CN1852870B - 制备包含Al2O3、REO、ZrO2和/或HfO2及Nb2O5和/或Ta2O5的陶瓷的方法 - Google Patents
制备包含Al2O3、REO、ZrO2和/或HfO2及Nb2O5和/或Ta2O5的陶瓷的方法 Download PDFInfo
- Publication number
- CN1852870B CN1852870B CN2004800269525A CN200480026952A CN1852870B CN 1852870 B CN1852870 B CN 1852870B CN 2004800269525 A CN2004800269525 A CN 2004800269525A CN 200480026952 A CN200480026952 A CN 200480026952A CN 1852870 B CN1852870 B CN 1852870B
- Authority
- CN
- China
- Prior art keywords
- glass
- weight
- ceramic
- zro
- hfo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1409—Abrasive particles per se
- C09K3/1427—Abrasive particles per se obtained by division of a mass agglomerated by melting, at least partially, e.g. with a binder
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D18/00—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/125—Silica-free oxide glass compositions containing aluminium as glass former
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/14—Silica-free oxide glass compositions containing boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/14—Silica-free oxide glass compositions containing boron
- C03C3/15—Silica-free oxide glass compositions containing boron containing rare earths
- C03C3/155—Silica-free oxide glass compositions containing boron containing rare earths containing zirconium, titanium, tantalum or niobium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Glass Compositions (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
本发明提供了用于制备玻璃-陶瓷的方法,该玻璃-陶瓷包含Al2O3、REO、在ZrO2或HfO2中的至少一种、以及在Nb2O5或Ta2O5中的至少一种。本发明的玻璃-陶瓷能够被制备、形成或转化成玻璃小珠、制品(例如板材)、纤维、颗粒和薄涂层。本发明的玻璃-陶瓷颗粒的一些实施方案尤其可以用作磨粒。
Description
背景技术
许多无定形物(包括玻璃)的组合物和玻璃-陶瓷组合物是已知的。很多氧化物玻璃体系利用众所周知的玻璃形成体(例如SiO2、B2O3、P2O5、GeO2、TeO2、Al2O3和V2O5)来帮助玻璃形成。一些玻璃能够通过热处理来形成玻璃-陶瓷。
玻璃形成体的固有性质可以限制已知玻璃和玻璃-陶瓷的很多性质。例如,对于SiO2基、B2O3基和P2O5基的玻璃和玻璃-陶瓷,其杨氏模量、硬度和强度通常受这些玻璃形成体的限制。这些玻璃和玻璃-陶瓷与诸如Al2O3或ZrO3相比通常具有较差的机械性能。
另一方面,一般来说,在大多数陶瓷加工操作的过程中,希望以最小的颗粒尺寸(例如,没有显著的晶体生长)获得最大的致密度。可使颗粒尺寸最小化的典型的陶瓷加工技术包括降低晶体生长速度。虽然不想受限于理论,但是一般认为在陶瓷领域中较大的晶体尺寸导致机械性能下降,而较精细的平均晶粒尺寸可使机械性能提高(例如,较高的强度和较高的硬度)。
发明概述
一方面,本发明提供玻璃和玻璃-陶瓷,所述玻璃和玻璃-陶瓷包含Al2O3、REO、在ZrO2或HfO2中的至少一种、以及在Nb2O5或Ta2O5中的至少一种。令人惊讶的是,申请人已经发现向本文所述的玻璃中加入Nb2O5和/或Ta2O5能够显著地影响所述玻璃的结晶。
在一些实施方案中,本发明提供一种制备玻璃-陶瓷的方法,所述方法包括热处理玻璃以使所述玻璃的至少一部分转化成结晶陶瓷并得到玻璃-陶瓷,所述玻璃包含:占所述玻璃总重量的至少35重量%的Al2O3(在一些实施方案中,Al2O3占所述玻璃总重量的至少40重量%、45重量%、50重量%、55重量%、60重量%、65重量%、70重量%,或者甚至至少75重量%;在一些实施方案中,Al2O3占所述玻璃总重量的重量百分数的范围为35重量%到75重量%、40重量%到75重量%、45重量%到75重量%、50重量%到75重量%、55重量%到75重量%,或者甚至为60重量%到75重量%);REO(例如Gd2O3、La2O3和/或Nd2O3;在一些实施方案中,REO占所述玻璃总重量的至少0.5重量%、1重量%、2重量%、3重量%、4重量%、5重量%,或者甚至至少10重量%;在一些实施方案中,REO占所述玻璃总重量的重量百分数的范围为0.5重量%到70重量%、1重量%到70重量%、5重量%到70重量%、10重量%到70重量%、0.5重量%到50重量%、1重量%到50重量%、5重量%到50重量%、10重量%到50重量%、0.5重量%到40重量%、1重量%到40重量%、5重量%到40重量%、10重量%到40重量%、0.5重量%到30重量%、1重量%到30重量%、5重量%到30重量%、10重量%到30重量%、0.5重量%到25重量%、1重量%到25重量%、5重量%到25重量%,或者甚至为10重量%到25重量%);ZrO2(在一些实施方案中为ZrO2和/或HfO2(包括两者总和)) (在一些实施方案中,ZrO2(在一些实施方案中为ZrO2和/或HfO2(包括两者总和))占所述玻璃总重量的至少5重量%、10重量%、15重量%,或者甚至至少20重量%;在一些实施方案中,ZrO2(在一些实施方案中为ZrO2和/或HfO2(包括两者总和))占所述玻璃总重量的重量百分数的范围为5重量%到30重量%、5重量%到25重量%、10重量%到25重量%、10重量%到30重量%、15重量%到30重量%、20重量%到30重量%、15重量%到25重量%,或者甚至为15重量%到20重量%);以及Nb2O5或Ta2O5中的至少一种(在一些实施方案中,Nb2O5或Ta2O5中的至少一种占所述玻璃总重量的至少1重量%、2重量%、3重量%、4重量%、5重量%、10重量%、15重量%、20重量%,或者甚至至少25重量%;在一些实施方案中,Nb2O5或Ta2O5中的至少一种占所述玻璃总重量的重量百分数的范围为1重量%到20重量%、5重量%到20重量%、10重量%到20重量%,或者甚至为5重量%到15重量%),其中,所述玻璃中所含的As2O3、B2O3、GeO2、P2O5、SiO2、TeO2和V2O5的总和占所述玻璃总重量的至多10重量%(在一些实施方案中,占至多9重量%、8重量%、7重量%、6重量%、5重量%、4重量%、3重量%、2重量%、1重量%、0.5重量%、0.1重量%,或者甚至0重量%),并且其中,与对照的玻璃-陶瓷相比,所述Nb2O5或Ta2O5中的至少一种所存在的含量足以提高由玻璃形成结晶ZrO2或结晶HfO2中的至少一种的比率(在一些实施方案中,所述比率提高了至少1.5倍、2倍、2.5倍,或者甚至至少3倍),所述对照的玻璃-陶瓷是通过以相同方式热处理不含Nb2O5和Ta2O5的相同玻璃而制得的(即,除了不使用Nb2O5和Ta2O5制备所述对照的玻璃外,所述对照的玻璃是以与包含Al2O3、REO、在ZrO2或HfO2中的至少一种、以及Nb2O5和/或Ta2O5的玻璃相同的方式制备而成的,并且以相同的方式进行热处理(即,这种对照的玻璃中所含的Nb2O5或Ta2O5占所述玻璃总重量的0重量%))。对从所述玻璃形成结晶ZrO2或结晶HfO2的增加的比率测定,如下面实施例1所述。在一些实施方案中,所述的方法还包括使玻璃-陶瓷破碎以得到磨粒。在一些实施方案中,所述的方法还包括对颗粒进行分级以得到具有规定标称级别的多个颗粒。在一些实施方案中,所述的方法还包括将所述磨粒结合到磨料制品中。
根据本发明制备的玻璃-陶瓷及用于制备这种玻璃-陶瓷的玻璃的一些实施方案中,所述的玻璃-陶瓷和玻璃还可以包含至少一种额外的金属氧化物(例如Y2O3、MgO、TiO2、Cr2O3、CuO、SrO、Li2O、NiO和/或Fe2O3)。
对于一些实施方案中,根据本发明制备的玻璃-陶瓷及用于制备这种玻璃-陶瓷的玻璃分别含有占所述玻璃-陶瓷或玻璃的总重量的至多20重量%的SiO2(在一些实施方案中,SiO2的含量小于15重量%、10重量%、5重量%、4重量%、3重量%、2重量%、1重量%、0.5重量%、0.1重量%,或者甚至为0重量%)及占所述玻璃-陶瓷或玻璃的总重量的至多20重量%的B2O3(在一些实施方案中,B2O3的含量至多为15重量%、10重量%、5重量%、4重量%、3重量%、2重量%、1重量%、0.5重量%、0.1重量%,甚至为0重量%)。
根据本发明的玻璃-陶瓷的一些实施方案中,所述玻璃-陶瓷中的玻璃可以占所述玻璃-陶瓷总体积的(例如)至少1%、2%、3%、5%、10%、1 5%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%,或者甚至95%。根据本发明的玻璃-陶瓷的一些实施方案中,所述玻璃-陶瓷中的结晶陶瓷可以占所述玻璃-陶瓷总体积的(例如)至少5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、97%、98%、99%,或者甚至100%。
在本申请中:
“无定形材料”指的是得自熔融态和/或蒸气相的材料,其没有任何长程晶体结构并且/或者具有与无定形材料的结晶对应的放热峰,所述长程晶体结构是通过X射线衍射而测定的,所述放热峰是通过DTA(差热分析法)测定的,如通过本文所述的名称为“差热分析”的测试进行测定;
“陶瓷”包括玻璃、结晶陶瓷、玻璃-陶瓷及其组合;
“复合金属氧化物”指的是包含两种或多种不同金属元素和氧的金属氧化物(例如CeAl11O18、Dy3Al5O12、MgAl2O4和Y3Al5O12);
“复合Al2O3·金属氧化物”指的是以理论氧化物为基础计算包含Al2O3和一种或多种不同于Al的金属元素的复合金属氧化物(例如CeAl11O18、Dy3Al5O12、MgAl2O4和Y3Al5O12);
“复合Al2O3·Y2O3”指的是以理论氧化物为基础计算包含Al2O3和Y2O3的复合金属氧化物(例如Y3Al5O12);
“复合Al2O3·REO”指的是以理论氧化物为基础计算包含Al2O3和稀土氧化物的复合金属氧化物(例如CeAl11O18和Dy3Al5O12);
“玻璃”指的是显示出玻璃化转变温度的无定形材料;
“玻璃-陶瓷”指的是包含通过热处理玻璃而形成的晶体的陶瓷;
“Tg”指的是玻璃化转变温度,该玻璃化转变温度是通过本文所述的名称为“差热分析”的测试而测定的;
“Tx”指的是结晶温度,该结晶温度是通过本文所述的名称为“差热分析”测试而测定的;
“稀土氧化物”指的是氧化铈(例如CeO2)、氧化镝(例如Dy2O3)、氧化铒(例如Er2O3)、氧化铕(例如Eu2O3)、氧化钆(例如Gd2O3)、氧化钬(例如Ho2O3)、氧化镧(例如La2O3)、氧化镥(例如Lu2O3)、氧化钕(例如Nd2O3)、氧化镨(例如Pr6O11)、氧化钐(例如Sm2O3)、氧化铽(例如Tb2O3)、氧化钍(例如Th4O7)、氧化铥(例如Tm2O3)和氧化镱(例如Yb2O3)及它们的组合;
“REO”指的是稀土氧化物。
另外,应该理解在本文中除非声明金属氧化物(例如Al2O3、复合Al2O3·金属氧化物等)(例如在玻璃-陶瓷中)为结晶体外,金属氧化物可以是结晶体,或者部分为玻璃部分为结晶体。例如,如果玻璃-陶瓷包含Al2O3和ZrO2,那么所述的Al2O3和ZrO2均可以处于玻璃态、结晶态,或者部分处于玻璃态和部分处于结晶态,或者甚至为与其它金属氧化物反应的产物(例如,除非声明(例如)Al2O3以结晶的Al2O3存在或者以特定结晶相的Al2O3(例如α-Al2O3)存在外,Al2O3可以作为结晶的Al2O3存在并且/或者作为一种或多种结晶的复合Al2O3·金属氧化物中的一部分存在)。
根据本发明制备的玻璃-陶瓷的一些实施方案能够被制备、形成或转化成小珠(例如直径至少为1微米、5微米、10微米、25微米、50微米、100微米、150微米、250微米、500微米、750微米、1毫米、5毫米、或者甚至为10毫米的小珠)、制品(例如板材)、纤维、颗粒和涂层(例如薄涂层)。所述小珠的实施方案可以用于(例如)反射设备例如逆向反射片、字母数字板(alphanumeric plate)和路面标记中。所述颗粒和纤维的实施方案可以用作(例如)复合材料(例如陶瓷、金属、聚合物基体复合材料)中的隔热材料、填料或者增强材料。所述薄涂层的实施方案可以用作(例如)涉及耐磨的应用以及控热目的的应用中的保护涂层,。本发明的制品的例子包括厨房用具(例如盘子)、牙托、增强材料(例如颗粒和纤维)、刀具插件(cutting tool insert)、磨料材料和汽油发动机的结构组件(例如阀门和轴承)。其它制品的典型实施方案包括在主体或其它基底的外表面上具有玻璃-陶瓷保护涂层的那些制品。根据本发明制备的某些玻璃-陶瓷颗粒尤其可以用作磨粒。所述的磨粒能够结合到磨料制品中,或者以松散的形式使用。
磨粒在使用前通常按给定粒度分布进行分级。这样的分布通常具有一定范围的粒度,即从粗颗粒到细颗粒,在磨料领域中,这个范围有时指“粗”、“控制”和“细”级别。根据工业上认可的分级标准分级的磨粒是将每个标称级别的粒度分布指定在数字界限内。这种工业上认可的分级标准(即规定标称级别)包括如下公知的标准:美国国家标准协会(ANSI)的标准、欧洲磨料产品生产商联合会(FEPA)的标准和日本工业标准(JIS)的标准。一方面,本发明提供具有规定标称级别的多个磨粒,其中所述多个磨粒中的至少一部分是根据本发明制备的磨粒。在一些实施方案中,根据本发明制备的磨粒占所述多个磨粒的总重量的至少5重量%、10重量%、15重量%、20重量%、25重量%、30重量%、35重量%、40重量%、45重量%、50重量%、55重量%、60重量%、65重量%、70重量%、75重量%、80重量%、85重量%、90重量%、95重量%,或者甚至100重量%。
另一方面,本发明提供一种磨料制品(例如固结磨具制品、非织造磨具制品或者涂附磨具制品),所述磨料制品包含粘合剂和多个磨粒,其中所述磨粒中的至少一部分是根据本发明制备的磨粒。
在一些实施方案中,本发明提供一种制备磨粒的方法,所述的方法包含热处理玻璃颗粒以使所述玻璃的至少一部分转化成结晶陶瓷并得到玻璃-陶瓷和磨粒,所述玻璃包含:占所述玻璃总重量的至少35重量%的Al2O3(在一些实施方案中,Al2O3占所述玻璃总重量的至少40重量%、45重量%、50重量%、55重量%、60重量%、65重量%、70重量%,或者甚至至少75重量%;在一些实施方案中,Al2O3占所述玻璃总重量的重量百分数的范围为35重量%到75重量%、40重量%到75重量%、45重量%到75重量%、50重量%到75重量%、55重量%到75重量%,或者甚至为60重量%到75重量%);REO(例如Gd2O3、La2O3和/或Nd2O3;在一些实施方案中,REO占所述玻璃总重量的至少0.5重量%、1重量%、2重量%、3重量%、4重量%、5重量%,或者甚至至少10重量%;在一些实施方案中,REO占所述玻璃总重量的重量百分数的范围为0.5重量%到70重量%、1重量%到70重量%、5重量%到70重量%、10重量%到70重量%、0.5重量%到50重量%、1重量%到50重量%、5重量%到50重量%、10重量%到50重量%、0.5重量%到40重量%、1重量%到40重量%、5重量%到40重量%、10重量%到40重量%、0.5重量%到30重量%、1重量%到30重量%、5重量%到30重量%、10重量%到30重量%、0.5重量%到25重量%、1重量%到25重量%、5重量%到25重量%,或者甚至为10重量%到25重量%);ZrO2(在一些实施方案中为ZrO2和/或HfO2(包括两者总和))(在一些实施方案中,ZrO2(在一些实施方案中为ZrO2和/或HfO2(包括两者总和))占所述玻璃总重量的至少5重量%、10重量%、15重量%,或者甚至至少20重量%;在一些实施方案中,ZrO2(在一些实施方案中为ZrO2和/或HfO2(包括两者总和))占所述玻璃总重量的重量百分数的范围为5重量%到30重量%、5重量%到25重量%、10重量%到25重量%、10重量%到30重量%、15重量%到30重量%、20重量%到30重量%、15重量%到25重量%,或者甚至为15重量%到20重量%);以及Nb2O5或Ta2O5中的至少一种(在一些实施方案中,Nb2O5或Ta2O5中的至少一种占所述玻璃总重量的至少1重量%、2重量%、3重量%、4重量%、5重量%、10重量%、15重量%、20重量%,或者甚至至少25重量%;在一些实施方案中,Nb2O5或Ta2O5中的至少一种占所述玻璃总重量的重量百分数的范围为1重量%到20重量%、5重量%到20重量%、10重量%到20重量%,或者甚至为5重量%到15重量%),其中,所述玻璃中所含的As2O3、B2O3、GeO2、P2O5、SiO2、TeO2和V2O5的总和占所述玻璃总重量的至多10重量%(在一些实施方案中,占至多9重量%、8重量%、7重量%、6重量%、5重量%、4重量%、3重量%、2重量%、1重量%、0.5重量%、0.1重量%,或者甚至0重量%),并且其中,与对照的玻璃-陶瓷相比,所述Nb2O5或Ta2O5中的至少一种所存在的含量足以提高由玻璃形成结晶ZrO2或结晶HfO2中的至少一种的比率(在一些实施方案中,所述比率提高了至少1.5倍、2倍、2.5倍,或者甚至至少3倍),所述对照的玻璃-陶瓷是通过以相同方式热处理不含Nb2O5和Ta2O5的相同玻璃而制得的。在一些实施方案中,所述的方法还包括对颗粒进行分级以得到具有规定标称级别的多个颗粒。在一些实施方案中,所述的方法还包括将所述磨粒结合到磨料制品中。
在一些实施方案中,本发明提供一种制备磨粒的方法,所述的方法包括热处理包含玻璃的颗粒以使所述玻璃的至少一部分转化成结晶陶瓷并得到玻璃-陶瓷和磨粒,所述玻璃包含:占所述玻璃总重量的至少35重量%的Al2O3(在一些实施方案中,Al2O3占所述玻璃总重量的至少40重量%、45重量%、50重量%、55重量%、60重量%、65重量%、70重量%,或者甚至至少75重量%;在一些实施方案中,Al2O3占所述玻璃总重量的重量百分数的范围为35重量%到75重量%、40重量%到75重量%、45重量%到75重量%、50重量%到75重量%、55重量%到75重量%,或者甚至为60重量%到75重量%);REO(例如Gd2O3、La2O3和/或Nd2O3;在一些实施方案中,REO占所述玻璃总重量的至少0.5重量%、1重量%、2重量%、3重量%、4重量%、5重量%,或者甚至至少10重量%;在一些实施方案中,REO占所述玻璃总重量的重量百分数的范围为0.5重量%到70重量%、1重量%到70重量%、5重量%到70重量%、10重量%到70重量%、0.5重量%到50重量%、1重量%到50重量%、5重量%到50重量%、10重量%到50重量%、0.5重量%到40重量%、1重量%到40重量%、5重量%到40重量%、10重量%到40重量%、0.5重量%到30重量%、1重量%到30重量%、5重量%到30重量%、10重量%到30重量%、0.5重量%到25重量%、1重量%到25重量%、5重量%到25重量%,或者甚至为10重量%到25重量%);ZrO2(在一些实施方案中为ZrO2和/或HfO2(包括两者总和))(在一些实施方案中,ZrO2(在一些实施方案中为ZrO2和/或HfO2(包括两者总和))占所述玻璃总重量的至少5重量%、10重量%、15重量%,或者甚至至少20重量%;在一些实施方案中,ZrO2(在一些实施方案中为ZrO2和/或HfO2(包括两者总和))占所述玻璃总重量的重量百分数的范围为5重量%到30重量%、5重量%到25重量%、10重量%到25重量%、10重量%到30重量%、15重量%到30重量%、20重量%到30重量%、15重量%到25重量%,或者甚至为15重量%到20重量%);以及Nb2O5或Ta2O5中的至少一种(在一些实施方案中,Nb2O5或Ta2O5中的至少一种占所述玻璃总重量的至少1重量%、2重量%、3重量%、4重量%、5重量%、10重量%、15重量%、20重量%,或者甚至至少25重量%;在一些实施方案中,Nb2O5或Ta2O5中的至少一种占所述玻璃总重量的重量百分数的范围为1重量%到20重量%、5重量%到20重量%、10重量%到20重量%,或者甚至为5重量%到15重量%),其中,所述玻璃中所含的As2O3、B2O3、GeO2、P2O5、SiO2、TeO2和V2O5的总和占所述玻璃总重量的至多10重量%(在一些实施方案中,占至多9重量%、8重量%、7重量%、6重量%、5重量%、4重量%、3重量%、2重量%、1重量%、0.5重量%、0.1重量%,或者甚至0重量%),并且其中,与对照的玻璃-陶瓷相比,所述Nb2O5或Ta2O5中的至少一种所存在的含量足以提高由玻璃形成结晶ZrO2或结晶HfO2中的至少一种的比率(在一些实施方案中,所述比率提高了至少1.5倍、2倍、2.5倍,或者甚至至少3倍),所述对照的玻璃-陶瓷是通过以相同方式热处理不含Nb2O5和Ta2O5的相同玻璃而制得的。在一些实施方案中,所述的方法还包括对颗粒进行分级以得到具有规定标称级别的多个颗粒。在一些实施方案中,所述的方法还包括将所述磨粒结合到磨料制品中。
磨料制品包含粘合剂和多个磨粒,其中所述磨粒中的至少一部分是根据本发明制备的磨粒。代表性的磨料制品包括涂附磨具制品、固结磨具制品(例如砂轮)、非织造磨具制品及磨刷。涂附磨具制品通常包含具有相背的第一主表面和第二主表面的背衬,并且其中,所述粘合剂和所述多个磨粒在所述第一主表面的至少一部分上形成磨料层。
在一些实施方案中,在磨料制品中,根据本发明制备的磨粒占该磨料制品中的磨粒的总重量的至少5重量%、10重量%、15重量%、20重量%、25重量%、30重量%、35重量%、40重量%、45重量%、50重量%、55重量%、60重量%、65重量%、70重量%、75重量%、80重量%、85重量%、90重量%、95重量%,或者甚至100重量%。
本法明还提供一种研磨表面的方法,所述方法包括:
将根据本发明制备的磨粒与工件表面相接触;以及
移动根据本发明制备的磨粒或者被接触的表面中的至少一者,以
用根据本发明制备的至少一个磨粒来研磨所述表面的至少一部分。
附图的简要说明
图1为包含根据本发明制备的磨粒的涂附磨具制品的部分剖视示意图。
图2为包含根据本发明制备的磨粒的固结磨具制品的立体图。
图3为包含根据本发明制备的磨粒的非织造磨料制品的一部分的放大示意图。
发明详述
本发明涉及包含Nb2O5或Ta2O5中的至少一种的玻璃和玻璃-陶瓷及其制备方法。通过选择原料、所需的组合物和加工技术来制备所述的玻璃。
Al2O3(以理论氧化物为基础计算)的来源(包括商业来源)包括铝土矿(包括天然产生的铝土矿和合成生产的铝土矿)、高铝矾土熟料、水合氧化铝(例如勃姆石和水铝矿)、铝、拜耳法氧化铝、铝矿、γ-氧化铝、α-氧化铝、铝盐、硝酸铝及其组合。所述Al2O3来源可以包含(或者仅仅提供)Al2O3。或者,所述Al2O3来源可以包含(或者提供)Al2O3及不同于Al2O3的一种或多种金属氧化物(包括:复合Al2O3·金属氧化物(例如Dy3Al5O12、Y3Al5O12、CeAl11O18等)材料或含有这样的复合Al2O3·金属氧化物的材料)。
Nb2O5的来源(包括商业来源)包括氧化铌粉末、含铌的矿物(例如铌铁矿、钽铁矿和黑稀金矿)、铌盐、铌金属及其组合。
Ta2O5的来源(包括商业来源)包括氧化钽粉末、含钽的矿物(例如铌铁矿、钽铁矿和黑稀金矿)、钽盐、钽金属及其组合。
稀土氧化物的来源(包括商业来源)包括稀土氧化物粉末、稀土金属、含稀土的矿物(例如氟碳铈镧矿和独居石)、稀土盐、稀土硝酸盐和稀土碳酸盐。所述稀土氧化物源可以包含(或者仅仅提供)稀土氧化物。或者,所述稀土氧化物源可以包含(或者提供)稀土氧化物及不同于稀土氧化物的一种或多种金属氧化物(包括:复合稀土氧化物·其它金属氧化物(例如Dy3Al5O12、CeAl11O18等)材料或含有这样的复合稀土氧化物·其它金属氧化物的材料)。
ZrO2(以理论氧化物为基础计算)的来源(包括商业来源)包括氧化锆粉末、锆砂、锆、含锆的矿物和锆盐(例如碳酸锆、醋酸锆、硝酸锆、氯化锆、氢氧化锆及其组合)。作为一种补充,或者作为一种选择,所述ZrO2的来源可以包含(或者提供)ZrO2及其它的金属氧化物如氧化铪。HfO2(以理论氧化物为基础计算)的来源(包括商业来源)包括二氧化铪粉末、铪、含铪的矿物和铪盐。作为一种补充,或者作为一种选择,所述HfO2来源可以包含(或者提供)HfO2及其它的金属氧化物如ZrO2。
对于包含ZrO2和HfO2的实施方案,ZrO2与HfO2的重量份数关系可以在100份比0份(即所有都为ZrO2;不含有HfO2)到0份比100份的范围内,并且,例如至少大约99份、98份、97份、96份、95份、90份、85份、80份、75份、70份、65份、60份、55份、50份、45份、40份、35份、30份、25份、20份、15份、10份和5份(按重量计)的ZrO2和相应量的HfO2(例如至少大约99份(按重量计)的ZrO2和不多于1份的HfO2);至少大约99份、98份、97份、96份、95份、90份、85份、80份、75份、70份、65份、60份、55份、50份、45份、40份、35份、30份、25份、20份、15份、10份和5份的HfO2和相应量的ZrO2。
其它有用的金属氧化物还可以包括BaO、CaO、Cr2O3、CoO、Fe2O3、GeO2、Li2O、MgO、MnO、NiO、Na2O、Sc2O3、SrO、TiO2、ZnO、Y2O3及其组合(以理论氧化物为基础计算)。这些金属氧化物的来源(包括商业来源)包括所述氧化物本身、金属粉末、复合氧化物、矿物、碳酸盐、醋酸盐、硝酸盐、氯化物、氢氧化物等。例如,Y2O3(以理论氧化物为基础计算)的来源(包括商业来源)包括氧化钇粉末、钇、含钇的矿物和钇盐(例如碳酸钇、硝酸钇、氯化钇、氢氧化钇及其组合)。所述Y2O3来源可以包含(或者仅仅提供)Y2O3。或者,所述Y2O3来源可以包含(或者提供)Y2O3及不同于Y2O3的一种或多种金属氧化物(包括:复合Y2O3·金属氧化物(例如Y3Al5O12)材料或者含有这样的复合Y2O3·金属氧化物的材料)。
在一些实施方案中,有利的是,通过将颗粒金属材料加入熔融物中或以其它方式与其它原料混合来获得金属氧化物源的至少一部分(在一些实施方案中,该部分占金属氧化物源的10重量%、15重量%、20重量%、25重量%、30重量%、35重量%、40重量%、45重量%、50重量%、55重量%、60重量%、65重量%、70重量%、75重量%、80重量%、85重量%、90重量%、95重量%,或者甚至100重量%),所述金属材料包含在氧化物形成中具有负焓的金属M(例如Al、Ca、Cu、Cr、Fe、Li、Mg、Ni、Ag、Ti、Zr及其组合)或其合金中的至少一种。虽然不受限于理论,但是普遍认为,与金属氧化相关的放热反应中产生的热量对形成均匀的熔融物和由此得到的玻璃是十分有益的。例如,普遍认为在原料中由氧化反应产生的额外的热量能够使不充足的热量转移消除、最小化或者至少降低,因此有利于所述熔融物的形成和均匀化,尤其在形成x、y和z尺寸超过50微米(超过100微米甚至超过150微米)的玻璃颗粒的时候。普遍还认为额外热量可有助于促使各种化学反应和物理过程(例如致密化过程和球化过程)完成。另外,普遍认为,在一些实施方案中,由氧化反应产生的额外热量的存在实际上能够使熔融物形成,否则,由于材料的高熔点,形成熔融物是很难的或不切实际的。另外,由氧化反应产生的额外热量的存在实际上能够使玻璃形成,否则不能制备玻璃或者不能制备所需尺寸范围的玻璃。本发明的另一个优点是在玻璃形成过程中很多化学过程和物理过程(例如,熔化过程、致密化过程和球化过程)可以在很短的时间内完成,从而可以获得非常快的淬火速度。关于其它细节,参见2002年8月2日提交的同时待决的美国申请No.10/211,639。
在本发明的一个方面,可以独立地加入原料以形成熔融的混合物。在本发明的另一方面,将某些原料混合在一起,而将其它的原料独立地加入到熔融的混合物中。在一些实施方案中,例如,在熔化之前将原料组合或者混合在一起。可以用任何合适的和已知的方式组合所述原料以形成基本上均匀的混合物。这些组合技术包括球磨、混合、滚磨等。在球磨机中的研磨介质可以是金属球、陶瓷球等。例如,所述的陶瓷研磨介质可以是氧化铝、氧化锆、二氧化硅、氧化镁等。在含水的环境中或在基于溶剂(例如异丙醇)的环境中,球磨过程中可能存在干燥过程。如果原料批料含有金属粉末,那么在研磨的过程中通常需要使用溶剂。这种溶剂可以是具有适宜闪点并且能够分散原料的任何合适的材料。研磨时间可以从几分钟到几天,通常为几小时到24小时之间。在一个潮湿或者基于溶剂的研磨体系中,通常通过干燥将液态介质除去,使得所得到的混合物通常是均匀的,并且基本上不含水和/或溶剂。如果使用基于溶剂的研磨体系,则在干燥过程中可以使用溶剂回收系统以循环使用该溶剂。干燥后,所得到的混合物可以为“干饼”的形式,随后在熔化前可以将这个饼状的混合物打碎或者粉碎成所需要的粒度。或者,例如,可以使用喷雾干燥技术。所述的喷雾干燥技术通常提供所需氧化混合物的球型颗粒。前体材料也可以通过湿化学法(包括沉淀法和溶胶-凝胶法)制备。如果需要均匀性极高的产物,使用这些方法是十分有益的。
通常选择具有粒度的颗粒原料,使得能够很快达到形成均匀的熔融物。为了这个目的通常使用平均粒度较小及粒度分布范围较窄的原料。在一些方法(例如火焰形成和等离子喷射)中,虽然特别所需的原料是那些平均粒度在大约5纳米到大约50微米的范围内(在一些实施方案中,在大约10纳米到大约20微米的范围内,或者甚至在大约15纳米到大约1微米的范围内)的原料,其中颗粒中的至少90重量%(在一些实施方案中为95重量%或者甚至为100重量%)是原料,但是也可以使用在这些尺寸和范围以外的尺寸。尺寸小于5纳米的颗粒往往难以处理(例如,由于这些颗粒的流动性往往较差,所以进料颗粒的流动性往往会不令人满意)。在典型的火焰形成和等离子喷射工艺中使用大于约50微米的颗粒往往会更难以获得均匀的熔融物和玻璃和/或所需的组合物。
另外,在一些情况下,例如当颗粒材料加入到火焰或者热的装置或者等离子喷射装置中以形成熔融物时,可能需要提供具有一定粒度范围的颗粒原料。虽然不想受限于理论,但是普遍认为这样使进料颗粒的填料密度和强度最大。如果原料粉末太粗,那么进料颗粒和所得的熔融物颗粒可能不会具有所需的组成或者均匀性。一般来说,最粗的原料颗粒应该小于所需的熔融物或者玻璃颗粒的尺寸。另外,例如在火焰形成和等离子喷射步骤中,太粗的原料颗粒在进料颗粒中往往会具有不充足的热应力和机械应力。这种情况的最终结果通常是,进料颗粒碎裂成更小的碎块,组成的均匀性下降,所需的玻璃颗粒尺寸的产率降低,或者甚至熔化不彻底,这是因为这些碎块通常在远离热源的多个方向上改变它们的轨迹(change their trajectories)的缘故。
所述玻璃和包含玻璃的陶瓷可以通过如下方式来制备,例如,加热(包括在火焰中或在等离子中加热)适宜的金属氧化物源以形成熔融物(所需的均匀熔融物),然后冷却该熔融物以得到玻璃。例如,玻璃的一些实施方案可以通过在任何合适的炉(例如,感应加热炉或者电阻加热炉、燃气炉或电弧炉)中加热金属氧化物源而被制得。
玻璃通常是通过相对快速地冷却熔融材料(即熔融物)而得到的。制备玻璃的淬火速度(即冷却时间)取决于很多因素,包括熔融物的化学成分、各组分形成玻璃的能力、熔融物和所得玻璃的热性能、工艺技术、所得玻璃的尺寸和质量及冷却技术。一般来说,形成包含较高含量的Al2O3(即Al2O3的含量大于75重量%)的玻璃需要相对较高的淬火速度,特别是在不含有已知的玻璃形成体(例如SiO2、B2O3、P2O5、GeO2、TeO2、As2O3和V2O5)的条件下是这样。同样,因为较难足够快地消除热量,所以将熔融物冷却成大尺寸的玻璃就更加困难。
本发明的一些实施方案中,原料以颗粒的形式被加热成熔融态并随后冷却成玻璃颗粒。通常所述颗粒的粒度大于25微米(在一些实施方案中,大于50微米、100微米、150微米,或者甚至200微米)。
根据本文所述的方法制备玻璃的过程中所要达到的淬火速度被认为要高于102℃/秒、103℃/秒、104℃/秒、105℃/秒或者甚至106℃/秒(即从熔融态温度降低1000℃所用的时间分别小于10秒、小于1秒、小于0.1秒、小于0.01秒,或者甚至小于0.001秒)。冷却所述熔融物的技术包括将熔融物排放到冷却介质(例如,高速空气射流、液体(例如冷水)、金属板(包括冷却的金属板)、金属辊(包括冷却的金属辊球)、金属球(包括冷却的金属球)等)中。本领域中已知的其它冷却技术包括辊冷法。例如,可以通过在通常高于熔点20℃到200℃的温度下熔化金属氧化物源,然后在高压(例如,用气体如空气、氩气、氮气等)下将熔融物喷射到高速旋转的辊子上,来进行辊冷。通常辊子是由金属制造的,并且经水冷却过。铰接式金属模(metal bookmold)也可用对熔融物进行冷却/淬火。
普遍认为冷却速度影响已淬火的玻璃的性质。例如,玻璃的玻璃化转变温度、密度和其它性质通常随着冷却速度的改变而改变。
在冷却过程中,也可以在受控的气氛(例如用以维持和/或影响所需的氧化态的还原、中性、氧化的环境等)下进行快速冷却。这样的气氛也可以通过影响过冷液体的结晶动力学来影响玻璃的形成。例如,已经报导,与在空气中相比,在氩气中更多过冷的Al2O3熔融物没有结晶。
在一个方法中,例如,如在美国专利No.6,254,981(Castle)中所报导的那样,玻璃和包含玻璃的陶瓷可以使用焰熔法来制备。在此方法中,金属氧化物源被(例如以颗粒(有时称作“进料颗粒”)的形式)直接加入到燃烧炉中(例如,沼气空气燃烧炉、乙炔氧气燃烧炉、氢氧燃烧炉等),然后在诸如水中、冷却油中、空气中等进行淬火。加入到火焰中的进料颗粒的尺寸通常决定了所得的包含玻璃的颗粒的尺寸。
玻璃的一些实施方案也可以通过其它技术获得,例如:带有自由下落冷却的激光旋转熔化(laser spin melting with free fall cooling)、泰勒导丝技术(Taylor wire technique)、等离子管技术(plasmatron technique)、锤和砧技术(hammer and anvil technique)、离心淬火、气枪液滴冷却(airgun splat cooling)、单辊和双辊淬火、滚筒板淬火、悬滴熔融提取(pendant drop melt extraction)(例如,参见Brockway等人撰写的陶 瓷快速凝固(由位于美国俄亥俄州哥伦布市的防御信息分析中心部金属和陶瓷信息中心于1984年1月出版))。玻璃的一些实施方案也可以通过其它技术获得,例如合适前体的热分解(包括以火焰、激光或者等离子辅助的方式进行热分解)、金属前体的物理气相合成法(PVS)和机械化学处理。
用于形成熔融物、使熔融物冷却/淬火、和/或形成玻璃的其它技术包括气相淬火、等离子喷射、熔融提取、气体或离心雾化。例如,气相淬火可以通过溅射的方式进行,其中金属合金或金属氧化物源形成溅射靶。所述的靶置于溅射装置中的预定位置上,并且将要涂覆的基片放置在与该靶相对的位置上。通常在10-3托的氧气和氩气的压力下,在靶和基片之间产生放电,并且氧离子和氩离子撞击靶以引起溅射反应,从而在基片上沉积组合物膜。关于等离子喷射的其它细节,参见(例如)2002年8月2日提交的同时待决的美国申请No.10/211,640。
气体雾化涉及加热进料颗粒使它们转化为熔融物。这种熔融物的细流通过接触裂破性的空气喷嘴而被雾化(即所述的细流被分成细雾滴)。然后回收所得的基本上离散的、通常为椭圆状的玻璃颗粒(例如小珠)。小珠尺寸的例子包括那些直径在约5微米到约3毫米的范围内的小珠。熔融提取可以如美国专利5,605,870(Strom-Olsen等人)所报导的那样进行。例如,如美国专利No.6,482,758(Weber)所报导,使用激光束加热的无容器玻璃形成技术(container-less glass formingtechnique)也可以用来制备所述的玻璃。
通常,根据本发明制备的玻璃-陶瓷、用于制备这种玻璃-陶瓷的一些玻璃和含有所述玻璃的陶瓷具有x、y和z的尺寸,该x、y和z彼此互相垂直,并且其中x、y和z尺寸中的每一个至少为10微米。在一些实施方案中,如果发生聚结,那么x、y和z的尺寸至少为30微米、35微米、40微米、45微米、50微米、75微米、100微米、150微米、200微米、250微米、500微米、1000微米、2000微米、2500微米、1毫米、5毫米、或者至少为10毫米。所述x、y和z的尺寸可以从视觉上或者使用显微镜来进行测定,这取决于尺寸的大小。所报导的z的尺寸为(例如)球的直径、涂层的厚度或者是棱形的最小尺寸。
加入某些其它的金属氧化物可以改变根据本发明制备的玻璃-陶瓷的性质和/或结晶结构或者微观结构,加入某些其它的金属氧化物也可以改变在制备陶瓷过程中的原料和中间物的加工工艺。例如,已经观察到加入例如CaO、Li2O、MgO和Na2O之类的氧化物改变了玻璃的Tg和Tx(其中Tx为结晶温度)。虽然不想受限于理论,但是普遍认为这种添加会影响玻璃的形成。另外,例如,加入这样的氧化物可以降低整个体系的熔化温度(即驱使所述体系变为熔化温度更低的低共熔物),并且易于玻璃的形成。在多组分的体系(四组分体系等)中,基于复合低共熔物的组合物可以具有更好的玻璃形成能力。加入与特定所需的氧化物不同的金属氧化物也可能会影响液态熔融物的粘度和所述玻璃在其工作范围内的粘度。
加入这些材料也可以影响玻璃和包含玻璃的陶瓷的结晶,其中所述玻璃和包含玻璃的陶瓷用于形成玻璃-陶瓷。例如某些金属、金属氧化物(例如钛酸盐和锆酸盐)和氟化物可以起到成核剂的作用,其结果是对晶体的异相成核十分有益。另外,一些氧化物的加入可以改变再次加热时从玻璃析晶出来的亚稳相的性质。另一方面,对于根据本发明制备的包含结晶ZrO2的玻璃-陶瓷也许需要加入已知能够稳定ZrO2的四方/立方晶形的金属氧化物(例如Y2O3、TiO2、CeO2、CaO和MgO)。
对用于制备根据本发明制备的玻璃-陶瓷的金属氧化物源和其它添加剂的具体选择,通常考虑如下因素:例如用于制备陶瓷的所需的组合物、微观结构、结晶度、物理性质(例如硬度或韧度)、不利的杂质的存在、具体工艺中所需的或者必需的特征(包括设备、在熔化和/或凝固之前和/或期间对原料的任何纯化)。
在一些例子中,可能优选结合一定限量的金属氧化物,所述金属氧化物选自于B2O3、Na2O、P2O5、SiO2、TeO2、V2O5及其组合中。所述金属氧化物的来源(包括商业来源)包括氧化物本身、复合氧化物、元素(例如Si)粉末、矿物、碳酸盐、醋酸盐、硝酸盐、氯化物、氢氧化物等。例如可以加入这些金属氧化物以改变所得微晶陶瓷的物理性质和/或改善加工过程。当使用这些金属氧化物时,通常这些金属氧化物的加入总量占玻璃-陶瓷的大于0重量%到20重量%(在一些实施方案中,大于0重量%到5重量%,或者甚至大于0重量%到2重量%),该加入量取决于(例如)所需的性质。
可以用很多方法测定材料的微观结构或相组成(玻璃相/结晶相)。例如使用光学显微镜、电子显微镜、差热分析(DTA)和x射线衍射(XRD)可以获得材料的各种信息。
当使用光学显微镜时,由于缺少光散射中心如晶界,无定形材料通常主要为透明的,而结晶材料显示出结晶结构并且由于光散射效应结晶材料而不透明。
如果希望所有颗粒都是无定形的(或者玻璃的),并且所得的产率小于100%,那么无定形的(或者玻璃的)颗粒可以与非无定形的(或者非玻璃的)颗粒分开。例如,可以使用任何常规的技术(包括基于密度或光学透明度的分离过程)进行这种分离。
当使用DTA时,如果材料的相应DTA曲线包含放热的结晶过程(Tx),那么把该材料划分为无定形类。如果同一曲线在低于Tx的温度下还包含吸热过程(Tg),那么认为该材料包含玻璃相。如果材料的DTA曲线不包含这些过程,那么认为该材料包含结晶相。
用如下方法可以进行差热分析(DTA)。用筛目大小为-140+170的部分(即在开孔尺寸为105微米到90微米之间的筛网收集的部分)进行DTA分析(例如,使用可以从位于德国selb市的耐驰仪器公司获得的商品名为“NETZSCH STA 409 DTA/TGA”的仪器)。将一定量的已筛过的各个样品(通常大约为400毫克(mg))放置在100微升的Al2O3样品容器中。每个样品在静止空气中以10℃/分的速度从室温(大约25℃)加热到1100℃。
当使用粉末x射线衍射XRD(例如,使用从位于美国新泽西州Mahwah市的飞利浦公司获得的商品名为“PHILLIPS XRG 3100”的x射线衍射仪,其中,铜Kα1射线为1.54050埃)时,可以通过将结晶材料在XRD曲线中存在的峰与JCPDS(粉末衍射标准联合委员会)数据库中提供的结晶相XRD图案比较来测定材料中存在的相,该结晶相XRD图案由国际衍射数据中心出版。另外,可以用XRD来定性地确定相类型。宽漫射强度峰的存在被认为是材料无定形性质的标志。宽峰和明确峰都存在的情况被认为是在玻璃基质中存在结晶物质的标志。
最初形成的玻璃或陶瓷(包括结晶前的玻璃)的尺寸可能大于所需要的尺寸。如果玻璃具有所需的几何形状和/或尺寸,那么通常不需要减少尺寸。用本领域已知的破碎和/或粉碎技术(包括辊式破碎、颚式破碎、锤磨、球磨、气流粉碎、冲击破碎等)可以将玻璃或陶瓷转化成更小块。在一些实例中,需要两个或多个破碎步骤。例如,在陶瓷形成(凝固)后,陶瓷存在的形状可能会比所需的形状大。第一个破碎步骤可能涉及破碎这些质量较大或“大块”的陶瓷以形成较小的块。可以用锤磨、冲击式破碎机或者颚式破碎机来完成对这些大块的破碎。这些较小的块随后被破碎成具有所需粒度分布的颗粒。为了生产所需粒度分布(有时指的是磨料粒度或级别),可能必需执行多个破碎步骤。一般来说破碎条件被最优化以获得所需的颗粒形状和粒度分布。所得到的颗粒不具有所需的尺寸时,如果太大可以被重新破碎,如果太小可以“再循环使用”并用作原料重新熔化。
例如,颗粒的形状可以取决于陶瓷的组成和/或微观结构、被冷却时的几何形状及破碎陶瓷时的方式(即所用的破碎技术)。一般来说,如果优选“块状的”形状,可能会耗费更多的能量来获得这样的形状。相反,如果优选“有棱角的”形状,可能会耗费较少的能量来获得这样的形状。所述的破碎技术也可以改变以获得所需的不同形状。对于某些颗粒来说,通常所需的的平均长径比在1∶1到5∶1的范围内,在一些实施方案中,该长径比在1.25∶1到3∶1的范围内,或者甚至在1.5∶1到2.5∶1的范围内。
例如,直接形成具有所需形状的制品也在本发明的范围之内。例如,可以通过将熔融物灌注到模子中或在模子中成型来形成(包括模塑成)所需的制品。另外,参见例如2003年2月5日提交的美国专利申请No.10/358,772中所述的形成技术。
根据本发明制备的玻璃和玻璃-陶瓷的实施方案可以在没有尺寸限制的条件下获得。已经发现可以通过在温度高于玻璃化转变温度时执行聚结步骤来实现这点。实质上这个聚结步骤是将两个或两个以上的小颗粒形成尺寸较大的颗粒。例如,玻璃在明显的结晶发生(Tx)之前要经历玻璃化转变(Tg),通过在低于放热过程(Tx)的温度下存在吸热过程(Tg)来证明这点。例如陶瓷(包括结晶之前的玻璃)也可通过如下方式提供:在Tg之上加热(例如)含有玻璃的颗粒和/或纤维等,使得这些颗粒等聚结成一定的形状。例如,用于聚结的温度和压力可能取决于玻璃组成和所得材料的所需密度。该温度应当高于玻璃化转变温度。在某些实施方案中,在大约850℃到大约1100℃的范围内(在一些实施方案中,在900℃到1000℃的范围内)的至少某一温度上进行加热。通常,在聚结过程中,玻璃要处在一定的压力下(例如大于0到1GPa或者更大)以有助于玻璃聚结。在一个实施方案中,将一批颗粒等置于模具中,在玻璃化转变温度之上进行热压,此时玻璃粘流趋于聚结成相对更大的部分。典型的聚结技术的例子包括热压、热等静压、热挤出、热锻等(例如烧结、等离子辅助烧结)。例如,包含玻璃的颗粒(例如通过破碎获得) (包括小珠和微球)、纤维等可以形成更大的粒度。聚结还可以使物体形成所需的形状(例如几何形状)。在一些实施方案中,成形的物体为棒状,所述棒的长径比大于1∶1或者甚至大于2∶1。在一些实施方案中,需要在进一步热处理前冷却所得的聚结体。热处理后,如果需要的话,该聚结体可以被破碎成更小的粒度或者所需的粒度分布。
玻璃的聚结也可以通过各种方法(包括无压烧结或者加压烧结)来实现。
一般来说,热处理可以使用各种方法来进行,这些方法包括那些本领域已知的热处理玻璃以得到玻璃-陶瓷的方法。例如,可以分批地进行热处理,例如使用电阻炉、感应炉或煤气加热炉。或者,例如,可以连续地进行热处理(或部分热处理),例如使用回转炉、流化床加热炉或摆锤式炉(pendulum kiln)。如果使用回转炉或摆锤式炉,通常在高温工作时将材料直接加入到炉中。如果使用流化床加热炉,将要被热处理的玻璃通常悬浮于气体(例如空气、惰性气体或还原性气体)中。处于高温的时间可以从几秒钟(一些实施方案中甚至少于5秒钟)到几分钟,甚至到几个小时。该温度通常为从所述玻璃的Tx到1600℃,更通常为从900℃到1600℃,在一些实施方案中为从1200℃到1500℃。按多步骤进行热处理(例如,一个步骤用于成核,另一个步骤用于晶体生长,其中在晶体生长的步骤中通常也发生致密化作用)也在本发明的范围内。当进行多步热处理的时候,通常需要控制成核速度和/或晶体生长速度。一般来说,在多数陶瓷加工操作中,需要获得最大的致密度而没有明显的晶体生长。虽然不想受限于理论,但是,一般认为在陶瓷领域中较大的晶体尺寸导致机械性能下降,而较精细的平均晶粒尺寸使机械性能提高(例如强度更高和硬度更高)。具体来说,形成的陶瓷的密度为理论密度的至少90%、95%、97%、98%、99%或者甚至100%是十分有利的,其中平均晶体尺寸小于0.15微米,或者甚至小于0.1微米。
在本发明的一些实施方案中,在热处理之前玻璃和包含玻璃的陶瓷可以被退火。在这样的情况下,退火温度通常小于玻璃的Tx,退火时间为从几秒钟到几小时或者甚至几天。通常退火期小于3小时,或者甚至小于1小时。可任选的是,退火也可以在不同于大气的气氛中进行。另外,热处理的不同阶段(即成核阶段和晶体生长阶段)可以在不同的气氛下进行。普遍认为在热处理期间玻璃的Tg和Tx及Tx-Tg可能随所用的气氛而改变。
本领域的技术人员可以使用本领域已知的技术通过研究玻璃的时间-温度-转化(TTT)来决定合适的条件。本领域的技术人员通过阅读本发明的公开内容之后,应该能够得到用于制备本发明玻璃-陶瓷的玻璃的TTT曲线、确定合适的成核和/或晶体生长条件以得到本发明的玻璃-陶瓷。
在高温的条件下通过向炉中直接加入材料可以进行热处理。或者,(例如)材料可以在非常低的温度下(例如室温)加入到炉中,然后按预定的加热速度将材料加热到所需的温度。在不同于空气的气氛中进行热处理也在本发明的范围内。在一些情况下,热处理也许甚至需要在还原的气氛下进行。此外,例如,热处理也需要在气压下进行,例如在热等静压中或者在气压炉中进行。虽然不想受限于理论,但是普遍认为气氛可以影响所述玻璃和所述玻璃-陶瓷的一些组分的氧化态。氧化态的这种变化可能引起玻璃和玻璃-陶瓷的颜色改变。另外,成核阶段和结晶阶段可能受气氛影响(例如气氛可以影响某些种类的玻璃的原子迁移率)。
通过额外的热处理以进一步改善材料所需的性质也在本发明的范围内。例如可以进行热等静压(例如在大约900℃到大约1400℃的温度下)以去除残留的气孔,从而提高材料的密度。转化(例如破碎)所得制品或者热处理过的制品以得到颗粒(例如根据本发明制备的磨粒)也在本发明的范围内。
通常,玻璃-陶瓷要比形成玻璃-陶瓷的玻璃坚固。因此,例如通过所述玻璃转化成结晶陶瓷相的程度可以调整材料的强度。作为一种选择,或者作为一种补充,例如通过所产生的成核位点的数量也可以影响材料的强度,反过来,可以使用材料的强度来影响所述成核位点的数量,并且又影响结晶相中晶体的尺寸。关于形成玻璃-陶瓷的其它细节,参见例如1979年学术出版公司出版的由P.W.McMillan编著的玻璃-陶瓷(第二版)。
与其它类型的陶瓷加工工艺(例如烧结煅烧过的材料以形成致密的烧结陶瓷材料)相比,在所述玻璃结晶形成玻璃-陶瓷的过程中收缩相对较小(通常收缩的体积的体积百分数小于30体积%、在一些实施方案中、小于20体积%、小于10体积%、小于5体积%,或者至少小于3体积%)。例如,收缩的实际量取决于玻璃组成、热处理时间、热处理温度、热处理压力、被结晶玻璃的密度、形成结晶相的相对含量及结晶程度。收缩的量可以用本领域中公知的常规的技术(包括膨胀测定法、阿基米德方法或在热处理之前及之后测量材料的尺寸)进行测量。在一些情况下,在热处理过程中可能产生一些挥发性物质。
在一些实施方案中,相对低的收缩特性是特别有利的。例如制品可在玻璃相中形成以达到所需的形状和尺寸(即近终形),随后热处理,至少使一部分玻璃结晶。所以,可以节约与结晶材料的制造和加工相关的大量成本。
在一些实施方案中,所述玻璃具有x、y和z方向,每个方向的长度至少为1厘米(在一些实施方案中至少为5厘米,或者甚至至少为10厘米),其中,所述玻璃具有一定的体积,其中所得的玻璃-陶瓷具有x、y和z方向,每个方向的长度至少为1厘米(在一些实施方案中,至少为5厘米,或者甚至至少为10厘米),其中玻璃-陶瓷具有一定的体积,该体积占所述玻璃体积的至少70%(在一些实施方案中,占至少75%、80%、85%、90%、95%、96%,或者甚至至少97%、)。
例如,在对用于制备根据本发明制备的玻璃-陶瓷的一些代表性玻璃进行热处理的过程中,可能在高于大约900℃的温度下形成相,例如La2Zr2O7和/或立方晶系/四方晶系的ZrO2(在一些情况下,单斜晶系的ZrO2)。虽然不想受限于理论,但是普遍认为与氧化锆相关的相为从玻璃中成核的第一相。普遍认为,Al2O3、ReAlO3(其中Re为至少一种稀土阳离子)、ReAl11O18、Re3Al5O12、Y3Al5O12等相的形成通常发生在高于大约925℃的温度下。通常在该成核阶段期间晶粒尺寸为纳米级。例如,已经观察到尺寸小至10纳米到15纳米的晶体。对于至少一些实施方案中,在大约1300℃下热处理大约1小时得到全结晶体。一般来说,对于成核和晶体生长的每个阶段热处理时间的范围可以为几秒钟(在一些实施方案中,甚至小于5秒钟)到几分钟,甚至到一个小时或更长。
平均晶体尺寸的测定可按照ASTM标准E112-96的“确定晶粒平均尺寸的标准试验方法”(“Standard Test Methods for DeterminingAverage Grain Size”)采用样线截取法进行。通常,用镶样树脂(例如,得自位于美国伊利诺伊州Lake Bluff市的Buehler公司,商品名称为“TRANSOPTIC POWDER”)将样品镶在直径约2.5cm、高约1.9cm的圆柱状树脂上。采用传统抛光技术用抛光机(例如,得自位于美国伊利诺伊州Lake Bluff市的Buehler公司,商品名称为“ECOMET3”)对镶样部分抛光。样品用含125微米金刚石的金刚石砂轮抛光约3分钟,再用45微米、30微米、15微米、9微米、3微米和1微米的抛光浆分别抛光5分钟。将镶样的和抛光的样品溅射到金-钯薄层,并用扫描电镜(例如,得自位于美国马萨诸塞州皮博迪市的JEOL公司,型号JSM840A)观察。将在样品中找到的微观结构的典型背散射电子(BSE)显微照片按下述过程来测定平均晶粒尺寸。数出与显微照片上随机画出的单位长度的直线相交的晶粒数量(NL)。由此数量按下面的方程确定平均晶粒尺寸:
平均晶粒尺寸=1.5/(NLM)
其中,NL是与单位长度直线相交的晶粒数量,M是显微照片的放大倍数。
另一方面,根据本发明制备的玻璃-陶瓷可以包含晶粒,所述晶粒的体积占所述玻璃-陶瓷总体积的至少5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、97%、98%、99%、或者甚至100%,其中晶粒的平均尺寸小于1微米、小于0.5微米、小于0.3微米,或者甚至小于0.15微米。
可在根据本发明制备的玻璃-陶瓷中存在的结晶相的例子包括:氧化铝(例如α-氧化铝和过渡型氧化铝)、REO(例如La2O3)、Y2O3、MgO、一种或多种其它金属氧化物(例如BaO、CaO、Cr2O3、CoO、Fe2O3、GeO2、Li2O、MnO、NiO、Na2O、P2O5、Sc2O3、SiO2、SrO、TeO2、TiO2、V2O5、ZnO、HfO2、ZrO2(例如立方晶系ZrO2和四方晶系ZrO2))和“复合金属氧化物”(包括复合Al2O3·金属氧化物(例如复合Al2O3·REO(例如ReAlO3(例如GdAlO3、LaAlO3)、ReAl11O18(例如LaAl11O18)和Re3Al5O12(例如Dy3Al5O12))、复合Al2O3·Y2O3(例如Y3Al5O12))及复合ZrO2·REO(例如La2Zr2O7))、复合ZrO2·Nb2O5、复合ZrO2·Ta2O5、复合REO·Nb2O5、复合REO·Ta2O5、复合Al2O3·Nb2O5、复合Al2O3·Ta2O5及其组合。通常,本发明的陶瓷不具有低共熔微观结构特征。
用其它阳离子代替复合Al2O3·金属氧化物(例如复合Al2O3·REO和/或复合Al2O3·Y2O3(例如表现出石榴石晶体结构的铝酸钇))中的部分铝阳离子也在本发明的范围之内。例如,复合Al2O3·Y2O3中的部分Al阳离子可以被选自Cr、Ti、Sc、Fe、Mg、Ca、Si、Co及其组合中的至少一种元素的阳离子代替。例如,复合Al2O3·Y2O3中的部分Y阳离子可以被选自Ce、Dy、Er、Eu、Gd、Ho、La、Lu、Nd、Pr、Sm、Th、Tm、Yb、Fe、Ti、Mn、V、Cr、Co、Ni、Cu、Mg、Ca、Sr及其组合中的至少一种元素的阳离子代替。另外,例如,复合Al2O3·REO中的部分稀土阳离子可以被选自Y、Fe、Ti、Mn、V、Cr、Co、Ni、Cu、Mg、Ca、Sr及其组合中的至少一种元素的阳离子代替。上述阳离子的替代可以影响陶瓷的性质(例如硬度、韧度、强度和导热率等)。
通过热处理无定形材料以得到根据本发明制备的玻璃-陶瓷的实施方案而形成的晶体可以呈(例如)针状等轴(acicular equiaxed)的、柱状的或者平长板状的特征。
虽然玻璃和玻璃-陶瓷可以是松散材料的形式,但是包含玻璃和/或根据本发明制备的玻璃-陶瓷的复合物也在本发明的范围之内。例如这样的复合物可以包含(例如)分散在根据本发明制备的玻璃-陶瓷中的相或者纤维(连续或不连续)或者颗粒(包括须晶)(例如金属氧化物颗粒、硼化物颗粒、碳化物颗粒、氮化物颗粒、金刚石颗粒、金属颗粒、玻璃颗粒及其组合)、或者层状复合结构(例如,玻璃-陶瓷与用于制备所述玻璃-陶瓷的玻璃之间的梯度和/或具有不同玻璃-陶瓷组成的多个层)。
例如,用于制备所述玻璃-陶瓷的某些玻璃的Tg可以在大约750℃到大约950℃或者甚至更高的范围内。
根据本发明制备的玻璃-陶瓷的平均硬度测定如下所述。用镶样树脂(得自位于美国伊利诺伊州Lake Bluff市的Buehler公司,商品名称为“TRANSOPTIC POWDER”)将部分材料镶在通常直径约2.5cm、高约1.9cm的圆柱状树脂上。采用传统抛光技术用抛光机(例如,得自位于美国伊利诺伊州Lake Bluff市的Buehler公司,商品名称为“ECOMET3”)对镶样部分抛光。样品用含125微米金刚石的金刚石砂轮抛光约3分钟,再用45微米、30微米、15微米、9微米、3微米和1微米的抛光浆分别抛光5分钟。显微硬度的测量使用传统的显微硬度测试仪(例如,得自位于日本东京的Mitutoyo公司,商品名称为“MITUTOYO MVK-VL”),上面装有维氏压头,并使用100克压入载荷。显微硬度的测量按照ASTM测试方法E384“材料显微硬度试验方法”(“Test Methods for Microhardness of Materials”)(1991)中所述的准则进行。平均硬度是10次测量结果的平均值。
根据本发明制备的某些玻璃-陶瓷的平均硬度通常至少为12GPa、13GPa、14GPa、15GPa、16GPa、17GPa、18GPa或者甚至至少为19GPa。根据本发明制备的磨粒的平均硬度至少为15GPa,在一些实施方案中,至少为16GPa,至少为17GPa、18GPa,或者甚至至少为19GPa。
在用于制备本发明的玻璃-陶瓷的玻璃及玻璃-陶瓷的一些实施方案中,如果玻璃-陶瓷或玻璃包含:Al2O3(一些实施方案中,Al2O3占所述玻璃-陶瓷或玻璃的35.73重量%;一些实施方案中,Al2O3占大约35重量%到36重量%;一些实施方案中,Al2O3占35重量%到36重量%、34重量%到36重量%或者34重量%到37重量%)、La2O3(一些实施方案中为REO)(一些实施方案中,La2O3(一些实施方案中为REO)占42.17重量%;一些实施方案中,La2O3(一些实施方案中为REO)占大约42重量%;一些实施方案中,La2O3(一些实施方案中为REO)在42重量%到43重量%之间或在41重量%到43重量%之间)、以及ZrO2(在一些实施方案中为ZrO2和/或HfO2(包括两者总和))(一些实施方案中,ZrO2(一些实施方案中为ZrO2或HfO2中的至少一种)占17.1重量%;一些实施方案中,ZrO2(一些实施方案中为ZrO2或HfO2中的至少一种)占大约17重量%;一些实施方案中,ZrO2(一些实施方案中为ZrO2或HfO2中的至少一种)在17重量%到18重量%之间或在16重量%到18重量%之间),则所述的玻璃-陶瓷或玻璃中所含的Nb2O5或Ta2O5中的至少一种占所述玻璃-陶瓷或玻璃的重量百分数小于5重量%或者大于5重量%(一些实施方案中,不近似5重量%、小于5重量%或者大于5重量%;一些实施方案中,不大于4重量%、3重量%、2重量%或1重量%,或者至少6重量%、7重量%、8重量%、9重量%、10重量%、15重量%、20重量%、25重量%、30重量%、35重量%、40重量%、45重量%、50重量%、55重量%、60重量%、65重量%、70重量%、75重量%,或者甚至至少80重量%)。
通常并且优选的是,根据本发明制备的玻璃-陶瓷和用于制备这种玻璃-陶瓷的玻璃的(真实)密度(有时称作比重)通常至少为理论密度的70%。更优选的是,根据本发明制备的玻璃-陶瓷和用于制备这种玻璃-陶瓷的玻璃的(真实)密度为理论密度的至少75%、80%、85%、90%、95%、96%、97%、98%、99%、99.5%或者甚至100%。根据本发明制备的磨粒的密度为理论密度的至少85%、90%、92%、95%、96%、97%、98%、99%、99.5%或者甚至100%。
根据本发明制备的玻璃-陶瓷能够被(例如作为填料、增强材料和/或基材)用来制备制品。例如,根据本发明制备的玻璃-陶瓷可以是颗粒和/或纤维的形式,所述颗粒和/或纤维适合用作复合物(例如陶瓷、金属或聚合物(热固性或热塑性))中的增强材料。例如,所述颗粒和/或纤维可以提高基材的模量、耐热性、抗磨性和/或强度。例如,虽然用于制备复合物的颗粒和/或纤维的尺寸、形状和含量可能取决于具体的基材和复合物的用途,但是增强颗粒的尺寸通常在大约0.1微米到1500微米的范围内,更通常在1微米到500微米的范围内,优选在2微米到100微米之间。用于聚合物应用的颗粒的含量通常为大约0.5重量%到大约75重量%,更通常为大约1重量%到大约50重量%。热固性聚合物的例子包括:酚、三聚氰胺、脲甲醛、丙烯酸酯、环氧树脂、氨基甲酸酯聚合物等。热塑性聚合物的例子包括:尼龙、聚乙烯、聚丙烯、聚氨酯、聚酯、聚酰胺等。
增强的聚合材料(即,分散到聚合物中的根据本发明制备的增强颗粒)的用途的例子包括:例如用于混凝土、家具、地板、车道、木材、类木材材料、陶瓷等的保护涂层;以及防滑涂层和注射成形的塑料零部件。
另外,例如,根据本发明制备的玻璃-陶瓷能够用作基材。例如,根据本发明制备的玻璃-陶瓷能够用作用于陶瓷材料等(例如金刚石、立方氮化硼、Al2O3、ZrO2、Si3N4和SiC)的粘合剂。包含这种材料的有用制品的例子包括复合基底涂层、增强材料(例如颗粒)、刀具插件磨料团块和固结磨具制品例如陶瓷砂轮。例如,根据本发明制备的玻璃-陶瓷能够用作粘合剂以提高复合制品的模量、耐热性、抗磨性和/或强度。
根据本发明制备的磨粒通常包含结晶陶瓷(例如,结晶陶瓷的体积占所述磨粒总体积的至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%或者甚至100%)。另一方面,本发明提供具有由细到粗的粒度分布的多个颗粒,其中,所述多个颗粒的至少一部分为根据本发明制备的磨粒。另一方面,根据本发明制备的磨粒的实施方案通常包含根据本发明制备的玻璃-陶瓷(例如,所述玻璃-陶瓷的体积占所述磨粒总体积的至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%或者甚至100%)。
使用本领域公知的技术对根据本发明制备的磨粒筛分和分级,包括使用工业认可的分级标准,例如ANSI(美国国家标准协会)、FEPA(欧洲磨料产品生产商联合会)以及JIS(日本工业标准)。根据本发明制备的磨粒可以在较宽的粒度范围内使用,典型的尺寸范围为约0.1到约5000微米,为约1到约2000微米,为约5到约1500微米,或者甚至在一些实施方案中为约100到约1500微米。
