atmosphere;
(4) material behind the sintering is carried out abrasive disc, cleaning, quilt silver and burning electrode;
(5) material is placed in 100~120 ℃ of silicone oil and added 3~5KV/mm electric field polarization 15~30 minutes, pressurize is cooled to room temperature then.
CNB2006101246432A 2006-09-27 2006-09-27 A method for preparing pyroelectric ceramics Expired - Fee Related CN100366576C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006101246432A CN100366576C (en) 2006-09-27 2006-09-27 A method for preparing pyroelectric ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006101246432A CN100366576C (en) 2006-09-27 2006-09-27 A method for preparing pyroelectric ceramics

Publications (2)

Publication Number Publication Date
CN1927766A true CN1927766A (en) 2007-03-14
CN100366576C CN100366576C (en) 2008-02-06

Family

ID=37857923

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101246432A Expired - Fee Related CN100366576C (en) 2006-09-27 2006-09-27 A method for preparing pyroelectric ceramics

Country Status (1)

Country Link
CN (1) CN100366576C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101333109B (en) * 2008-07-11 2010-10-13 华中科技大学 Method for preparing wide-temperature zone phase change type pyroelectric ceramic material
CN103304235A (en) * 2013-03-01 2013-09-18 苏州市职业大学 Production method of fine-grain high-strength PMN-PZT (lead zirconate titanate) piezoelectric ceramic material
CN114621008A (en) * 2020-12-14 2022-06-14 中国科学院上海硅酸盐研究所 A kind of multi-element lead zirconate titanate-based pyroelectric ceramic material and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1070464C (en) * 1998-06-16 2001-09-05 中国科学院上海硅酸盐研究所 Method for preparing wide-temperature zone phase change type pyroelectric ceramic material
KR20060022949A (en) * 2004-09-08 2006-03-13 충주대학교 산학협력단 PM-PJ Jetty Piezoelectric Ceramics and Manufacturing Method Thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101333109B (en) * 2008-07-11 2010-10-13 华中科技大学 Method for preparing wide-temperature zone phase change type pyroelectric ceramic material
CN103304235A (en) * 2013-03-01 2013-09-18 苏州市职业大学 Production method of fine-grain high-strength PMN-PZT (lead zirconate titanate) piezoelectric ceramic material
CN103304235B (en) * 2013-03-01 2015-11-25 苏州市职业大学 A kind of production method of thin brilliant high strength PMN-PZT piezoceramic material
CN114621008A (en) * 2020-12-14 2022-06-14 中国科学院上海硅酸盐研究所 A kind of multi-element lead zirconate titanate-based pyroelectric ceramic material and preparation method thereof

Also Published As

Publication number Publication date
CN100366576C (en) 2008-02-06

Similar Documents

Publication Publication Date Title
CN101805185B (en) Method for preparing leadmagnesio-niobate lead titanate relaxation ferroelectric ceramics
CN116082034B (en) Bismuth sodium titanate-based high-entropy ceramic material with high energy storage characteristic, and preparation method and application thereof
CN104529446A (en) Copper oxide doped potassium-sodium niobate electrostrictive strain ceramic and preparation method thereof
CN102515754B (en) Barium zirconate titanate-barium calciate titanate (BZT-BCT) ceramic modified by doping of lanthanum oxide and preparation method for same
CN101337814B (en) Low temperature sintering lithium antimonite doped quinary system piezoelectric ceramics material and method for preparing same
CN110342933A (en) A method of regulation sodium niobate ceramics Curie temperature
CN115073160B (en) A hot-pressing sintering preparation method for bismuth ferrite-barium titanate ceramics with micro-nano electric domain structure
CN115849905A (en) High-temperature piezoelectric ceramic material, preparation method and application
CN108863360A (en) A kind of preparation method of Er ions potassium-sodium niobate-strontium titanates crystalline ceramics
CN101333109B (en) Method for preparing wide-temperature zone phase change type pyroelectric ceramic material
CN102351533A (en) Calcium barium zirconate titanate based leadless piezoelectric ceramics with low temperature sintering and high piezoelectric properties and preparation method thereof
CN111333413A (en) Bismuth ferrite-lead titanate-barium titanate ternary system high temperature piezoelectric ceramic material and preparation method thereof
CN1927766A (en) Method of preparing pyroelectric ceramics
CN104098330B (en) Post growth annealing is adopted to prepare the method for high-performance barium strontium titanate pyroelectric ceramics
CN103951407A (en) Ga modified (Bi0.8Gd0.2) FeO3-PbTiO3 piezoelectric ceramics and its preparation method
CN109678501B (en) Formula and preparation method of piezoelectric vibrator porcelain special for smoke alarm
CN1673178A (en) Bismuth sodium titanate-barium titanate base piezoelectric ceramic and its prepn process
CN116693285B (en) A superparaelectric phase sodium bismuth titanate-based relaxation energy storage ceramic material and preparation method thereof
CN103524129B (en) Piezoceramic material for ultrasonic emission-type transducers and preparation method
CN1958510A (en) Modified PZT piezoelectric ceramics with Nano powder being added to preburning material, and preparation method
CN102976750A (en) MgO-modified lead zirconate titanate pyroelectric ceramic material and preparation method thereof
CN102503422B (en) Titanium-niobium-magnesium-indium acid lead pyroelectric ceramic and preparation method thereof
CN1275903C (en) Textured columbate leadless piezoelectric materials and method for making same
CN110357630A (en) A kind of unleaded pyroelectric ceramic material of high-performance sodium niobate base and its preparation method and application
CN111606707B (en) Temperature-holding stable piezoelectric ceramic material and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee