[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN1796496A - 一种提高丙烯浓度的裂化助剂 - Google Patents

一种提高丙烯浓度的裂化助剂 Download PDF

Info

Publication number
CN1796496A
CN1796496A CN 200410102813 CN200410102813A CN1796496A CN 1796496 A CN1796496 A CN 1796496A CN 200410102813 CN200410102813 CN 200410102813 CN 200410102813 A CN200410102813 A CN 200410102813A CN 1796496 A CN1796496 A CN 1796496A
Authority
CN
China
Prior art keywords
heavy
auxiliary agent
phosphorus
zeolite
kilograms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410102813
Other languages
English (en)
Other versions
CN100389174C (zh
Inventor
蒋文斌
田辉平
陈蓓艳
宋海涛
罗一斌
唐立文
徐志诚
沈宁元
范玉华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CNB2004101028138A priority Critical patent/CN100389174C/zh
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to AU2005321726A priority patent/AU2005321726B2/en
Priority to SG200908623-2A priority patent/SG158176A1/en
Priority to US11/813,056 priority patent/US20080308455A1/en
Priority to EP05824020A priority patent/EP1867388A4/en
Priority to RU2007129273/04A priority patent/RU2397811C2/ru
Priority to JP2007548676A priority patent/JP5053098B2/ja
Priority to PCT/CN2005/002338 priority patent/WO2006069535A1/zh
Priority to KR1020077017616A priority patent/KR101229756B1/ko
Publication of CN1796496A publication Critical patent/CN1796496A/zh
Application granted granted Critical
Publication of CN100389174C publication Critical patent/CN100389174C/zh
Priority to US12/813,110 priority patent/US20100311569A1/en
Priority to US13/565,145 priority patent/US8658024B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开了一种提高丙烯浓度的裂化助剂,该助剂按干基计由10~65重%的改性ZSM-5分子筛、0~60重%的粘土、15~60重%的无机氧化物粘结剂、0.5~15重%的选自VIIIB族金属中的一种或几种的金属添加剂和2~25重%的磷添加剂组成,其中,所说的改性ZSM-5分子筛经磷和选自Fe、Co或Ni之一的金属改性,其无水化学表达式,以氧化物计为(0~0.3)Na2O·(0.5~5)Al2O3·(1.3~10)P2O5·(0.7~15)MxOy·(70~97)SiO2,x表示M的原子数,y表示满足M氧化态所需的一个数,所说的金属添加剂和磷添加剂均是以氧化物计。该裂化助剂应用于石油烃的催化裂化过程中,在增加催化裂化液化气产率和提高催化裂化汽油辛烷值的同时,可显著地提高液化气中的丙烯浓度。

Description

一种提高丙烯浓度的裂化助剂
                          技术领域
本发明是关于一种提高催化裂化液化气丙烯浓度的裂化助剂。
                          背景技术
丙烯是重要的有机化工原料,随着聚丙烯等衍生物需求的迅速增长,全世界对丙烯的需求也在逐年俱增。流化催化裂化是生产轻烯烃和丙烯的重要生产工艺之一。对于大多数催化裂化装置而言,为了增产轻烯烃和丙烯,采用含有具有MFI结构沸石的催化剂或助剂是有效的技术途径。
USP3,758,403较早披露在催化裂化催化剂中添加ZSM-5沸石的方法可以提高汽油的辛烷值和增加C3~C4烯烃的产率。例如,在含10%REY的常规催化剂中添加从1.5、2.5、5到10%的ZSM-5沸石后,汽油辛烷值提高,低碳烯烃的产率增加;使用含ZSM-5沸石的助剂时也有同样的效果。
USP 5,318,696中提出了基于一种大孔沸石和硅铝比小于30的具有MFI结构的沸石组成的催化剂的烃转化工艺过程。该工艺通过改进的催化裂化过程生产高辛烷值汽油,并增产低碳烯烃,特别是丙烯。
USP 5,997,728中公开了在重质原料催化裂化过程中大量使用择形裂化助剂的方法。所说助剂由无定形基质中加入12~40%的ZSM-5沸石组成,系统藏量至少10%,使得ZSM-5在催化剂中的比例超过3%。此方法可以在大幅度提高低碳烯烃的同时,不额外增加芳烃产量和损失汽油产率。
ZSM-5沸石用含磷化合物进行改性后,其裂化活性稳定性可以提高,并减少沸石的用量。
CN 1049406C中公开了一种含磷和稀土并具有MFI结构的沸石,其无水化学组成为aRE2O3·bNa2O·Al2O3·cP2O5·dSiO2,其中a=0.01~0.25,b=0.005~0.02,c=0.2~1.0,d=35~120。该沸石在用于烃类高温转化时具有优异的水热活性稳定性和良好的低碳烯烃选择性。
CN 1034223C中公开了一种用于生产低碳烯烃的裂解催化剂,是由0~70%(以催化剂重量为基准)的粘土、5~99%的无机氧化物和1~50%的沸石组成。其中的沸石为0~25重%的REY或高硅Y型沸石和75~100重%的含磷和稀土的五元环高硅沸石的混合物。该催化剂具有较以ZSM-5沸石为活性组分的催化剂更高的水热活性稳定性、转化率和C2 ~C4 产率。
USP5,110,776中公开了以磷改性的ZSM-5沸石催化剂的制备方法。所说的磷改性过程是将沸石分散在PH值2~6的含磷化合物水溶液中,然后与基质打浆,喷雾干燥成型。所得催化剂在提高汽油辛烷值的同时不增加干气和焦炭产率。
USP6,566,293中公开了一种含磷改性ZSM-5沸石的裂化催化剂。所说的磷改性ZSM-5的制备是将沸石分散在PH值4.5以上的含磷化合物水溶液中,使沸石负载至少10重%的磷(以P2O5计),然后与基质和其它沸石组分打浆,喷雾干燥成型。所得催化剂具有较高的低碳烯烃产率。
USP 5,171,921中公开了一种用磷改性的ZSM-5沸石。该沸石具有20~60的硅铝比,用含磷化合物浸渍后经500~700℃水蒸汽处理后,用于C3~C20烃转化成C2~C5烯烃的反应时,相对不用磷处理的ZSM-5有更高的活性。
USP6,080,303中公开了一种提高小孔和中孔沸石催化活性的方法。该方法是用磷化合物处理小孔和中孔沸石,然后将经磷处理过的沸石与AlPO4凝胶组合。该方法可以改善小孔和中孔沸石的活性和水热稳定性。
USP 5,472,594中公开了基于一种大孔沸石和含磷的MFI结构中孔沸石组成的催化剂的烃转化工艺过程。该工艺通过改进的催化裂化过程生产高辛烷值汽油,并增产低碳烯烃,特别是C4/C5
除了对ZSM-5沸石进行磷改性外,也有报道称往基质中引入磷化合物,可以提高催化剂或助剂对低碳烯烃的选择性。
USP 2002/0003103A1中公开了一种增加丙烯产率的催化裂化工艺过程。该工艺过程除了将至少部分汽油产物进入第二个提升管内重新进行裂化反应外,所采用的催化剂组合物中除了含大孔USY沸石外,还含有ZSM-5等中孔沸石以及具有裂化性能的无机粘结剂组分。其中的无机粘结剂组分中含磷,其P/Al比为0.1~10。该工艺过程可大幅度增产低碳烯烃,特别是增加丙烯产率。
USP 2002/0049133A1中公开了一种高沸石含量、高耐磨强度的催化剂。该催化剂含有30~85重%的ZSM-5沸石,6~24重%的磷(以P2O5计),以及低于10重%的Al2O3和余量的粘土等其它组分,其中的磷存在于基质中。该催化剂用于催化裂化过程中,可增加轻烯烃,尤其丙烯产率。
沸石用金属改性的方法及其应用有下述相关报道。例如USP 5,236,880中公开了含MFI或MEL结构沸石的催化剂。其中所用沸石是经VIII族金属、优选以Ni改性的,该沸石引入Ni后,经历苛刻的控制温度下的热或水热处理,使得VIII族金属和铝在表面富集。所说催化剂用于烷烃转化时可以提高汽油辛烷值,增加C3~C4烯烃的产率。
CN 1057408A中公开了一种含高硅沸石的裂解催化剂,具有较高的催化裂解活性,其中所说的高硅沸石为含有0.01~3.0重%磷、0.01~1.0重%铁或0.01~10重%铝的ZSM-5、β沸石或丝光沸石,是将硅铝比大于15的氢型或钾型ZSM-5沸石、β沸石或丝光沸石加热至350~820℃,以0.1~10小时-1的体积空速通入铝的卤化物水溶液、铁的卤化物水溶液或磷酸铵盐水溶液后得到。
CN 1465527A中公开了一种含磷和过渡金属的MFI结构沸石,该沸石的无水化学表达式,以氧化物的质量计为(0~0.3)Na2O·(0.5~5)Al2O3·(1.3~10)P2O5·(0.7~15)M2O3·(70~97)SiO2,其中,M选自过渡金属Fe、Co和Ni中的一种。该沸石应用于石油烃的催化裂化过程时,可提高C2~C4烯烃的产率及选择性,具有更高的液化气产率。
目前,对于绝大多数的催化裂化装置而言,在相同液化气产率的前提下,提高液化气中的丙烯浓度是提高催化裂化装置经济效益的重要途径。现有技术所公开的沸石材料和催化剂用于催化裂化过程中,虽然能有效地增加低碳烯烃的产率,提高催化裂化汽油产物的辛烷值,但在催化裂化反应过程中对于丙烯的选择性并不是很高,从而提高液化气中丙烯浓度的幅度有限。
                          发明内容
本发明的目的是在现有技术的基础上提供一种提高催化裂化液化气丙烯浓度的裂化助剂,该助剂应用于催化裂化过程中,不仅能有效地增加催化裂化液化气产率,提高催化裂化汽油的辛烷值,同时还能显著地提高催化裂化液化气中的丙烯浓度。
本发明人发现,以CN 1465527A中所公开的含磷和过渡金属的改性MFI结构沸石为活性组元,进一步引入适量的VIIIB族过渡金属添加剂和适量的磷添加剂,所制备的裂化助剂应用于石油烃的催化裂化过程中,可以达到本发明的目的。
因此,本发明提供的提高丙烯浓度的裂化助剂,其特征在于该助剂按干基计,由10~65重%的改性ZSM-5分子筛、0~60重%的粘土、15~60重%的无机氧化物粘结剂、0.5~15重%的选自VIIIB族金属中的一种或几种的金属添加剂和2~25重%的磷添加剂组成,其中,所说的改性ZSM-5分子筛经磷和选自Fe、Co或Ni之一的金属改性,其无水化学表达式,以氧化物计为(0~0.3)Na2O·(0.5~5)Al2O3·(1.3~10)P2O5·(0.7~15)MxOy·(70~97)SiO2,x表示M的原子数,y表示满足M氧化态所需的一个数,所说的金属添加剂和磷添加剂均以氧化物计。
本发明所提供的裂化助剂按干基计,优选组成为20~50重%的改性ZSM-5分子筛、10~45重%的粘土、25~50重%的无机氧化物粘结剂、1~10重%的选自VIIIB族金属中的一种或几种的金属添加剂和5~15重%的磷添加剂,其中所说的VIIIB族的金属添加剂和磷添加剂的含量中不包括改性ZSM-5分子筛中涉及的过渡金属和磷的含量。
优选情况下,所述改性ZSM-5分子筛经磷和Fe改性,其无水化学表达式,以氧化物计为(0~0.2)Na2O·(0.9~3.5)Al2O3·(1.5~7)P2O5·(0.9~10)MxOy·(82~92)SiO2
优选情况下,所说VIIIB族金属选自Fe、Co和Ni中的一种或几种,其中更优选是Fe添加剂。
本发明提供的裂化助剂,其中所述粘土为本领域技术人员公知,本发明对其没有特别的限制,可以选自包括高岭土、偏高岭土、海泡石、凹凸棒石、蒙脱石、累脱石、硅藻土、埃洛石、皂石、硼润土、水滑石在内的粘土材料中的一种或几种的混合物。其中优选的是高岭土、偏高岭土、硅藻土、海泡石、凹凸棒石、蒙脱石和累脱石中的一种或几种的混合物。
本发明提供的裂化助剂,其中所述无机氧化物粘结剂选自用作助剂基质和粘结剂组分的无机氧化物中的一种或几种,包括拟薄水铝石、铝溶胶、硅铝溶胶、水玻璃、磷铝溶胶在内的一种或几种的混合物,其中优选拟薄水铝石、铝溶胶和磷铝溶胶中的一种或几种的混合物。当助剂中含有磷铝溶胶时,磷铝溶胶中的磷以五氧化二磷计、计算归入所说磷添加剂的含量中。
本发明所提供的裂化助剂可由沸石、粘土、无机氧化物粘结剂,以及VIIIB族的金属化合物和磷的化合物采用包括喷雾干燥成型在内的现有裂化催化剂制备技术中的任何方法来制备,本发明对其没有特别的限制。
本发明所提供的裂化助剂中,所述VIIIB族的过渡金属添加剂以它们的氧化物、磷酸盐、亚磷酸盐、碱式磷酸盐、酸式磷酸盐的形式存在。
本发明提供的裂化助剂,其制备过程中的VIIIB族过渡金属化合物选自它们的无机化合物和有机化合物中的一种或几种,可以是易溶于水的,也可以是难溶于水或不溶于水的化合物。过渡金属化合物的实例包括过渡金属化合物的氧化物、氢氧化物、氯化物、硝酸盐、硫酸盐、磷酸盐、过渡金属的有机化合物等。优选的过渡金属化合物选自它们的氯化物、硝酸盐、硫酸盐和磷酸盐中的一种或几种。
VIIIB族过渡金属添加剂优选在助剂制备过程的喷雾干燥成型之前的任何步骤中往浆液中添加过渡金属化合物而引入;当然也可以在助剂喷雾干燥成型之后通过浸渍或化学吸附过渡金属化合物后焙烧而引入,包括将助剂用含过渡金属化合物水溶液进行浸渍或化学吸附处理,然后进行固液分离(如果需要的话)、干燥和焙烧,其中干燥的温度为室温至400℃,优选100~300℃,焙烧的温度为400~700℃,优选为450~650℃,焙烧时间为0.5~100小时,优选为0.5~10小时。
因此,所述过渡金属添加剂可以存在于助剂任何可能存在的位置,如可以存在于沸石的孔道内部、沸石的表面,可以存在于基质材料中,还可以同时存在于沸石的孔道内部、沸石的表面和所述基质材料中,优选是存在于基质材料中。
本发明所提供的催化助剂,所述磷添加剂以磷化合物(如磷的氧化物、磷酸盐、亚磷酸盐、碱式磷酸盐、酸式磷酸盐)的形式存在。所说的磷添加剂可以采用下列方法之一或者几种方法的组合,但并不局限于这些方法引入助剂中:
1、在助剂喷雾干燥成型之前往浆液中添加磷化合物;
2、由无机氧化物粘结剂引入到助剂中,比如无机氧化物粘结剂中含有磷铝溶胶时,焙烧后助剂中既带进了磷,磷铝溶胶又可以起到基质材料和粘结剂的作用,这部分磷也属于本发明所述的磷添加剂;
3、在助剂喷雾干燥成型之后经浸渍或化学吸附磷化合物,经固液分离(如果需要的话)、干燥和焙烧过程引入,所说干燥的温度为室温至400℃,优选100~300℃,焙烧的温度为400~700℃,优选为450~650℃,焙烧时间为0.5~100小时,优选为0.5~10小时。
因而,所述磷添加剂可以存在于助剂任何可能存在的位置,如可以存在于沸石的孔道内部、沸石的表面,可以存在于所述基质材料中,还可以同时存在于沸石的孔道内部、沸石的表面和所述基质材料中。
本发明提供的裂化助剂,其制备方法中所述磷化合物选自磷的各种无机化合物和有机化合物中的一种或几种。所述磷化合物可以是易溶于水的,也可以是难溶于水或不溶于水的磷化合物。磷化合物的实施例包括磷的氧化物、磷酸、磷酸盐、亚磷酸盐、次磷酸盐、含磷的有机化合物等。优选的磷化合物选自磷酸、磷酸铵、磷酸二氢铵、磷酸氢二铵、磷酸铝和磷铝溶胶中的一种或几种。
本发明提供的裂化助剂用于催化裂化过程时,可单独往催化裂化反应器里添加,也可与裂化催化剂混合后使用。一般情况下,本发明提供的助剂占FCC催化剂与本发明提供的催化剂混合物总量的1~25重%,优选为3~15重%。
本发明提供的裂化助剂可用于各种烃油的加工,所述烃油选自各种石油馏分,如原油、常压渣油、减压渣油、常压蜡油、减压蜡油、直馏蜡油,丙烷轻/重脱油、焦化蜡油和煤液化产物中的一种或几种。所述烃油可以含有镍、钒等重金属杂质及硫、氮杂质,如硫的含量可高达3.0重量%,氮的含量可高达2.0重量%,钒、镍等金属杂质的含量高达3000ppm。
本发明提供的裂化助剂用于催化裂化过程中,烃油裂化条件为常规的催化裂化条件。一般来说,该烃油裂化条件包括反应温度为400~600℃,优选为450~550℃,重时空速为10~120小时-1,优选为10~80小时-1,剂油重量比为1~20,优选为3~15。
本发明提供的裂化助剂可用于现有的各种催化裂化反应器,如在固定床反应器、流化床反应器、提升管反应器、多反应区反应器等中进行。
本发明所提供的裂化助剂中由于采用含磷和过渡金属的改性ZSM-5分子筛为活性组元,同时基质中进一步引入了适量的VIIIB族过渡金属添加剂和适量的磷添加剂,显著提高了催化裂化反应过程中对于丙烯的选择性,从而显著地提高催化裂化液化气中的丙烯浓度。
                          具体实施方式
下面的实施例将对本发明作进一步地说明,但并非因此而限制本发明的内容。
实施例和对比例中,A1~A8八个改性ZSM-5分子筛样品由CN1465527A所公开的方法制备,其无水化学表达式是用X射线荧光光谱法测定分子筛的元素组成,再经换算得到的。
样品A1:0.04Na2O·3.57Al2O3·4.0P2O5·2.4Fe2O3·90.49SiO2
样品A2:0.1Na2O·5.0Al2O3·2.0P2O5·0.9Fe2O3·92SiO2
样品A3:0.1Na2O·5.3Al2O3·1.5P2O5·1.1Fe2O3·92SiO2
样品A4:0.03Na2O·2.2Al2O3·4.9P2O5·2.1Fe2O3·90.8SiO2
样品A5:0.1Na2O·0.94Al2O3·5.1P2O5·10.1Fe2O3·84SiO2
样品A6:0.03Na2O·5.1Al2O3·4.8P2O5·3.6Co2O3·86.5SiO2
样品A7:0.1Na2O·4.6Al2O3·6.9P2O5·6.4Ni2O3·82SiO2
样品A8:0.1Na2O·5.2Al2O3·4.5P2O5·2.0Ni2O3·88.2SiO2
拟薄水铝石为山东铝厂生产工业产品,固含量60重%。
铝溶胶为齐鲁石化催化剂厂生产的工业产品,Al2O3含量为21.5重%。
水玻璃为齐鲁石化催化剂厂生产的工业产品,SiO2含量28.9重%,Na2O含量8.9%。
高岭土为苏州高岭土公司生产的裂化催化剂专用高岭土,固含量78重%。
ZRP-5沸石为齐鲁石化催化剂厂生产的常规MFI结构沸石的工业产品,其中P2O5 2.5重%,结晶度85重%,硅铝比50。
实施例1~19说明本发明提供的裂化助剂的制备过程。
                          实施例1
磷铝溶胶制备:将1.05公斤拟薄水铝石(干基)与3.35公斤去阳离子水打浆30分钟,搅拌下往浆液中加入4.9公斤浓磷酸(化学纯,含磷酸85重%),升温至70℃,然后在此温度下反应45分钟,制成无色透明的磷铝溶胶。其中P2O5 30.6重量%,Al2O3 10.5重量%,PH=1.7。
取1.75公斤(干基)A1、1.4公斤(干基)高岭土和0.65公斤(干基)拟薄水铝石,加入6.2公斤脱阳离子水和2.79公斤铝溶胶打浆120分钟,搅拌下加入1升FeCl3.6H2O的水溶液(其中含100克Fe2O3),浆液的PH值3.0。将混合物继续打浆45分种,然后往混合浆液中加入1.22公斤磷铝溶胶,搅拌均匀后,将得到的浆液在入口温度500℃,尾气温度180℃的条件下进行喷雾干燥,得到平均颗粒直径为65微米的微球。将微球于500℃下焙烧1小时,制得含35重%A1、28重%高岭土、27.5重%Al2O3、2.0重%Fe添加剂(以Fe2O3计)和7.5重%磷添加剂(以P2O5计)的助剂ZJ1
                          实施例2
取1.84公斤(干基)A1、1.33公斤(干基)高岭土和0.98公斤(干基)拟薄水铝石,加入7.2公斤脱阳离子水和2.79公斤铝溶胶打浆120分钟,搅拌下加入1升FeCl3.6H2O的水溶液(其中含250克Fe2O3),浆液的PH值3.0。将混合物继续打浆45分种,然后将得到的浆液在入口温度500℃,尾气温度180℃的条件下进行喷雾干燥,得到平均颗粒直径为65微米的微球。将微球于500℃下焙烧1小时,制得含36.8重%A1、26.6重%高岭土和31.6重%Al2O3和5.0重%Fe添加剂(以Fe2O3计)的微球。
取所得微球产物1公斤(干基),加入10升脱阳离子水和100克磷酸氢二铵,搅拌下升温至60℃,在此温度下反应20分钟后,将浆液真空过滤、干燥,然后于500℃下焙烧2小时,制得含35重%A1、25.3重%高岭土、30重%Al2O3、4.7重%Fe添加剂(以Fe2O3计)和5重%磷添加剂(以P2O5计)的助剂ZJ2
                          实施例3
取1.94公斤(干基)A1和1.91公斤(干基)拟薄水铝石,加入7.2公斤脱阳离子水和2.79公斤铝溶胶打浆120分钟3搅拌下加入1升FeCl3.6H2O的水溶液(其中含550克Fe2O3),浆液的PH值3.0。将混合物继续打浆45分种,然后将得到的浆液在入口温度500℃,尾气温度180℃的条件下进行喷雾干燥,得到平均颗粒直径为65微米的微球。将微球于500℃下焙烧1小时,制得含38.8重%Al、50.2重%Al2O3和11重%Fe添加剂(以Fe2O3计)的微球。
取所得微球产物1公斤(干基),加入10升脱阳离子水和210克磷酸氢二铵,搅拌下升温至60℃,在此温度下反应20分钟后,将浆液真空过滤、干燥,然后于500℃下焙烧2小时,制得含35重%A1、45.1重%Al2O3、9.9重%Fe添加剂(以Fe2O3计)和10重%磷添加剂(以P2O5计)的助剂ZJ3
                          实施例4
制备方法同实施例1,不同的是,高岭土用量为1.25公斤(干基),并用1升Co(NO3)2.6H2O水溶液(含250克CoO)代替FeCl3.6H2O水溶液,制得含35重%A1、25重%高岭土、27.5重%Al2O3、5重%Co添加剂(以CoO计)和7.5重%磷添加剂(以P2O5计)的助剂ZJ4
                          实施例5
制备方法同实施例1,不同的是,高岭土用量为1.25公斤(干基),并用1升Ni(NO3)2.6H2O水溶液(含250克NiO)代替FeCl3.6H2O水溶液,制得含35重%A1、25重%高岭土、27.5重%Al2O3、5重%Ni添加剂(以NiO计)和不包括改性MFI沸石中所含磷在内的7.5重%磷添加剂(以P2O5计)的助剂ZJ5
                          实施例6
取ZJ1助剂1公斤(干基),加入10升脱阳离子水和157克磷酸氢二铵,搅拌下升温至60℃,在此温度下反应20分钟后,将浆液真空过滤、干燥,然后于500℃下焙烧2小时,制得含32.38重%A1、25.9重%高岭土、25.4重%Al2O3、1.85重%Fe添加剂(以Fe2O3计)和14.47重%磷添加剂(以P2O5计)的助剂ZJ6
                          实施例7
取1.75公斤(干基)A1、1公斤(干基)高岭土和3.46公斤水玻璃,加入5公斤脱阳离子水打浆120分钟,搅拌下加入1升FeCl3.6H2O的水溶液(其中含750克Fe2O3),浆液的PH值3.0。将混合物继续打浆45分种,然后往混合浆液中加入1.22公斤磷铝溶胶,搅拌均匀后,将得到的浆液在入口温度500℃,尾气温度180℃的条件下进行喷雾干燥,得到平均颗粒直径为65微米的微球。将微球于400℃下焙烧1小时。
取上述焙烧后的微球1公斤(干基),加入10升脱阳离子水和100克氯化铵,搅拌下升温至60℃,在此温度下洗涤20分钟后,将浆液真空过滤。按以上相同的方法将滤饼重新洗涤一次,于120℃温度下烘干,制得含35重%A1、20重%高岭土、2.5重%Al2O3、20重%SiO2、15重%Fe添加剂(以Fe2O3计)和7.5重%磷添加剂(以P2O5计)的助剂ZJ7
                          实施例8
按实施例1的方法制备助剂,不同是A1的重量为2.25公斤(干基),高岭土的重量为0.9公斤(干基),制得含45重%A1、18重%高岭土、27.5重%Al2O3、2重%Fe添加剂(以Fe2O3计)和7.5重%磷添加剂(以P2O5计)的助剂ZJ8
                          实施例9
取1公斤(干基)A1、1.85公斤(干基)高岭土和0.9公斤(干基)拟薄水铝石,加入7.2公斤脱阳离子水和2.79公斤铝溶胶打浆120分钟,搅拌下加入1升FeCl3.6H2O的水溶液(其中含400克Fe2O3),浆液的PH值3.0盐酸的用量使得浆液的PH值3.0。将混合物继续打浆30分种,加入465克磷酸氢二铵,再打浆30分钟,然后将得到的浆液在入口温度500℃,尾气温度180℃的条件下进行喷雾干燥,得到平均颗粒直径为65微米的微球。将微球于500℃下焙烧1小时,制得含20重%A1、37重%高岭土、30重%Al2O3、8重%Fe添加剂(以Fe2O3计)和5重%磷添加剂(以P2O5计)的助剂ZJ9
                          实施例10
按实施例9的方法制备助剂,不同是用相同重量的A2代替A1,制得含20重%A2、37重%高岭土、30重%Al2O3、8重%Fe添加剂(以Fe2O3计)和5重%磷添加剂(以P2O5计)的助剂ZJ10
                          实施例11
取1.25公斤(干基)A3、1公斤(干基)高岭土和1.65公斤(干基)拟薄水铝石,加入7.2公斤脱阳离子水和2.79公斤铝溶胶打浆120分钟,搅拌下加入1升FeCl3.6H2O的水溶液(其中含250克Fe2O3),浆液的PH值3.0盐酸的用量使得浆液的PH值3.0。将混合物继续打浆30分种,加入465克磷酸氢二铵,再打浆30分钟,然后将得到的浆液在入口温度500℃,尾气温度180℃的条件下进行喷雾干燥,得到平均颗粒直径为65微米的微球。将微球于500℃下焙烧1小时,制得含25重%A3、20重%高岭土、45重%Al2O3、5重%Fe添加剂(以Fe2O3计)和5重%磷添加剂(以P2O5计)的助剂ZJ11
                          实施例12
取2公斤(干基)A4、0.75公斤(干基)高岭土和1.15公斤(干基)拟薄水铝石,加入7.2公斤脱阳离子水和2.79公斤铝溶胶打浆120分钟,搅拌下加入1升FeCl3.6H2O的水溶液(其中含250克Fe2O3),浆液的PH值3.0盐酸的用量使得浆液的PH值3.0。将混合物继续打浆30分种,加入465克磷酸氢二铵,再打浆30分钟,然后将得到的浆液在入口温度500℃,尾气温度180℃的条件下进行喷雾干燥,得到平均颗粒直径为65微米的微球。将微球于500℃下焙烧1小时,制得含40重%A4、15重%高岭土、35重%Al2O3、5重%Fe添加剂(以Fe2O3计)和5重%磷添加剂(以P2O5计)的助剂ZJ12
                          实施例13
取2.89公斤(干基)A5和1.4公斤(干基)拟薄水铝石,加入7.2公斤脱阳离子水和2.79公斤铝溶胶打浆120分钟,搅拌下加入1升FeCl3.6H2O的水溶液(其中含105.5克Fe2O3),浆液的PH值3.0。将混合物继续打浆45分种,然后将得到的浆液在入口温度500℃,尾气温度180℃的条件下进行喷雾干燥,得到平均颗粒直径为65微米的微球。将微球于500℃下焙烧1小时,制得含57.89重%A8、40重%Al2O3和2.11重%Fe添加剂(以Fe2O3计)的微球。
取所得微球产物1公斤(干基),加入10升脱阳离子水和210克磷酸氢二铵,搅拌下升温至60℃,在此温度下反应20分钟后,将浆液真空过滤、干燥,然后于500℃下焙烧2小时,制得含55重%A5、38重%Al2O3、2重%Fe添加剂(以Fe2O3计)和5重%磷添加剂(以P2O5计)的助剂ZJ13
                          实施例14
取1.5公斤(干基)A6、1.5公斤(干基)高岭土和0.9公斤(干基)拟薄水铝石,加入6.2公斤脱阳离子水和2.79公斤铝溶胶打浆120分钟,搅拌下加入1升FeCl3.6H2O的水溶液(其中含125克Fe2O3),浆液的PH值3.0。将混合物继续打浆45分种,然后往混合浆液中加入1.22公斤磷铝溶胶,搅拌均匀后,将得到的浆液在入口温度500℃,尾气温度180℃的条件下进行喷雾干燥,得到平均颗粒直径为65微米的微球。将微球于500℃下焙烧1小时,制得含30重%A6、30重%高岭土、30重%Al2O3、2.5重%Fe添加剂(以Fe2O3计)和7.5重%磷添加剂(以P2O5计)的助剂ZJ1
                          实施例15
取1.25公斤(干基)A7、1公斤(干基)高岭土和1.65公斤(干基)拟薄水铝石,加入7.2公斤脱阳离子水和2.79公斤铝溶胶打浆120分钟,搅拌下加入1升FeCl3.6H2O的水溶液(其中含250克Fe2O3),浆液的PH值3.0盐酸的用量使得浆液的PH值3.0。将混合物继续打浆30分种,加入465克磷酸氢二铵,再打浆30分钟,然后将得到的浆液在入口温度500℃,尾气温度180℃的条件下进行喷雾干燥,得到平均颗粒直径为65微米的微球。将微球于500℃下焙烧1小时,制得含25重%A7、20重%高岭土、45重%Al2O3、5重%Fe添加剂(以Fe2O3计)和5重%磷添加剂(以P2O5计)的助剂ZJ15
                          实施例16
取2.5公斤(干基)A8和1.63公斤(干基)拟薄水铝石,加入7.2公斤脱阳离子水和2.79公斤铝溶胶打浆120分钟,搅拌下加入1升FeCl3.6H2O的水溶液(其中含270克Fe2O3),浆液的PH值3.0。将混合物继续打浆45分种,然后将得到的浆液在入口温度500℃,尾气温度180℃的条件下进行喷雾干燥,得到平均颗粒直径为65微米的微球。将微球于500℃下焙烧1小时,制得含50重%A8、44.6重%Al2O3和5.4重%Fe添加剂(以Fe2O3计)的微球。
取所得微球产物1公斤(干基),加入10升脱阳离子水和210克磷酸氢二铵,搅拌下升温至60℃,在此温度下反应20分钟后,将浆液真空过滤、干燥,然后于500℃下焙烧2小时,制得含45重%A8、40.1重%Al2O3、4.9重%Fe添加剂(以Fe2O3计)和10重%磷添加剂(以P2O5计)的助剂ZJ16
                          实施例17
按实施例1的方法制备助剂,不同是用相同重量的A3代替A1,制得含35重%A3、28重%高岭土、27.5重%Al2O3、2.0重%Fe添加剂(以Fe2O3计)和7.5重%磷添加剂(以P2O5计)的助剂ZJ17
                          实施例18
按实施例1的方法制备助剂,不同是用相同重量的A6代替A1,制得含35重%A6、28重%高岭土、27.5重%Al2O3、2.0重%Fe添加剂(以Fe2O3计)和7.5重%磷添加剂(以P2O5计)的助剂ZJ18
                          实施例19
按实施例1的方法制备助剂,不同是用相同重量的A8代替A1,制得含35重%A8、28重%高岭土、27.5重%Al2O3、2.0重%Fe添加剂(以Fe2O3计)和7.5重%磷添加剂(以P2O5计)的助剂ZJ19
                          对比例1
本对比例说明含改性ZSM-5(样品A1)、磷添加剂,不含VIIIB金属添加剂的参比助剂的制备。
取1.75公斤(干基)A1、1.5公斤(干基)高岭土和0.65公斤(干基)拟薄水铝石,加入7.2公斤脱阳离子水和2.79公斤铝溶胶打浆120分钟,搅拌下加入浓度为36重%的盐酸,盐酸的用量使得浆液的PH值3.0。将混合物继续打浆45分种,然后往混合浆液中加入1.22公斤磷铝溶胶,搅拌均匀后,将得到的浆液在入口温度500℃,尾气温度180℃的条件下进行喷雾干燥,得到平均颗粒直径为65微米的微球。将微球于500℃下焙烧1小时,制得含35重%A1、30重%高岭土、27.5重%Al2O3和7.5重%磷添加剂(以P2O5计)的参比助剂CB1
                          对比例2
本对比例说明含改性ZSM-5(样品A1)、不含VIIIB金属添加剂和磷添加剂的参比助剂及其制备。
取1.75公斤(干基)A1、1.5公斤(干基)高岭土和1.15公斤(干基)拟薄水铝石,加入7.2公斤脱阳离子水和2.79公斤铝溶胶打浆120分钟,搅拌下加入浓度为36重%的盐酸,盐酸的用量使得浆液的PH值3.0。将混合物继续打浆45分种。然后将得到的浆液在入口温度500℃,尾气温度180℃的条件下进行喷雾干燥,得到平均颗粒直径为65微米的微球。将微球于500℃下焙烧1小时,制得含35重%A1、30重%高岭土和35重%Al2O3的参比助剂CB2
                          对比例3
本对比例说明常规ZRP-5沸石的参比助剂的制备。
按对比例2的方法制备助剂,不同是用同样重量的ZRP-5沸石取代A1,制得含35重%ZRP-5沸石,30重%高岭土和35重%Al2O3的参比助剂CB3
                          对比例4
本对比例说明常规ZRP-5沸石和磷添加剂的参比助剂的制备。
按实施例1的方法制备助剂,不同是用同样重量的ZRP-5沸石取代A1,制得含35重%ZRP-5沸石,30重%高岭土和35重%Al2O3和不包括ZRP-5沸石中所含磷在内的5重%磷添加剂的参比助剂CB4
                          对比例5
本对比例说明以改性ZSM-5分子筛(样品A1)、含VIIIB金属添加剂,而不含磷添加剂的参比助剂的制备。
取1.75公斤(干基)A1、1.5公斤(干基)高岭土和0.9公斤(干基)拟薄水铝石,加入6.2公斤脱阳离子水和2.79公斤铝溶胶打浆120分钟,搅拌下加入1升FeCl3.6H2O的水溶液(其中含250克Fe2O3),浆液的PH值3.0。将混合物继续打浆45分种,将得到的浆液在入口温度500℃,尾气温度180℃的条件下进行喷雾干燥,得到平均颗粒直径为65微米的微球。将微球于500℃下焙烧1小时,制得含35重%A1、30重%高岭土、30重%Al2O3、5重%Fe添加剂(以Fe2O3计)的参比助剂CB5
                          实施例20~38
下面的实施例以固定流化床反应器为例,说明本发明提供的裂化助剂的裂化反应效果。
分别将30克ZJ1-ZJ19在800℃、100%水蒸气气氛条件下进行8小时的老化处理。取不同量的经老化处理的ZJ1-ZJ19与不同量的工业FCC平衡催化剂(工业牌号为MLC-500的FCC平衡催化剂,主要性质见表1)进行混合。将催化剂混合物装入小型固定流化床反应装置的反应器中,对表2所示原料油油进行催化裂化(原料油性质见表2)。表3、表4和表5给出了所用催化剂混合物组成,反应条件和反应结果。