在给定的粒度分布中,存在一定范围的粒度,即从粗颗粒到细颗粒。在磨料领域中,这个范围有时称为“粗”、“控制”和“细”级别。按照工业认可的分级标准分级的磨粒是将每个标称级别的粒度分布指定在数字界限内。这些工业认可的分级标准包括如下公知的标准:美国国家标准协会(ANSI)的标准、欧洲磨料产品生产商联合会(Federation of European Producers of Abrasive Products)(FEPA)的标准和日本工业标准(JIS)的标准。ANSI粒级规格(即,规定标称级别)包括:ANSI4、ANSI6、ANSI8、ANSI16、ANSI24、ANSI36、ANSI40、ANSI50、ANSI60、ANSI80、ANSI100、ANSI120、ANSI150、ANSI180、ANSI220、ANSI240、ANSI280、ANSI320、ANSI360、ANSI400和ANSI600。FEPA粒级规格包括:P8、P12、P16、P24、P36、P40、P50、P60、P80、P100、P120、P150、P180、P220、P320、P400、P500、P600、P800、P1000和P1200。JIS粒级规格包括:JIS8、JIS12、JIS16、JIS24、JIS36、JIS46、JIS54、JIS60、JIS80、JIS100、JIS150、JIS180、JIS220、JIS240、JIS280、JIS320、JIS360、JIS400、JIS600、JIS800、JIS1000、JIS1500、JIS2500、JIS4000、JIS6000、JIS8000和JIS10000。
在破碎和筛分后,通常存在很多不同的磨粒粒度分布或粒级。在特定的时期这些大量的粒级可能不能满足生产商或者供应商的要求。为了使存货最少,可能将不需要级别的磨粒重新循环成熔融物以形成玻璃。这个循环可以发生在破碎步骤之后,这里颗粒是没有被筛分到具有特定分布的大块或者较小块(有时称作“细屑”)。在破碎后玻璃往往会比破碎明显结晶的玻璃-陶瓷提供更尖锐的颗粒。
在另一个方面,本发明提供磨粒团块,每个团块包含用粘合剂结合在一起的根据本发明制备的多个磨粒。在另一个方面,本发明提供包含粘合剂和多个磨粒的磨料制品(例如,涂附磨具、固结磨具(包括用陶瓷粘合剂、树脂和金属结合的砂轮、切割轮、镶嵌块和镗磨油石)、非织造磨具和磨刷),其中至少一部分磨粒是根据本发明制备的磨粒(包括成团块的磨粒)。制造这些磨料制品以及使用这些磨料制品的方法是本领域技术人员公知的。并且,根据本发明制备的磨粒可以应用于使用磨粒的磨料应用中,例如研磨剂(如抛光剂)的浆、研磨介质、喷砂介质、振动球磨介质,等等。
涂附磨具制品一般包括背衬、磨粒以及至少一种粘合剂,粘合剂用于将磨粒保持在背衬上。背衬可以是任何适合的材料,包括布、聚合物薄膜、纤维、无纺布网、纸及其组合以及它们经处理的制品。适合的粘合剂包括无机或有机的粘合剂(包括可热固化的树脂和可辐射固化的树脂)。磨粒存在于涂附磨具制品的一层或两层中。
涂附磨具制品的一个例子表示在图1中,参看图1,涂附磨具制品1具有背衬(基底)2和磨料层3。磨料层3包括根据本发明制备的磨粒4,磨粒4通过粘合剂底漆涂层(make coat)5和粘合剂面漆涂层(sizecoat)6固定在背衬的主要面。在一些情况下,是用粘合剂上部面漆涂层(supersize coat)(未示出)。
固结磨具制品通常包括通过有机粘合剂、金属粘合剂或陶瓷粘合剂保持在一起的磨粒成形块体。这种成形块体可以是(例如)轮的形式,如砂轮或切割轮。砂轮的直径通常为约1cm到1m以上,切割轮的直径为约1cm到80cm以上(更通常是3cm到约50cm)。切割轮的厚度通常为约0.5mm到约5cm,更通常是约0.5mm到约2cm。成形块体也可以是(例如)镗磨油石、节块、镶嵌块、盘状物(如,双碟研磨机)或其它传统固结磨具的形状。固结磨具通常包含的粘合材料的体积占固结磨具制品总体积的约3%-50%,磨粒(或者磨粒混合物)的体积占固结磨具制品总体积的约30%-90%,添加剂(包括助磨剂)的体积不超过固结磨具制品总体积的50%,孔隙的体积不超过固结磨具制品总体积的70%。
代表性的砂轮在图2中示出。参看图2,其表示砂轮10,它包括根据本发明制备的磨粒11,其模制为轮并装在毂盘12上。
非织造磨具制品通常包括具有根据本发明制备的磨粒的开孔的高级聚合物丝结构,根据本发明制备的磨粒分布在整个结构中并通过有机粘合剂粘附地结合在其中。所述丝的例子包括聚酯纤维、聚酰胺纤维、芳族聚酰胺纤维。代表性的非织造磨具制品在图3中示出。参看图3,其示出放大约100倍的一个示意图,表示一种典型的非织造磨具制品,该非织造磨具制品具有作为基底的纤维垫50,根据本发明制备的磨粒52通过粘合剂54粘结在上面。
有用的磨刷包括具有多个硬毛单元和背衬的那些制品(参见(例如)美国专利No.5427595(Pihl等人)、5443906(Pihl等人)、5679067(Johnson等人)以及5903951(Inota等人))。优选这些磨刷是通过使聚合物和磨粒的混合物注射成形而制造的。
制造磨料制品的适合的有机粘合剂包括热固性有机聚合物。适合的热固性有机聚合物的例子包括酚醛树脂、脲甲醛树脂、三聚氰胺甲醛树脂、聚氨酯树脂、丙烯酸酯树脂、聚酯树脂、具有侧α,β-不饱和羰基的氨基塑料树脂、环氧树脂、丙烯酸改性的聚氨酯、丙烯酸改性的环氧树脂及其组合。粘合剂和/或磨料制品还可以包括添加剂,例如纤维、润滑剂、润湿剂、触变剂、表面活性剂、颜料、染料、抗静电剂(例如,炭黑、氧化钒、石墨,等等)、偶联剂(例如,硅烷、钛酸盐、锆铝酸盐,等等)、增塑剂、悬浮剂,等等。选择这些可任选助剂的含量以得到所需性能。偶联剂能提高对磨粒和/或填料的粘附力。粘合剂的化学组成可以热固化、辐射固化或这些不同方式的组合。关于粘合剂化学组成的其它细节请参见美国专利No.4588419(Caul等人)、4751138(Tumey等人)以及5436063(Follett等人)。
对于陶瓷固结磨具更具体地说,表现为无定形结构并且通常很硬的陶瓷粘合材料是本领域公知的。在一些情况下,陶瓷粘合材料包括晶相。根据本发明制备粘合瓷化的磨料制品可以是轮(包括切割轮)、镗磨油石、镶嵌块的形状或其它传统固结磨具形状。在一些实施方案中,根据本发明制备的陶瓷固结磨具制品是砂轮的形式。
用于形成陶瓷粘合材料的金属氧化物的例子包括:二氧化硅、硅酸盐、氧化铝、碳酸钠、氧化钙、氧化钾、氧化钛、氧化铁、氧化锌、氧化锂、氧化镁、氧化硼、硅酸铝、硼硅酸盐玻璃、硅酸锂铝以及它们的组合,等等。通常,陶瓷粘合材料可以由含有10%到100%的玻璃粉的组合物制成,但更通常的是,组合物包括20%到80%的玻璃粉,或者30%到70%的玻璃粉。陶瓷粘合材料的其余部分可为非玻璃粉材料。另外,陶瓷粘合剂可以从不含玻璃粉的组合物得到。陶瓷粘合材料烧成温度一般在约700℃到约1500℃的范围内,通常在约800℃到约1300℃的范围内,有时在约900℃到约1200℃的范围内,乃至在约950℃到约1100℃的范围内。粘合料烧成的实际温度取决于(例如)具体的粘合料化学组成。
在一些实施方案中,陶瓷粘合材料包括那些含有二氧化硅、氧化铝(优选的氧化铝重量百分数至少为10%),以及氧化硼(优选的氧化硼重量百分数至少为10%)的材料。在大多数情况下,陶瓷粘合材料还包括碱金属氧化物(例如,Na2O和K2O)(在一些情况下,碱金属氧化物的重量百分数至少为10%)。
粘合剂材料也可以含有填料或助磨剂,通常为颗粒材料的形式。通常,颗粒材料是无机材料。本发明可用的填料的例子包括:金属碳酸盐(如,碳酸钙(如,白垩、方解石、泥灰岩、石灰华、大理石和石灰石)、碳酸钙镁、碳酸钠、碳酸镁)、二氧化硅(如,石英、玻璃小珠、玻璃泡和玻璃纤维)、硅酸盐(如,滑石、粘土(蒙脱石)、长石、云母、硅酸钙、偏硅酸钙、铝硅酸钠、硅酸钠)、金属硫酸盐(如,硫酸钙、硫酸钡、硫酸钠、硫酸铝钠、硫酸铝)、石膏、蛭石、木屑、三水合铝、炭黑、金属氧化物(如,氧化钙(石灰)、氧化铝、二氧化钛)以及金属亚硫酸盐(如,亚硫酸钙)。
一般来说,添加助磨剂增加磨料制品使用寿命。助磨剂是对研磨的化学和物理过程有明显作用的物质,其可使性能提高。虽然不想被理论束缚,但普遍认为,助磨剂将起到以下作用:(a)减小磨粒与被研磨工件之间的摩擦力;(b)防止磨粒被“封堵”(即,防止金属颗粒焊到磨粒顶部),或者至少减小磨粒被封堵的可能性;(c)减小磨粒与工件之间的界面温度;或者(d)减小研磨力。
助磨剂包括很多不同的物质并且可以是无机物基的或有机物基的。助磨剂的化学组成的例子包括:蜡、有机卤化物、卤化物盐和金属及其合金。有机卤化物通常在研磨过程中分解并释放出氢卤酸或气态卤化物。这类材料的例子包括氯化蜡,如四氯萘、五氯萘和聚氯乙烯。卤化物盐的例子包括氯化钠、钾冰晶石、钠冰晶石、铵冰晶石、四氟硼酸钾、四氟硼酸钠、氟化硅、氯化钾以及氯化镁。金属的例子包括:锡、铅、铋、钴、锑、镉、铁和钛。其它各种各样的助磨剂包括:硫磺、有机硫化合物、石墨和金属硫化物。使用不同助磨剂的组合也在本发明范围内,并且在一些情况下这可以得到增强效应。
助磨剂在涂附磨具和固结磨具制品中特别有用。在涂附磨具制品中,助磨剂通常应用于粘合剂上部面漆涂层,其施加于磨粒表面。但有时,助磨剂也加到粘合剂面漆涂层中。通常,涂附磨具中掺入的助磨剂的量为约50-300g/m2(优选的是约80-160g/m2)。在陶瓷固结磨具制品中,助磨剂通常浸渍到该制品的孔隙中。
磨料制品可以含有100%的根据本发明制备的磨粒,或者包含该磨粒与其它磨粒和/或稀释剂颗粒的混合物。但是,在磨料制品中磨粒的至少约2重量%、优选至少约5重量%、更优选约30-100重量%是根据本发明制备的磨粒。在一些情况下,根据本发明制备的磨粒可以与其它磨粒和/或稀释剂颗粒混合,重量比为5%∶75%,约25%∶75%,约40%∶60%,或者约50%∶50%(即,重量相等)。适合的传统磨粒的例子包括熔融氧化铝(包括白刚玉、热处理氧化铝和棕刚玉)、碳化硅、碳化硼、碳化钛、金刚石、立方氮化硼、石榴石、熔融氧化铝-氧化锆以及溶胶-凝胶衍生的磨粒,等等。溶胶-凝胶衍生的磨粒可以是有晶种的或无晶种的。同样,溶胶-凝胶衍生的磨粒可以是随机形状或具有与其相关的形状,例如棒状或三角形。溶胶-凝胶磨粒的例子包括以下专利中所描述的那些:美国专利No.4314827(Leitheiser等人)、4518397(Leitheiser等人)、4623364(Cottringer等人)、4744802(Schwabel)、4770671(Monroe等人)、4881951(Wood等人)、5011508(Wald等人)、5090968(Pellow)、5139978(Wood)、5201916(Berg等人)、5227104(Bauer)、5366523(Rowenhorst等人)、5429647(Larmie)、5498269(Larmie)和5551963(Larmie)。使用氧化铝粉作为原料来源制造烧结氧化铝磨粒的其它细节可见于(例如)美国专利No.5259147(Falz)、5593467(Monroe)和5665127(Moltgen)。与熔融磨粒有关的其它细节可见于(例如)美国专利No.1161620(Coulter)、1192709(Tone)、1247337(Saunders等人)、1268533(Allen)和2424645(Baumann等人)、3891408(Rowse等人)、3781172(Pett等人)、3893826(Quinan等人)、4126429(Watson)、4457767(Poon等人)、5023212(Dubots等人)、5143522(Gibson等人)以及5336280(Dubots等人),以及:美国专利申请No.09/495978、09/496422、09/496638以及09/496713,每个都在2000年2月2日提交;09/618876、09/618879、09/619106、09/619191、09/619192、09/619215、09/619289、09/619563、09/619729、09/619744和09/620262,每个都在2000年7月19日提交;2000年11月2日提交的09/704843;以及2001年1月30日提交的09/772730。与陶瓷磨粒有关的其它细节可见于(例如):美国专利申请No.09/922526、09/922527、09/922528以及09/922530,每个都在2001年8月2日提交,并且现在已经作废;10/211597、10/211638、10/211629、10/211598、10/211630、10/211639、10/211034、10/211044、10/211628、10/211491、10/211640和10/211684,每个都在2002年8月2日提交;以及10/358772、10/358765、10/358910、10/358855和10/358708,每个都在2003年2月5日提交。在一些情况下,与包含100%任一种磨粒的磨料制品相比,用磨粒的混合物可以得到研磨性能提高的磨料制品。
如果存在磨粒的混合物,则形成混合物的磨粒类型可以粒度相同。或者,磨粒类型可以具有不同粒度。例如,较大粒度的磨粒可以是根据本发明制备的磨粒,较小粒度的颗粒可以是另一种磨粒类型。相反,(例如)较小粒度的磨粒可以是根据本发明制备的磨粒,而较大粒度的颗粒可以是另一种磨粒类型。
适合的稀释剂颗粒的例子包括:大理石、石膏、燧石、二氧化硅、氧化铁、硅酸铝、玻璃(包括玻璃泡和玻璃小珠)、氧化铝泡、氧化铝小珠和稀释剂团块。根据本发明制备的磨粒也可以结合在磨料团块中或与之混合。磨料团块颗粒通常包括多个磨粒、粘合剂和可任选的添加剂。粘合剂可以是有机和/或无机的。磨粒团块可以是随机形状或具有与其相关的预定形状。该形状可以是块状、圆柱形、锥形、硬币形、正方形,等等。磨料团块颗粒通常的粒度范围为约100到约5000微米,通常约250到约2500微米。与磨料团块颗粒有关的其它细节可见于(例如):美国专利No.4311489(Kressner)、4652275(Bloecher等人)、4799939(Bloecher等人)、5549962(Holmes等人)、5975988(Christianson);以及美国专利申请No.09/688444和09/688484(每个都在2000年10月16日提交);09/688444、09/688484和09/688486(每个都在2000年10月16日提交);以及09/971899、09/972315和09/972316(每个都在2001年10月5日提交)。
磨粒可以均匀分布在磨料制品中,或者聚集在磨料制品上选定的区域或部分。例如,在涂附磨具中可以有两层磨粒。第一层包含除了根据本发明制备的磨粒以外的磨粒,第二(最外)层包含根据本发明制备的磨粒。同样,在固结磨具中,砂轮可以有两个明显不同部分。最外部分可以包含根据本发明制备的磨粒,而最内部分没有。或者,根据本发明制备的磨粒可以均匀分布在整个固结磨具中。
与涂附磨具制品有关的进一步细节可见于(例如):美国专利No.4734104(Broberg)、4737163(Larkey)、5203884(Buchanan等人)、5152917(Pieper等人)、5378251(Culler等人)、5417726(Stout等人)、5436063(Follett等人)、5496386(Broberg等人)、5609706(Benedict等人)、5520711(Helmin)、5954844(Law等人)、5961674(Gagliardi等人)以及5975988(Christianson)。与固结磨具制品有关的进一步细节可见于(例如):美国专利No.4543107(Rue)、4741743(Narayanan等人)、4800685(Haynes等人)、4898597(Hay等人)、4997461(Markhoff-Matheny等人)、5037453(Narayanan等人)、5110332(Narayanan等人)以及5863308(Qi等人)。与陶瓷固结磨具有关的进一步细节可见于(例如):美国专利No.4543107(Rue)、4898597(Hay等人)、4997461(Markhoff-Matheny等人)、5094672(Giles Jr.等人)、5118326(Sheldon等人)、5131926(Sheldon等人)、5203886(Sheldon等人)、5282875(Wood等人)、5738696(Wu等人)以及5863308(Qi)。与非织造磨具制品有关的进一步细节可见于(例如)美国专利No.2958593(Hoover等人)。
本发明提供一种研磨表面的方法,所述方法包括将根据本发明制备的至少一个磨粒与工件表面接触;以及移动磨粒或者接触表面中的至少一者,以用磨粒研磨所述表面的至少一部分。使用根据本发明制备的磨粒研磨的方法包括从荒磨(snagging)(即,高压大量去除)到抛光(例如,用砂带来抛光医用植入物)的各类方法,其中后者通常使用较细粒级(例如,ANSI220以及更细)的磨粒进行。磨粒也可以用于精密研磨应用,例如用陶瓷粘合砂轮研磨凸轮轴。用于具体研磨应用的磨粒尺寸,对于本领域技术人员是显而易见的。
使用根据本发明制备的磨粒研磨可以在干或湿的方式下进行。对于湿研磨,所用的液体可以按薄雾到完全浇注的方式提供。常用的液体的例子包括:水、水溶性油、有机润滑剂和乳状液。液体可以用于减少研磨产生的热量和/或作为润滑剂。液体中可以含有少量的添加剂,例如杀菌剂、消泡剂,等等。
例如,根据本发明制备的磨粒可以应用于研磨工件,例如金属铝、碳钢、低碳钢、工具钢、不锈钢、硬化钢、钛、玻璃、陶瓷、木材、类木材材料(例如,胶合板和颗粒板)、涂料、涂覆的表面、有机涂层表面,等等。在研磨过程中施加的力通常在约1kg到约100kg的范围内。
将通过以下非限定性的例子进一步解释本发明的优点和实施方案,但这些例子中使用的具体材料和含量,以及其它的条件和细节,不构成对本发明的过度限制。除非另作说明,所有的份数和百分数都是以重量计的。除非另有说明,所有例子都不包含显著含量的SiO2、B2O3、P2O5、GeO2、TeO2、As2O3和V2O5。
比较例A
在聚乙烯瓶中装入112.8克氧化铝粉末(得自位于美国亚利桑那州吐桑市的Condea Vista公司,商品名为“APA-0.5”)、133.17克氧化镧粉末(得自Molycorp公司)、54克氧化锆粉末(标称组分:94.4重量%的ZrO2(+HfO2);5.6重量%Y2O3,得自位于美国佐治亚州玛丽埃塔市Zirconia Sales公司,商品名为“HSY-3”)和150.6克蒸馏水。在该瓶中加入大约450克的氧化铝研磨介质(直径10mm;99.9%的氧化铝;得自位于美国俄亥俄州Akron市的联合工业(Union Process)公司),然后将混合物研磨4小时,以使各组分完全混合。研磨完后,除去研磨介质并将所得浆料灌注到玻璃盘(“PYREX”)上,在该玻璃盘上用热风器干燥该浆料。用研钵和研杵研磨后,将一些多相颗粒加入到氢气/氧气炬焰中。用于熔化所述的多相颗粒并因此产生熔融的玻璃小珠的氢气炬为伯利恒台式燃烧炉(Bethlehem bench burner),以如下的流速输送氢气和氧气。对于内环,氢气的流速为8标准升/分钟(SLPM),氧气的流速为3 SLPM。对于外环,氢气的流速为为23标准升/分钟(SLPM),氧气的流速为9.8SLPM。干燥的、有一定大小的颗粒被直接加入到氢气炬焰中,并在此被熔化和传送到倾斜的、冷却水从其上流过(大约8L/min)的不锈钢表面上(大约20英寸宽,倾角为45度)。
比较例B
除了在聚乙烯瓶中装入26.8克氧化铝粉末(“APA-0.5”)、14.05克氧化钇(Y2O3)粉末(得自位于美国威斯康星州密尔沃基市的AldrichChemical公司)、9.2克氧化锆粉末(“HSY-3”)和145克蒸馏水外,按照比较例A中所述的方法制备比较例B的小珠。
实施例 1和实施例2
除了在下面表1中列出的所用的原料和所用的原料含量以及在加有200克氧化锆(得自位于美国新泽西州邦德布鲁克区(Division BoundBrook)的Tosoh Ceramics公司,商品名为“YTZ”)的145克蒸馏水中以120rpm的速度对这些原料研磨24小时外,按照比较例A中所述的方法制备实施例1和实施例2的小珠。所用原料的来源列于下面的表2中。
表1
例子 | 粉末批料量,克 | 各组分的重量百分数 |
实施例1 | Al2O3:17.87La2O3:21.08ZrO2:8.55Nb2O5:2.5 | Al2O3:35.73La2O3:42.17ZrO2:17.1Nb2O5:5 |
实施例2 | Al2O3:17.87La2O3:21.08ZrO2:8.55Ta2O5:2.5 | Al2O3:35.73La2O3:42.17ZrO2:17.1Ta2O5:5 |
表2
原料 | 来源 |
氧化铝(Al2O3)粉末 | 得自位于美国亚利桑那州吐桑市的Condea Vista公司,商品名为“APA-0.5” |
氧化镧(La2O3)粉末 | 得自Molycorp公司 |
氧化铌(Nb2O5)粉末 | 得自位于美国威斯康星州密尔沃基市的Aldrich Chemical公司 |
氧化钽(Ta2O5)粉末 | 得自Aldrich Chemical公司 |
经氧化钇稳定的氧化锆(Y-PSZ)粉末 | 得自位于美国佐治亚州玛丽埃塔市的Zirconia Sales公司,商品名为“HSY-3” |
比较例C-I
除了在下面表3中列出的所用的原料和所用的原料含量以及在加有200克氧化锆(得自位于美国新泽西州的Tosoh Ceramics公司邦德布鲁克分部,商品名为“YTZ”)的145克蒸馏水中以120rpm的速度对原料研磨24小时外,按照比较例A中所述的方法制备比较例C-I的小珠。所用原料的来源列于下面的表4中。
表3
例子 | 粉末批料量,克 | 各组分的重量百分数 |
比较例C | Al2O3:17.87La2O3:21.08ZrO2:8.55SrO:2.5 | Al2O3:35.73La2O3:42.17ZrO2:17.1SrO:5 |
比较例D | Al2O3:17.87La2O3:21.08ZrO2:8.55Mn2O3:2.5 | Al2O3:35.73La2O3:42.17ZrO2:17.1Mn2O3:5 |
比较例E | Al2O3:18.25La2O3:21.52ZrO2:8.73Fe2O3:1.5 | Al2O3:36.5La2O3:43.04ZrO2:17.46Fe2O3:3 |
比较例F | Al2O3:18.25La2O3:21.52ZrO2:8.73Cr2O3:1.5 | Al2O3:36.5La2O3:43.04ZrO2:17.46Cr2O3:3 |
比较例G | Al2O3:18.25La2O3:21.52ZrO2:8.73TiO2:1.5 | Al2O3:36.5La2O3:43.04ZrO2:17.46TiO2:3 |
比较例H | Al2O3:25.45Y2O3:13.35ZrO2:8.7Ta2O5:2.5 | Al2O3:50.9Y2O3:26.7ZrO2:17.4Ta2O5:5 |
比较例I | Al2O3:25.43Y2O3:13.35ZrO2:8.7Nb2O5:2.5 | Al2O3:50.9Y2O3:26.7ZrO2:17.4Nb2O5:5 |
表4
原料 | 来源 |
氧化铝(Al2O3)粉末 | 得自位于美国亚利桑那州吐桑市的Condea Vista公司,商品名为“APA-0.5” |
氧化铬(Cr2O3)粉末 | 得自Aldrich Chemical公司 |
氧化铁(Fe2O3)粉末 | 得自Aldrich Chemical公司 |
氧化镧(La2O3)粉末 | 得自Molycorp公司,分批混合前在700℃下煅烧6小时 |
氧化锰(Mn2O3)粉末 | 得自Aldrich Chemical公司 |
氧化铌(Nb2O5)粉末 | 得自Aldrich Chemical公司 |
氧化锶(SrO)粉末 | 得自Aldrich Chemical公司 |
氧化钽(Ta2O5)粉末 | 得自Aldrich Chemical公司 |
二氧化钛(TiO2)粉末 | 得自位于美国佐治亚州萨凡纳市的Kemira公司 |
氧化钇(Y2O3)粉末 | 得自位于美国麻萨诸塞州牛顿市的H.C.Stark公司 |
经氧化钇稳定的氧化锆(Y-PSZ)粉末 | 得自位于美国佐治亚州玛丽埃塔市的Zirconia Sales公司,商品名为“HSY-3” |
热处理
在空气中在温度范围为1000℃到1300℃的条件下,对比较例A-I和实施例1及实施例2的筛目大小为-75+38的部分(即,开孔尺寸为75微米到开孔尺寸为38微米之间的筛网收集的部分)的小珠热处理60分钟。在电加热炉(得自位于美国加利福尼亚州Pico Rivera市的Keith Furnaces公司,商品名为“Model KKSK-666-3100”)中进行热处理。
用粉末x射线衍射(使用Kα1射线为1.54050埃的x射线衍射仪(得自位于美国新泽西州的Mahwah市的飞利浦公司,商品名为“PHILLIPS XRG 3100”))来定性地测量在经热处理的材料中所存在的相。在经x射线衍射的材料中检测到的相及其相对浓度列于下面的表5中。
表5
例子 | 温度℃ | LaAlO3 | YAlO3 | Y3Al5O12 | LaAl11O18 | La2Zr2O7 | ZrO2(C,T) | (Zr,M)O2FCC | α-Al2O3 | 过渡型Al2O3 |
比较例A | 1000 | 90 | ND | ND | ND | 100 | ND | ND | ND | 5 |
1100 | 85 | ND | ND | ND | 100 | 73 | ND | ND | ND | |
1300 | 100 | ND | ND | 6 | ND | 27 | ND | 4 | ND | |
比较例B | 1000 | ND | 32 | ND | ND | ND | 100 | ND | ND | 15 |
1100 | ND | 38 | ND | ND | ND | 100 | ND | ND | 10 | |
1300 | ND | ND | 100 | ND | ND | 32 | ND | 12 | 2 | |
比较例C | 1000 | 55 | ND | ND | ND | ND | ND | 100 | 4 | 3 |
1100 | 100 | ND | ND | ND | ND | 22 | 16 | ND | 3 | |
1300 | 100 | ND | ND | 8 | ND | 32 | ND | ND | 7 | |
比较例D | 1000 | 100 | ND | ND | ND | ND | ND | 67 | ND | 5 |
1100 | 100 | ND | ND | 11 | ND | 30 | ND | ND | 9 | |
1300 | 100 | ND | ND | 10 | ND | 27 | ND | ND | 7 | |
比较例E | 1000 | 83 | ND | ND | ND | ND | ND | 100 | ND | 3 |
1100 | 100 | ND | ND | ND | ND | 30 | ND | ND | 3 | |
1300 | 100 | ND | ND | 5 | ND | 26 | ND | ND | 7 | |
比较例F | 1000 | 72 | ND | ND | ND | ND | 5 | 100 | 3 | 8 |
1100 | 95 | ND | ND | ND | ND | 30 | ND | ND | 9 |
1300 | 100 | ND | ND | 6 | ND | 23 | ND | ND | 9 | |
比较例G | 1000 | 100* | ND | ND | ND | ND | ND | 43 | ND | 3 |
1100 | 100* | ND | ND | ND | ND | 8 | 26 | ND | 4 | |
1300 | 100 | ND | ND | ND | ND | 31 | ND | ND | 7 | |
比较例H | 1000 | ND | 10 | ND | ND | ND | 100 | ND | ND | 10 |
1100 | ND | 7 | ND | ND | ND | 100 | ND | ND | 7 | |
1300 | ND | ND | 100 | ND | ND | 29 | ND | 8 | 5 | |
比较例I | 1000 | ND | 4 | ND | ND | ND | 100 | ND | ND | 8 |
1100 | ND | 5 | ND | ND | ND | 100 | ND | ND | 6 | |
1300 | ND | ND | 100 | ND | ND | 31 | ND | 3 | 4 | |
实施例1 | 1000 | 4 | ND | ND | ND | ND | ND | 100 | 2 | 4 |
1100 | 39 | ND | ND | ND | ND | 2 | 100 | ND | 6 | |
1300 | 100 | ND | ND | ND | ND | 29 | 8 | ND | 6 | |
实施例2 | 1000 | 7 | ND | ND | ND | ND | ND | 100 | 2 | 4 |
1100 | 47 | ND | ND | ND | ND | 1 | 100 | ND | 5 | |
1300 | 100 | ND | ND | ND | ND | 30 | 7 | ND | 5 |
*简单立方晶体结构
ND=未检测到
将比较例A和实施例1及实施例2中经热处理的材料各1克与内标物(以刚玉形式存在的Al2O3,晶粒尺寸1微米)按质量比1∶1混合。使该1∶1的混合物在乙醇存在的条件下用玛瑙研钵均匀化10分钟,并使该混合物干燥。然后从该玛瑙研钵中回收该混合物,并用甲乙酮(MEK)使其在具有玻璃插件的铝样品支座(holder)上成浆。
用立式衍射仪(“PHILLIPS XRG 3100”)、铜靶Kα射线及散射的正比探测器记录,来从每个样品/内标物混合物中获得总计九次测量扫描。该衍射计装有各种入射光狭缝、固定的衍射光狭缝和石墨衍射光束单色仪。用0.04度的步长、6秒的停留时间从20度到52度(2θ)进行测量扫描。使用设定为45kV和35mA的x射线发生器。
通过峰形拟合(profile fitting)所观察到的数据来测定样品中存在相的峰面积和刚玉内标物的峰面积。对于峰形拟合,使用PearsonVII峰形模型和线性背景。用于样品中所存在的相和刚玉内标物的峰被列于下面的表6中。
表6
相/内标物 | 所用的峰(以2θ度记录) |
LaAlO3 | 23.4,33.4 |
LaAl11O18 | 32.2,34.0 |
La2Zr2O7 | 33.7,48.4 |
ZrO2(C,T) | 29.2,48.4 |
(Zr,M)O2 | 29.0,33.5 |
过渡型Al2O3 | 46.2 |
Al2O3(刚玉)内标物 | 37.8,43.4 |
用如下公式确定关于在所提交的样品中所存在的每个相的Ip/Ic比值:
计算的比值=Ip/Ic×(m样品/m内标物)
其中
Ip为各个相峰面积的和,
Ic为各个刚玉峰面积的和,
m样品为所用样品的量(克),及
m内标物为所用内标物的量(克)。
关于检测到的每个相的Ip/Ic比值列于下面的表7中。
表7
例子 | 温度℃ | LaAlO3 | LaAl11O18 | La2Zr2O7 | ZrO2(C,T) | (Zr,M)O2FCC | 过渡型Al2O3 |
比较例A | 1000 | 0.22 | ND | 0.48 | ND | ND | 0.01 |
1100 | 0.16 | ND | 0.29 | 0.23 | ND | 0.02 | |
1300 | 0.58 | ND | ND | 0.22 | ND | 0.01 | |
实施例1 | 1000 | 0.24 | ND | ND | ND | 0.70 | 0.01 |
1100 | 0.39 | ND | ND | 0.15 | 0.28 | 0.03 | |
1300 | 0.47 | ND | ND | 0.43 | ND | 0.02 | |
实施例2 | 1000 | 0.30 | ND | ND | ND | 0.77 | 0.03 |
1100 | 0.46 | ND | ND | 0.85 | 0.73 | 0.02 | |
1300 | 0.56 | ND | ND | 0.18 | 0.52 | 0.02 |
ND=未检测到
对于本领域的技术人员来说,显而易见的是,在不脱离本发明的范围和实质的情况下,对本发明可以进行各种修改和改变,并且应该明白,本发明不被过度地局限于本文所阐述的示例性实施方案。
Claims (16)
1.一种制备玻璃-陶瓷的方法,所述方法包括热处理玻璃以使所述玻璃的至少一部分转化成结晶陶瓷并得到玻璃-陶瓷,所述玻璃包含占所述玻璃总重量的至少40重量%的Al2O3,并包含REO、在ZrO2或HfO2中的至少一种、以及在Nb2O5或Ta2O5中的至少一种,其中,所述玻璃中所含的As2O3、B2O3、GeO2、P2O5、SiO2、TeO2和V2O5的总和占所述玻璃总重量的至多10重量%,并且其中,与对照的玻璃-陶瓷相比,所述在Nb2O5或Ta2O5中的至少一种所存在的含量足以提高从所述玻璃形成结晶ZrO2或结晶HfO2中的至少一种的比率,所述对照的玻璃-陶瓷是通过以相同的方式热处理不含Nb2O5和Ta2O5的相同玻璃而制得的。
2.根据权利要求1所述的方法,其中,所述玻璃包含ZrO2,并且与所述对照的玻璃-陶瓷相比,所述在Nb2O5或Ta2O5中的至少一种所存在的含量足以提高从所述玻璃形成结晶ZrO2的比率。
3.根据权利要求2所述的方法,其中,与所述对照的玻璃-陶瓷相比,所述在Nb2O5或Ta2O5中的至少一种所存在的含量足以使从所述玻璃形成结晶ZrO2的比率提高至少1.5倍。
4.根据权利要求1-3中任意一项权利要求所述的方法,其中,所述玻璃包含占所述玻璃总重量的至少5重量%的在Nb2O5或Ta2O5中的至少一种。
5.根据权利要求1-3中任意一项权利要求所述的方法,其中,所述REO为Gd2O3、La2O3或Nd2O3中的至少一种。
6.根据权利要求1-3中任意一项权利要求所述的方法,其中,所述玻璃-陶瓷的平均硬度为至少15GPa。
7.根据权利要求1-3中任意一项权利要求所述的方法,其中,所述玻璃-陶瓷的平均硬度为至少19GPa。
8.根据权利要求1-3中任意一项权利要求所述的方法,其中所述方法还包括使所述玻璃-陶瓷破碎以得到磨粒,并且所述方法还包括对所述磨粒进行分级以得到具有规定标称级别的多个颗粒。
9.根据权利要求1-3中任意一项权利要求所述的方法,其中所述方法还包括使所述玻璃-陶瓷破碎以得到磨粒,并且所述方法还包括将所述磨粒结合到磨料制品中。
10.一种制备玻璃-陶瓷的方法,所述方法包括热处理包含玻璃的陶瓷以使所述玻璃的至少一部分转化成结晶陶瓷并得到玻璃-陶瓷,所述玻璃包含占所述玻璃总重量的至少40重量%的Al2O3,并包含REO、在ZrO2或HfO2中的至少一种、以及在Nb2O5或Ta2O5中的至少一种,其中,所述玻璃中所含的As2O3、B2O3、GeO2、P2O5、SiO2、TeO2和V2O5的总和占所述玻璃总重量的至多10重量%,并且其中,与对照的玻璃-陶瓷相比较,所述在Nb2O5或Ta2O5中的至少一种所存在的含量足以提高从所述玻璃形成结晶ZrO2或结晶HfO2中的至少一种的比率,所述对照的玻璃-陶瓷是通过以相同的方式热处理不含Nb2O5和Ta2O5 的相同玻璃而制得的。
11.一种制备磨粒的方法,所述方法包括热处理玻璃颗粒以使所述玻璃的至少一部分转化成结晶陶瓷并得到玻璃-陶瓷和所述磨粒,所述玻璃包含占所述玻璃总重量的至少35重量%的Al2O3,并包含REO、在ZrO2或HfO2中的至少一种、以及在Nb2O5或Ta2O5中的至少一种,其中,所述玻璃中所含的As2O3、B2O3、GeO2、P2O5、SiO2、TeO2和V2O5的总和占所述玻璃总重量的至多10重量%,并且其中,与对照的玻璃-陶瓷相比较,所述在Nb2O5或Ta2O5中的至少一种所存在的含量 足以提高从所述玻璃形成结晶ZrO2或结晶HfO2中的至少一种的比率,所述对照的玻璃-陶瓷是通过以相同的方式热处理不含Nb2O5和Ta2O5 的相同玻璃而制得的。
12.一种制备磨粒的方法,所述方法包括热处理包含玻璃的颗粒以使所述玻璃的至少一部分转化成结晶陶瓷并得到玻璃-陶瓷和所述磨粒,所述玻璃包含占所述玻璃总重量的至少35重量%的Al2O3,并包含REO、在ZrO2或HfO2中的至少一种、以及在Nb2O5或Ta2O5中的至少一种,其中,所述玻璃中所含的As2O3、B2O3、GeO2、P2O5、SiO2、TeO2和V2O5的总和占所述玻璃总重量的至多10重量%,并且其中,与对照的玻璃-陶瓷相比较,所述在Nb2O5或Ta2O5中的至少一种所存在的含量足以提高从所述玻璃形成结晶ZrO2或结晶HfO2中的至少一种的比率,所述对照的玻璃-陶瓷是通过以相同的方式热处理不含Nb2O5和Ta2O5的相同玻璃而制得的。
13.一种制备玻璃-陶瓷的方法,所述方法包括热处理玻璃以使所述玻璃的至少一部分转化成结晶陶瓷并得到玻璃-陶瓷,所述玻璃包含占所述玻璃总重量的至少35重量%的Al2O3,并包含REO、在ZrO2或HfO2中的至少一种、以及Nb2O5,其中,所述玻璃中所含的As2O3、B2O3、GeO2、P2O5、SiO2、TeO2和V2O5的总和占所述玻璃总重量的至多10重量%,并且其中,与对照的玻璃-陶瓷相比,所述Nb2O5所存在的含量足以提高从所述玻璃形成结晶ZrO2或结晶HfO2中的至少一种的比率,所述对照的玻璃-陶瓷是通过以相同的方式热处理不含Nb2O5的相同玻璃而制得的。
14.一种制备玻璃-陶瓷的方法,所述方法包括热处理包含玻璃的陶瓷以使所述玻璃的至少一部分转化成结晶陶瓷并得到玻璃-陶瓷,所述玻璃包含占所述玻璃总重量的至少35重量%的Al2O3,并包含REO、在ZrO2或HfO2中的至少一种、以及Nb2O5,其中,所述玻璃中所含的As2O3、B2O3、GeO2、P2O5、SiO2、TeO2和V2O5的总和占所述玻璃总 重量的至多10重量%,并且其中,与对照的玻璃-陶瓷相比,所述Nb2O5 所存在的含量足以提高从所述玻璃形成结晶ZrO2或结晶HfO2中的至少一种的比率,所述对照的玻璃-陶瓷是通过以相同的方式热处理不含Nb2O5的相同玻璃而制得的。
15.一种制备玻璃-陶瓷的方法,所述方法包括热处理玻璃以使所述玻璃的至少一部分转化成结晶陶瓷并得到玻璃-陶瓷,所述玻璃包含占所述玻璃总重量的至少35重量%的Al2O3、占所述玻璃总重量的25重量%-70重量%的REO,并包含在ZrO2或HfO2中的至少一种、以及在Nb2O5或Ta2O5中的至少一种,其中,所述玻璃中所含的As2O3、B2O3、GeO2、P2O5、SiO2、TeO2和V2O5的总和占所述玻璃总重量的至多10重量%,并且其中,与对照的玻璃-陶瓷相比,所述在Nb2O5或Ta2O5 中的至少一种所存在的含量足以提高从所述玻璃形成结晶ZrO2或结晶HfO2中的至少一种的比率,所述对照的玻璃-陶瓷是通过以相同的方式热处理不含Nb2O5和Ta2O5的相同玻璃而制得的。
16.一种制备玻璃-陶瓷的方法,所述方法包括热处理包含玻璃的陶瓷以使所述玻璃的至少一部分转化成结晶陶瓷并得到玻璃-陶瓷,所述玻璃包含占所述玻璃总重量的至少35重量%的Al2O3、25重量%-70重量%的REO,并包含在ZrO2或HfO2中的至少一种、以及在Nb2O5 或Ta2O5中的至少一种,其中,所述玻璃中所含的As2O3、B2O3、GeO2、P2O5、SiO2、TeO2和V2O5的总和占所述玻璃总重量的至多10重量%,并且其中,与对照的玻璃-陶瓷相比,所述在Nb2O5或Ta2O5中的至少一种所存在的含量足以提高从所述玻璃形成结晶ZrO2或结晶HfO2中的至少一种的比率,所述对照的玻璃-陶瓷是通过以相同的方式热处理不含Nb2O5和Ta2O5的相同玻璃而制得的。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/666,615 US7297171B2 (en) | 2003-09-18 | 2003-09-18 | Methods of making ceramics comprising Al2O3, REO, ZrO2 and/or HfO2 and Nb205 and/or Ta2O5 |
US10/666,615 | 2003-09-18 | ||
PCT/US2004/021603 WO2005035458A1 (en) | 2003-09-18 | 2004-07-06 | METHODS OF MAKING CERAMICS COMPRISING Al2O3, REO, ZrO2 AND/OR HfO2 AND Nb2O5 AND/OR Ta2O5 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1852870A CN1852870A (zh) | 2006-10-25 |
CN1852870B true CN1852870B (zh) | 2012-03-21 |
Family
ID=34313157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2004800269525A Expired - Fee Related CN1852870B (zh) | 2003-09-18 | 2004-07-06 | 制备包含Al2O3、REO、ZrO2和/或HfO2及Nb2O5和/或Ta2O5的陶瓷的方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US7297171B2 (zh) |
EP (1) | EP1678092A1 (zh) |
JP (1) | JP2007505814A (zh) |
KR (1) | KR20070015364A (zh) |
CN (1) | CN1852870B (zh) |
BR (1) | BRPI0414479A (zh) |
CA (1) | CA2539079A1 (zh) |
RU (1) | RU2006108250A (zh) |
WO (1) | WO2005035458A1 (zh) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100522856C (zh) * | 2001-08-02 | 2009-08-05 | 3M创新有限公司 | Al2O3-稀土元素氧化物-ZrO2/HfO2材料以及其制造方法 |
ES2295396T3 (es) | 2001-08-02 | 2008-04-16 | 3M Innovative Properties Company | Metodo para fabricar articulos a partir de vidrio y articulos vitroceramicos asi producidos. |
US8056370B2 (en) * | 2002-08-02 | 2011-11-15 | 3M Innovative Properties Company | Method of making amorphous and ceramics via melt spinning |
US7179526B2 (en) * | 2002-08-02 | 2007-02-20 | 3M Innovative Properties Company | Plasma spraying |
US6984261B2 (en) * | 2003-02-05 | 2006-01-10 | 3M Innovative Properties Company | Use of ceramics in dental and orthodontic applications |
US7292766B2 (en) * | 2003-04-28 | 2007-11-06 | 3M Innovative Properties Company | Use of glasses containing rare earth oxide, alumina, and zirconia and dopant in optical waveguides |
US7141523B2 (en) * | 2003-09-18 | 2006-11-28 | 3M Innovative Properties Company | Ceramics comprising Al2O3, REO, ZrO2 and/or HfO2, and Nb2O5 and/or Ta2O5 and methods of making the same |
US20050137077A1 (en) * | 2003-12-18 | 2005-06-23 | 3M Innovative Properties Company | Method of making abrasive particles |
US7866758B2 (en) * | 2004-07-22 | 2011-01-11 | Anisa International, Inc. | Manufacturing method for multi-color extruded acrylic cosmetic brushes and brush handles |
US20070151166A1 (en) * | 2005-12-30 | 2007-07-05 | 3M Innovative Properties Company | Method of making abrasive articles, cutting tools, and cutting tool inserts |
US20070154713A1 (en) * | 2005-12-30 | 2007-07-05 | 3M Innovative Properties Company | Ceramic cutting tools and cutting tool inserts, and methods of making the same |
US7598188B2 (en) * | 2005-12-30 | 2009-10-06 | 3M Innovative Properties Company | Ceramic materials and methods of making and using the same |
US7281970B2 (en) * | 2005-12-30 | 2007-10-16 | 3M Innovative Properties Company | Composite articles and methods of making the same |
US20080226863A1 (en) * | 2007-03-16 | 2008-09-18 | Robert Prunchak | Glass Enamel Screen Printing Composition |
FR2929941B1 (fr) * | 2008-04-15 | 2011-03-04 | Saint Gobain Ct Recherches | Produit fritte dope a base de zircon |
EP2191809A1 (en) * | 2008-11-27 | 2010-06-02 | 3M Innovative Properties Company | Dental ceramic article, process for production and use thereof |
JP5369654B2 (ja) * | 2008-12-04 | 2013-12-18 | 株式会社ジェイテクト | ビトリファイドボンド砥石 |
MX2011009351A (es) * | 2009-03-11 | 2011-11-02 | Saint Gobain Abrasives Inc | Articulos abrasivos que incluyen granos de alumina y zirconia fusionados con una forma mejorada. |
FR2943054B1 (fr) * | 2009-03-11 | 2013-11-29 | Saint Gobain Ct Recherches | Melange de grains d'alumine-zircone fondus |
CN101817685B (zh) * | 2010-03-16 | 2013-03-06 | 山东鲲鹏新材料科技股份有限公司 | 一种复合前驱体溶胶的制备方法 |
DE102010047690A1 (de) | 2010-10-06 | 2012-04-12 | Vsm-Vereinigte Schmirgel- Und Maschinen-Fabriken Ag | Verfahren zum Herstellen von Zirkonia-verstärkten Alumina-Schleifkörnern und hierdurch hergestellte Schleifkörner |
DE102011013018B3 (de) * | 2011-03-04 | 2012-03-22 | Schott Ag | Lithiumionen leitende Glaskeramik und Verwendung der Glaskeramik |
WO2013003213A1 (en) * | 2011-06-28 | 2013-01-03 | 3M Innovative Properties Company | Glass-ceramics and methods of making the same |
ES2415984B1 (es) * | 2012-01-24 | 2014-05-27 | Vidres Sa | Recubrimiento para cuerpos ceramicos |
CN106475920A (zh) * | 2016-12-07 | 2017-03-08 | 王振东 | 一种钢轨切割砂轮及其制造和应用 |
WO2018207132A1 (en) | 2017-05-12 | 2018-11-15 | 3M Innovative Properties Company | Articles comprising ceramics and method of making the same |
US10988399B2 (en) | 2017-05-12 | 2021-04-27 | 3M Innovative Properties Company | Articles comprising crystalline materials and method of making the same |
CN109822760B (zh) * | 2019-03-01 | 2021-03-02 | 洛阳双元围棋文化发展有限公司 | 一种天然石材双面凸围棋棋子的制作工艺 |
TWI772234B (zh) * | 2021-12-02 | 2022-07-21 | 財團法人工業技術研究院 | 透明氮化物 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3635739A (en) * | 1969-06-04 | 1972-01-18 | Corning Glass Works | Silica-free calcium aluminate glass-ceramic articles |
EP0274838A1 (en) * | 1986-12-18 | 1988-07-20 | Corning Glass Works | Reinforced calcium aluminosilicate glass-ceramics |
CN1378993A (zh) * | 2002-05-17 | 2002-11-13 | 中国科学院上海硅酸盐研究所 | 氧化锆增韧氧化铝陶瓷的低温液相烧结 |
Family Cites Families (157)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1314061A (en) | 1919-08-26 | Abrasive material and j | ||
US659926A (en) | 1900-05-04 | 1900-10-16 | Gen Electro Chemical Company | Process of manufacturing abrasive material. |
US906339A (en) | 1908-03-17 | 1908-12-08 | Carborundum Co | Composition of matter containing alumina and silica. |
US1037999A (en) | 1908-12-26 | 1912-09-10 | Morton Company | Article of alumina and method of making same. |
US960712A (en) | 1909-09-14 | 1910-06-07 | Norton Co | Process of purifying aluminous materials. |
US1107011A (en) | 1913-03-11 | 1914-08-11 | Carborundum Co | Method of bonding fused crystalline alumina. |
US1192709A (en) | 1914-12-01 | 1916-07-25 | Carborundum Co | Crystalline fused alumina and the manufacture thereof. |
US1161620A (en) | 1915-02-24 | 1915-11-23 | Carborundum Co | Crystalline fused alumina and method of making the same. |
US1149064A (en) | 1915-06-11 | 1915-08-03 | Exolon Company | Electric-furnace abrasive and method of making the same. |
US1268532A (en) | 1916-11-11 | 1918-06-04 | Carborundum Co | Process of making aluminous abrasives. |
US1247337A (en) | 1917-02-12 | 1917-11-20 | Norton Co | Aluminous abrasive. |
US1240490A (en) | 1917-02-12 | 1917-09-18 | Norton Co | Composition containing alumina and zirconia. |
US1263708A (en) | 1917-03-02 | 1918-04-23 | Norton Co | PRODUCT CONTAINING β-ALUMINA AND PROCESS OF PREPARING THE SAME. |
US1263710A (en) | 1917-08-02 | 1918-04-23 | Norton Co | Aluminous abrasive and process of making same. |
US1263709A (en) | 1917-08-02 | 1918-04-23 | Norton Co | Aluminous abrasive and process of making the same. |
US1268533A (en) | 1917-08-07 | 1918-06-04 | Carborundum Co | Aluminous abrasive. |
US1257356A (en) | 1917-11-14 | 1918-02-26 | Carborundum Co | Aluminous composition and method of preparing the same. |
US1339344A (en) | 1919-09-18 | 1920-05-04 | Carborundum Co | Aluminous compostion and method of making the same |
US1402714A (en) | 1920-10-21 | 1922-01-03 | Abrasive Company | Method of manufacturing artificial abrasives from bauxite and emery |
US1448586A (en) | 1922-04-22 | 1923-03-13 | Abrasive Company | Process of manufacturing aluminous abrasives |
US2000857A (en) | 1930-12-01 | 1935-05-07 | Swann Res Inc | Aluminum oxide abrasive and method of making the same |
US1910444A (en) | 1931-02-13 | 1933-05-23 | Carborundum Co | Process of making abrasive materials |
US2206081A (en) | 1935-09-03 | 1940-07-02 | Eastman Kodak Co | Optical glass |
US2424645A (en) | 1943-07-13 | 1947-07-29 | Carborundum Co | Fused aluminum oxide abrasive material |
US2618567A (en) | 1950-10-19 | 1952-11-18 | Norton Co | Molded alumina |
US2805166A (en) | 1954-01-18 | 1957-09-03 | Loffler Johannes | Glasses containing oxides of rare earth metals |
DE1694594C3 (de) | 1960-01-11 | 1975-05-28 | Minnesota Mining And Manufacturing Co., Saint Paul, Minn. (V.St.A.) | Reinigungs- und Polierkörper |
US2961296A (en) | 1957-09-27 | 1960-11-22 | Aluminium Lab Ltd | Production of fused alumina |
DE1075807B (de) | 1958-08-07 | 1960-02-18 | JENAer Glaswerk Schott &. Gen Mainz | Alumimumoxydreiches Lanthanborosilikatglas |
US3041156A (en) | 1959-07-22 | 1962-06-26 | Norton Co | Phenolic resin bonded grinding wheels |
US3181939A (en) | 1961-01-27 | 1965-05-04 | Norton Co | Fused alumina-zirconia abrasives |
US3377660A (en) | 1961-04-20 | 1968-04-16 | Norton Co | Apparatus for making crystal abrasive |
US3141747A (en) | 1961-08-24 | 1964-07-21 | Norton Co | Alumina abrasive |
US3216794A (en) | 1961-10-20 | 1965-11-09 | Norton Co | Process for producing crystalline alumina |
GB1112969A (en) | 1964-08-22 | 1968-05-08 | Nippon Sheet Glass Co Ltd | Process for the manufacture of sheet glass |
US3926603A (en) | 1968-04-10 | 1975-12-16 | Philips Corp | Method of manufacturing a glass ceramic material which is resistant to sodium vapour |
US3625717A (en) | 1968-04-29 | 1971-12-07 | Avco Corp | Spray coating compositions |
US3498769A (en) | 1969-01-16 | 1970-03-03 | Norton Co | Fused zirconia-spinel abrasives and articles made therewith |
US3650780A (en) | 1969-05-01 | 1972-03-21 | Corning Glass Works | Fiber optic core glass |
US3947281A (en) | 1969-11-06 | 1976-03-30 | United Technologies Corporation | High modulus rare earth and beryllium containing silicate glass compositions |
US3646713A (en) | 1970-03-16 | 1972-03-07 | Norton Co | Method of making fragmented crystalline material |
US3781172A (en) | 1970-12-14 | 1973-12-25 | G Kinney | Process for the manufacture of microcrystalline fused abrasives |
US3717583A (en) | 1971-03-10 | 1973-02-20 | American Optical Corp | Neodymium glass laser having room temperature output at wavelengths shorter than 1060 nm. |
US3714059A (en) | 1971-03-10 | 1973-01-30 | American Optical Corp | Neodymium glass laser having room temperature output at wavelengths shorter than 1060 nm |
US4415510A (en) | 1971-06-15 | 1983-11-15 | Kennecott Corporation | Process for making oxide refractory material having fine crystal structure |
US3726621A (en) | 1971-06-15 | 1973-04-10 | Carborundum Co | Apparatus for producing oxide refractory material having fine crystal structure |
US3928515A (en) | 1971-06-15 | 1975-12-23 | Carborundum Co | Semicontinuous process for producing oxide refractory material having fine crystal structure |
US4017317A (en) | 1971-08-05 | 1977-04-12 | Owens-Illinois, Inc. | Glass-ceramics and process for making same |
US3754978A (en) | 1971-08-06 | 1973-08-28 | Corning Glass Works | Devitrification-resistant coating for high-silica glasses |
US3792553A (en) | 1971-09-28 | 1974-02-19 | Wallace Murray Corp | Abrasive powder of fused alumina containing vanadium tetroxide |
US3893826A (en) | 1971-11-08 | 1975-07-08 | Norton Co | Coated abrasive material comprising alumina-zirconia abrasive compositions |
US4070796A (en) | 1971-12-27 | 1978-01-31 | Norton Company | Method of producing abrasive grits |
US4261706A (en) | 1972-05-15 | 1981-04-14 | Corning Glass Works | Method of manufacturing connected particles of uniform size and shape with a backing |
US3859407A (en) | 1972-05-15 | 1975-01-07 | Corning Glass Works | Method of manufacturing particles of uniform size and shape |
US3785834A (en) | 1972-06-09 | 1974-01-15 | Owens Illinois Inc | Glasses,glass-ceramics and process for making same |
US3891408A (en) | 1972-09-08 | 1975-06-24 | Norton Co | Zirconia-alumina abrasive grain and grinding tools |
US3916584A (en) | 1973-03-22 | 1975-11-04 | Minnesota Mining & Mfg | Spheroidal composite particle and method of making |
US3881282A (en) | 1973-10-24 | 1975-05-06 | Norton Co | Abrasive grain of fused alumina-zirconia-ceria alloy |
US3973977A (en) | 1973-11-01 | 1976-08-10 | Corning Glass Works | Making spinel and aluminum-base metal cermet |
US3940276A (en) | 1973-11-01 | 1976-02-24 | Corning Glass Works | Spinel and aluminum-base metal cermet |
US4035162A (en) | 1973-11-09 | 1977-07-12 | Corning Glass Works | Fused abrasive grains consisting essentially of corundum, zirconia and R2 O3 |
DE2420551B2 (de) | 1974-04-27 | 1981-01-08 | Dynamit Nobel Ag, 5210 Troisdorf | Verfahren zur Herstellung von gekörnten Schleifmitteln aus hochfeuerfesten anorganischen Hartstoffen |
DE2560066B1 (de) | 1974-05-29 | 1979-12-13 | Treibacher Chemische Werke Ag | Verfahren zur Herstellung von Schleifmaterialien auf der Basis von Aluminiumoxid,gegebenenfalls zusammen mit anderen Oxiden |
US3999994A (en) | 1974-09-18 | 1976-12-28 | Owens-Illinois, Inc. | Glass-ceramics |
US3996702A (en) | 1974-11-26 | 1976-12-14 | Minnesota Mining And Manufacturing Company | Coated abrasive product comprising fused zirconia grains and method for abrading iron |
US4014122A (en) | 1975-09-22 | 1977-03-29 | Woods Oscar J | Paperweight with screw threaded bottom cap |
US4194887A (en) | 1975-12-01 | 1980-03-25 | U.S. Industries, Inc. | Fused alumina-zirconia abrasive material formed by an immersion process |
US4073096A (en) | 1975-12-01 | 1978-02-14 | U.S. Industries, Inc. | Process for the manufacture of abrasive material |
US4126429A (en) | 1975-12-15 | 1978-11-21 | Norton Company | Co-fused alumina-zirconia alloy abrasive containing magnesium oxide |
US4157898A (en) | 1976-06-01 | 1979-06-12 | The Carborundum Company | Fused aluminum oxide abrasive grain containing reduced titanium oxide |
US4111668A (en) | 1976-06-01 | 1978-09-05 | The Carborundum Company | Fused aluminum oxide abrasive grain containing reduced titanium oxide |
USRE31128E (en) | 1976-06-01 | 1983-01-18 | Kennecott Corporation | Fused aluminum oxide abrasive grain containing reduced titanium oxide |
USRE31725E (en) | 1976-06-01 | 1984-11-06 | Kennecott Corporation | Fused aluminum oxide abrasive grain containing reduced titanium oxide |
US4217264A (en) | 1977-04-01 | 1980-08-12 | American Dental Association Health Foundation | Microporous glassy fillers for dental resin composites |
DE2744700C2 (de) | 1977-10-05 | 1987-05-27 | Feldmühle AG, 4000 Düsseldorf | Sinterwerkstoff auf Basis von dichten, nichtmetallischen Hartstoffen wie hochschmelzenden Metallcarbiden, Metallnitriden, Metallboriden und Metalloxiden mit darin eingelagerten Zirkon- und/oder Hafniumoxid |
US4140494A (en) | 1977-10-21 | 1979-02-20 | Norton Company | Method for rapid cooling molten alumina abrasives |
US4111707A (en) | 1977-12-14 | 1978-09-05 | Kabushiki Kaisha Ohara Kogaku Garasu Seizosho | Optical glass |
US4182437A (en) | 1978-05-08 | 1980-01-08 | Ferro Corporation | Unstable devitrifiable glasses and friction materials containing them |
US4311489A (en) | 1978-08-04 | 1982-01-19 | Norton Company | Coated abrasive having brittle agglomerates of abrasive grain |
US4238213A (en) | 1979-04-05 | 1980-12-09 | Johns-Manville Corporation | Method of operation of a refractory fiber production process |
US4518397A (en) | 1979-06-29 | 1985-05-21 | Minnesota Mining And Manufacturing Company | Articles containing non-fused aluminum oxide-based abrasive mineral |
US4314827A (en) | 1979-06-29 | 1982-02-09 | Minnesota Mining And Manufacturing Company | Non-fused aluminum oxide-based abrasive mineral |
FR2460315A1 (fr) | 1979-07-05 | 1981-01-23 | Sofrem | Produit abrasif, a haute durete, a base d'alumine et d'oxycarbures d'aluminium et procede de preparation |
DE3022213C2 (de) | 1980-06-13 | 1987-12-23 | Feldmühle AG, 4000 Düsseldorf | Keramischer Formkörper mit eutektischen Gefügebestandteilen und Verfahren zu seiner Herstellung |
US4513107A (en) * | 1980-06-27 | 1985-04-23 | Minnesota Mining And Manufacturing Company | Thermally transferable ink compositions |
US4316964A (en) | 1980-07-14 | 1982-02-23 | Rockwell International Corporation | Al2 O3 /ZrO2 ceramic |
US4588419A (en) | 1980-10-08 | 1986-05-13 | Carborundum Abrasives Company | Resin systems for high energy electron curable resin coated webs |
FR2499061A1 (fr) | 1981-01-30 | 1982-08-06 | Sofrem | Procede et appareillage de solidification et de refroidissement rapides par coulee continue de produits fondus a base d'oxydes metalliques |
IT1150318B (it) | 1981-03-21 | 1986-12-10 | Bosch Gmbh Robert | Pompa di iniezione del carburante per motori endotermici |
DE3138137C2 (de) | 1981-09-25 | 1985-05-15 | Schott Glaswerke, 6500 Mainz | ThO↓2↓ - und Ta↓2↓O↓5↓-freie optische Gläser mit Brechwerten von 1.87 - 1.93 und Abbezahlen von 30 - 35 |
US4489022A (en) | 1981-11-25 | 1984-12-18 | Glaverbel | Forming coherent refractory masses |
US4439845A (en) | 1981-12-03 | 1984-03-27 | Westinghouse Electric Corp. | Sonar system |
US4800685A (en) * | 1984-05-31 | 1989-01-31 | Minnesota Mining And Manufacturing Company | Alumina bonded abrasive for cast iron |
CA1181558A (en) | 1982-04-08 | 1985-01-29 | Takashi Onoyama | Apparatus for producing flake particles |
JPS5969443A (ja) | 1982-10-14 | 1984-04-19 | Natl Inst For Res In Inorg Mater | Y↓2o↓3を含有するアルミノけい酸塩ガラスの製造法 |
US4543107A (en) | 1984-08-08 | 1985-09-24 | Norton Company | Vitrified bonded grinding wheels containing sintered gel aluminous abrasive grits |
US4457767A (en) | 1983-09-29 | 1984-07-03 | Norton Company | Alumina-zirconia abrasive |
DE3343418A1 (de) | 1983-12-01 | 1985-06-20 | Schott Glaswerke, 6500 Mainz | Optisches glas mit brechwerten>= 1.90, abbezahlen>= 25 und mit hoher chemischer bestaendigkeit |
US4623364A (en) | 1984-03-23 | 1986-11-18 | Norton Company | Abrasive material and method for preparing the same |
US5395407B1 (en) * | 1984-01-19 | 1997-08-26 | Norton Co | Abrasive material and method |
CA1266568A (en) * | 1984-05-09 | 1990-03-13 | Minnesota Mining And Manufacturing Company | Coated abrasive product incorporating selective mineral substitution |
CA1266569A (en) * | 1984-05-09 | 1990-03-13 | Minnesota Mining And Manufacturing Company | Coated abrasive product incorporating selective mineral substitution |
CA1254238A (en) * | 1985-04-30 | 1989-05-16 | Alvin P. Gerk | Process for durable sol-gel produced alumina-based ceramics, abrasive grain and abrasive products |
US4812422A (en) * | 1985-06-17 | 1989-03-14 | Matsushita Electric Industrial Co., Ltd. | Dielectric paste and method of manufacturing the paste |
US4652275A (en) | 1985-08-07 | 1987-03-24 | Minnesota Mining And Manufacturing Company | Erodable agglomerates and abrasive products containing the same |
US4741743A (en) * | 1985-08-19 | 1988-05-03 | Norton Company | Grinding wheel with combination of fused and sintered abrasive grits |
US4829031A (en) * | 1986-08-01 | 1989-05-09 | Research Corporation | Method of preparing ceramic compositions at lower sintering temperatures |
US4799939A (en) * | 1987-02-26 | 1989-01-24 | Minnesota Mining And Manufacturing Company | Erodable agglomerates and abrasive products containing the same |
US5312789A (en) * | 1987-05-27 | 1994-05-17 | Minnesota Mining And Manufacturing Company | Abrasive grits formed of ceramic, impregnation method of making the same and products made therewith |
US5185299A (en) * | 1987-06-05 | 1993-02-09 | Minnesota Mining And Manufacturing Company | Microcrystalline alumina-based ceramic articles |
CH675250A5 (zh) * | 1988-06-17 | 1990-09-14 | Lonza Ag | |
US4898597A (en) * | 1988-08-25 | 1990-02-06 | Norton Company | Frit bonded abrasive wheel |
US5011508A (en) * | 1988-10-14 | 1991-04-30 | Minnesota Mining And Manufacturing Company | Shelling-resistant abrasive grain, a method of making the same, and abrasive products |
US4898587A (en) * | 1988-11-15 | 1990-02-06 | Mera Csaba L | Intravenous line stabilizing device |
US5009676A (en) * | 1989-04-28 | 1991-04-23 | Norton Company | Sintered sol gel alumina abrasive filaments |
FR2648806B1 (fr) * | 1989-06-21 | 1993-02-12 | Ceram Composites | Materiau composite a matrice vitroceramique renforcee et son procede de preparation |
US4997461A (en) * | 1989-09-11 | 1991-03-05 | Norton Company | Nitrified bonded sol gel sintered aluminous abrasive bodies |
US5013696A (en) * | 1989-09-25 | 1991-05-07 | General Electric Company | Preparation of high uniformity polycrystalline ceramics by presintering, hot isostatic pressing and sintering and the resulting ceramic |
US5007943A (en) * | 1989-11-03 | 1991-04-16 | Norton Company | Sol-gel process alumina abrasive grain blends in coated abrasive material |
US5094672A (en) * | 1990-01-16 | 1992-03-10 | Cincinnati Milacron Inc. | Vitreous bonded sol-gel abrasive grit article |
US5110223A (en) * | 1990-03-27 | 1992-05-05 | Ina Bearing Company, Inc. | Shim thrust bearing apparatus |
EP0474866B1 (en) * | 1990-03-27 | 1994-06-01 | Asahi Kasei Kogyo Kabushiki Kaisha | Aluminum-base oxides, moldings thereof, and production of said oxides |
US5085671A (en) * | 1990-05-02 | 1992-02-04 | Minnesota Mining And Manufacturing Company | Method of coating alumina particles with refractory material, abrasive particles made by the method and abrasive products containing the same |
US5090968A (en) * | 1991-01-08 | 1992-02-25 | Norton Company | Process for the manufacture of filamentary abrasive particles |
US5378251A (en) * | 1991-02-06 | 1995-01-03 | Minnesota Mining And Manufacturing Company | Abrasive articles and methods of making and using same |
US5203886A (en) * | 1991-08-12 | 1993-04-20 | Norton Company | High porosity vitrified bonded grinding wheels |
US5316812A (en) * | 1991-12-20 | 1994-05-31 | Minnesota Mining And Manufacturing Company | Coated abrasive backing |
KR0161543B1 (ko) * | 1991-12-20 | 1998-12-15 | 테릴 켄트 쿠알리 | 이음매 없는 순환 배킹을 갖는 코팅된 연마 벨트 및 이것을 제조하는 방법 |
US5203884A (en) * | 1992-06-04 | 1993-04-20 | Minnesota Mining And Manufacturing Company | Abrasive article having vanadium oxide incorporated therein |
JP2711618B2 (ja) * | 1992-06-30 | 1998-02-10 | ティーディーケイ株式会社 | 誘電体組成物、多層配線基板および積層セラミックコンデンサ |
US5201916A (en) * | 1992-07-23 | 1993-04-13 | Minnesota Mining And Manufacturing Company | Shaped abrasive particles and method of making same |
US5213591A (en) * | 1992-07-28 | 1993-05-25 | Ahmet Celikkaya | Abrasive grain, method of making same and abrasive products |
KR950703625A (ko) * | 1992-09-25 | 1995-09-20 | 테릴 켄트 퀄리 | 희토류 산화물을 포함하는 연마 입자(abrasive grain including rare earth oxide therein) |
CA2115889A1 (en) * | 1993-03-18 | 1994-09-19 | David E. Broberg | Coated abrasive article having diluent particles and shaped abrasive particles |
US5441549A (en) * | 1993-04-19 | 1995-08-15 | Minnesota Mining And Manufacturing Company | Abrasive articles comprising a grinding aid dispersed in a polymeric blend binder |
US5605870A (en) * | 1993-05-28 | 1997-02-25 | Martinex Science, Inc. | Ceramic fibers, and methods, machines and compositions of matter for making same |
US5484752A (en) * | 1993-11-12 | 1996-01-16 | Ube Industries, Ltd. | Ceramic composite material |
WO1995018193A1 (en) * | 1993-12-28 | 1995-07-06 | Minnesota Mining & Mfg | Alpha alumina-based abrasive grain |
US6054093A (en) * | 1994-10-19 | 2000-04-25 | Saint Gobain-Norton Industrial Ceramics Corporation | Screen printing shaped articles |
US5493467A (en) * | 1994-12-27 | 1996-02-20 | International Business Machines Corporation | Yoke spin valve MR read head |
US5721188A (en) * | 1995-01-17 | 1998-02-24 | Engelhard Corporation | Thermal spray method for adhering a catalytic material to a metallic substrate |
DE69603627T2 (de) * | 1995-01-19 | 1999-12-30 | Ube Industries, Ltd. | Keramischer Verbundkörper |
JPH11501439A (ja) * | 1995-03-02 | 1999-02-02 | ミネソタ・マイニング・アンド・マニュファクチャリング・カンパニー | 構造化研磨物品を用いて支持体をテクスチャリングする方法 |
US5725162A (en) * | 1995-04-05 | 1998-03-10 | Saint Gobain/Norton Industrial Ceramics Corporation | Firing sol-gel alumina particles |
US5611829A (en) * | 1995-06-20 | 1997-03-18 | Minnesota Mining And Manufacturing Company | Alpha alumina-based abrasive grain containing silica and iron oxide |
US5856254A (en) * | 1996-02-15 | 1999-01-05 | Vaw Silizium Gmbh | Spherical metal-oxide powder particles and process for their manufacture |
US5738696A (en) * | 1996-07-26 | 1998-04-14 | Norton Company | Method for making high permeability grinding wheels |
US6214429B1 (en) * | 1996-09-04 | 2001-04-10 | Hoya Corporation | Disc substrates for information recording discs and magnetic discs |
US5747397A (en) * | 1996-11-04 | 1998-05-05 | Bay Glass Research | Optical glass |
US5876470A (en) * | 1997-08-01 | 1999-03-02 | Minnesota Mining And Manufacturing Company | Abrasive articles comprising a blend of abrasive particles |
US5863308A (en) * | 1997-10-31 | 1999-01-26 | Norton Company | Low temperature bond for abrasive tools |
US6053956A (en) * | 1998-05-19 | 2000-04-25 | 3M Innovative Properties Company | Method for making abrasive grain using impregnation and abrasive articles |
US6521004B1 (en) * | 2000-10-16 | 2003-02-18 | 3M Innovative Properties Company | Method of making an abrasive agglomerate particle |
TWI293947B (zh) * | 2001-03-26 | 2008-03-01 | Tosoh Corp | |
CN100522856C (zh) * | 2001-08-02 | 2009-08-05 | 3M创新有限公司 | Al2O3-稀土元素氧化物-ZrO2/HfO2材料以及其制造方法 |
BR0211579A (pt) * | 2001-08-02 | 2004-07-13 | 3M Innovative Properties Co | Vidro-cerâmica, contas, pluralidade de partìculas abrasivas, artigo abrasivo, e, métodos para abradar uma superfìcie, para fabricar vidro-cerâmica, para fabricar um artigo de vidro-cerâmica e para fabricar partìculas abrasivas |
US6984261B2 (en) * | 2003-02-05 | 2006-01-10 | 3M Innovative Properties Company | Use of ceramics in dental and orthodontic applications |
-
2003
- 2003-09-18 US US10/666,615 patent/US7297171B2/en not_active Expired - Fee Related
-
2004
- 2004-07-06 RU RU2006108250/03A patent/RU2006108250A/ru not_active Application Discontinuation
- 2004-07-06 WO PCT/US2004/021603 patent/WO2005035458A1/en active Application Filing
- 2004-07-06 KR KR1020067007342A patent/KR20070015364A/ko active IP Right Grant
- 2004-07-06 JP JP2006526872A patent/JP2007505814A/ja active Pending
- 2004-07-06 EP EP04756687A patent/EP1678092A1/en not_active Withdrawn
- 2004-07-06 BR BRPI0414479-1A patent/BRPI0414479A/pt not_active IP Right Cessation
- 2004-07-06 CA CA002539079A patent/CA2539079A1/en not_active Abandoned
- 2004-07-06 CN CN2004800269525A patent/CN1852870B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3635739A (en) * | 1969-06-04 | 1972-01-18 | Corning Glass Works | Silica-free calcium aluminate glass-ceramic articles |
EP0274838A1 (en) * | 1986-12-18 | 1988-07-20 | Corning Glass Works | Reinforced calcium aluminosilicate glass-ceramics |
CN1378993A (zh) * | 2002-05-17 | 2002-11-13 | 中国科学院上海硅酸盐研究所 | 氧化锆增韧氧化铝陶瓷的低温液相烧结 |
Non-Patent Citations (2)
Title |
---|
靳喜海.Zb2O5对ZTM-Al2O3烧结和性能的影响.材料研究学报14 4.2000,14(4),401-406. |
靳喜海.Zb2O5对ZTM-Al2O3烧结和性能的影响.材料研究学报14 4.2000,14(4),401-406. * |
Also Published As
Publication number | Publication date |
---|---|
JP2007505814A (ja) | 2007-03-15 |
CN1852870A (zh) | 2006-10-25 |
WO2005035458A1 (en) | 2005-04-21 |
RU2006108250A (ru) | 2007-10-27 |
EP1678092A1 (en) | 2006-07-12 |
BRPI0414479A (pt) | 2006-11-14 |
US7297171B2 (en) | 2007-11-20 |
KR20070015364A (ko) | 2007-02-02 |
US20050060948A1 (en) | 2005-03-24 |
CA2539079A1 (en) | 2005-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1852870B (zh) | 制备包含Al2O3、REO、ZrO2和/或HfO2及Nb2O5和/或Ta2O5的陶瓷的方法 | |
CN1993442B (zh) | 陶瓷及其制造和使用方法 | |
CN100360447C (zh) | 玻璃陶瓷 | |
CN1608036B (zh) | Al2O3-Y2O3-ZrO2/HfO2材料及其制备和使用方法 | |
CN100482847C (zh) | 无定形材料的制备方法及由该方法形成的材料 | |
EP1590302B1 (en) | Methods for making alumina-silica glasses and ceramics | |
CN100522856C (zh) | Al2O3-稀土元素氧化物-ZrO2/HfO2材料以及其制造方法 | |
CN100441654C (zh) | 磨粒及其制造和使用方法 | |
US7197896B2 (en) | Methods of making Al2O3-SiO2 ceramics | |
US20040148868A1 (en) | Methods of making ceramics | |
US7258707B2 (en) | AI2O3-La2O3-Y2O3-MgO ceramics, and methods of making the same | |
US20050137078A1 (en) | Alumina-yttria particles and methods of making the same | |
US20040148869A1 (en) | Ceramics and methods of making the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120321 Termination date: 20140706 |
|
EXPY | Termination of patent right or utility model |