                          对比例6~11
下面的对比例以固定流化床反应器为例,说明使用参比助剂的情况。
按实施例20中的方法对同样的原料油进行催化裂化,不同的是所用催化剂分别为100%工业FCC平衡催化剂、CB1~CB5与工业FCC平衡催化剂的混合物。、表4和表5给出了所用催化剂混合物组成,反应条件和反应结果。
从表3可以看出,与参比助剂相比,本发明提供的催化助剂,不仅能有效地增加催化裂化液化气产率,提高催化裂化汽油的辛烷值,同时还能显著地提高催化裂化液化气中的丙烯浓度。
表1
  项目   工业平衡催化剂MLC-500
  金属含量,ppmNi/VFe/SbCa 9386/16656503/26731714
  微活指数   60
表2
  原料油名称   管输蜡油掺渣油
  密度(20℃),克/厘米3粘度(100℃),毫米2/秒凝固点,℃残炭,重量%   0.907010.41403.1
  元素组成,重量%C/HS/N 86.39/12.530.8/0.29
  四组分,重量%饱和烃芳烃胶质沥青质 56.824.218.20.8
  金属含量,ppmV/NiFe/CuNa馏程,℃初馏点/5%10%/20%30%/40%50%/60%70%/80% 0.8/7.07.8/0.12.6241/309343/387413/432450/466493/535
 表3
  实施例编号   对比例6   20   对比例7   21   对比例8   对比例9   对比例10   对比例11
催化剂   100%平衡剂   10%ZJ1+90%平衡剂   10%CB1+90%平衡剂   10%ZJ2+90%平衡剂   10%CB2+90%平衡剂   10%CB3+90%平衡剂   10%CB4+90%平衡剂   10%CB4+90%平衡剂
  反应温度,℃   500   500   500   500   500   500   500   500
  空速,小时-1   16   16   16   16   16   16   16   16
  剂油重量比   5.92   5.92   5.92   5.92   5.92   5.92   5.92   5.92
  水蒸气(对原料油),重%   0   0   0   0   0   0   0   0
  物料平衡,重%:
  干气   1.60   1.59   1.47   1.58   1.70   1.60   1.56   2.10
  液化气   18.04   23.21   20.58   23.54   21.37   21.03   20.76   21.29
  C5 +汽油   43.13   37.30   40.09   38.36   39.55   39.88   39.78   38.60
  柴油   17.17   17.84   17.46   17.63   17.10   17.04   17.11   17.18
  重油   13.61   13.96   14.83   13.25   13.77   14.34   14.60   13.82
  焦炭   6.45   6.10   5.57   5.64   6.51   6.12   6.19   7.01
  转化率,重%   69.23   68.20   67.71   69.11   69.13   68.62   68.30   69.00
  液收,重%   78.34   78.36   78.13   79.53   78.02   77.95   77.65   77.07
  丙烯,重%   5.07   8.41   7.14   8.57   6.87   6.65   6.77   6.91
  丙烯/液化气   28.13   36.23   34.69   36.41   32.16   31.64   32.62   32.47
  汽油组成,重%
  烷烃   33.59   26.39   31.33   26.10   29.69   30.56   29.78   29.58
  烯烃   23.89   26.35   24.86   25.27   25.4   24.54   24.93   25.51
  环烷烃   8.26   8.99   7.98   9.22   8.2   8.26   8.5   8.33
  芳烃   34.08   38.27   35.66   39.39   36.48   36.38   36.44   36.35
  RON(色谱法)   87.1   89.4   89.8   89.5   89.2   88.9   89.0   89.4
  MON(色谱法)   82.0   82.6   82.7   82.6   82.7   82.7   82.7   82.8
表4
  实施例编号   22   23   24   25   26   77   28   29
催化剂   10%ZJ3+90%平衡剂   10%ZJ4+90%平衡剂   10%ZJ5+90%平衡剂   12%ZJ6+88%平衡剂   10%ZJ7+90%平衡剂   8%ZJ8+92%平衡剂   15%ZJ9+85%平衡剂   15%ZJ10+85%平衡剂
  反应温度,℃   500   500   500   500   500   500   500   500
  空速,小时-1   16   16   16   16   16   16   16   16
  剂油重量比   5.92   5.92   5.92   5.92   5.92   5.92   5.92   5.92
  水蒸气(对原料油),重%   0   0   0   0   0   0   0   0
  物料平衡,重%:
  干气   1.60   1.62   1.45   1.56   1.52   1.41   1.69   1.71
  液化气   23.46   24.22   23.58   25.28   22.18   22.26   24.49   23.73
  C5 +汽油   38.54   38.75   37.61   36.65   39.78   39.26   35.50   36.16
  柴油   17.49   16.89   17.82   17.31   17.38   17.67   18.55   18.29
  重油   13.14   12.45   13.89   13.41   13.39   13.59   13.59   14.02
  焦炭   5.77   6.06   5.65   5.79   5.74   5.80   6.19   6.09
  转化率,重%   69.37   70.66   68.29   69.28   69.23   68.74   67.87   67.69
  液收,重%   79.48   79.86   79.01   79.24   79.35   79.20   78.54   78.18
  丙烯,重%   8.47   8.66   8.44   9.12   8.07   7.90   9.05   8.53
  丙烯/液化气   36.11   35.74   35.79   36.09   36.39   35.49   36.94   35.94
  汽油组成,重%
  烷烃   25.85   25.06   24.87   26.37   26.85   24.26   28.07   28.36
  烯烃   23.22   26.1   26.93   26.08   23.73   23.92   27.19   27.20
  环烷烃   8.62   8.64   8.85   8.53   8.63   8.54   8.66   8.28
  芳烃   42.14   40   39.36   39.02   40.67   41.23   36.09   36.17
  RON-GC(色谱法)   90.0   89.9   89.5   89.6   89.9   89.5   89.7   89.6
  MON-GC(色谱法)   82.7   82.8   82.6   82.8   82.8   82.7   82.7   82.5
表5
  实施例编号   30   31   32   33   34   35   36   37   38
催化剂   12%ZJ11+88%平衡剂   10%ZJ12+90%平衡剂   6%ZJ13+94%平衡剂   10%ZJ14+90%平衡剂   12%ZJ15+88%平衡剂   4%ZJ16+96%平衡剂   8%ZJ17+92%平衡剂   8%ZJ18+92%平衡剂   6%ZJ19+92%平衡剂
  反应温度,℃   500   500   510   500   490   520   490   500   520
  空速,小时-1   16   16   10   16   20   10   20   30   10
  剂油重量比   5.0   4.5   7.0   5.92   5.0   6.5   5.5   7.0   6.5
  水蒸气(对原料油),重%   5   5   5   5   5   10   10   10   10
  液化气,重%   23.41   23.06   24.62   22.78   23.78   22.38   22.56   24.19   23.56
  丙烯,重%   8.41   8.33   9.03   8.15   8.58   7.99   8.06   8.79   8.49
  丙烯/液化气   35.91   36.12   36.68   35.79   36.09   35.70   35.71   36.34   36.04
  汽油烯烃,重%   23.82   23.42   26.1   26.91   26.18   23.61   23.81   27.25   27.81
  RON-GC(色谱法)   90.1   90.1   89.9   89.7   89.6   89.8   89.5   89.8   89.7
  MON-GC(色谱法)   82.8   82.5   82.8   82.6   82.7   82.7   82.6   82.8   82.7
从表4和表5可以看出,本发明提供的催化助剂,不仅能有效地增加催化裂化液化气产率、提高催化裂化汽油的辛烷值,同时还能显著地提高催化裂化液化气中的丙烯浓度。

Claims (9)

1.一种提高丙烯浓度的裂化助剂,该助剂按干基计由10~65重%的改性ZSM-5分子筛、0~60重%的粘土、15~60重%的无机氧化物粘结剂、0.5~15重%的选自VIIIB族金属中的一种或几种的金属添加剂和2~25重%的磷添加剂组成,其中,所说的改性ZSM-5分子筛经磷和选自Fe、Co或Ni之一的金属改性,其无水化学表达式,以氧化物计为(0~0.3)Na2O·(0.5~5)Al2O3·(1.3~10)P2O5·(0.7~15)MxOy·(70~97)SiO2,x表示M的原子数,y表示满足M氧化态所需的一个数,所说的金属添加剂和磷添加剂均是以氧化物计。
2.按照权利要求1的助剂,该助剂按干基计由20~50重%的改性ZSM-5分子筛、10~45重%的粘土、25~50重%的无机氧化物粘结剂、1.0~10重%的选自VIIIB族金属中的一种或几种的金属添加剂和5~15重%的磷添加剂组成。
3.按照权利要求1的助剂,其特征在于M为Fe。
4.按照权利要求1的助剂,所述改性ZSM-5分子筛的无水化学表达式,以氧化物计为(0~0.2)Na2O·(0.9~3.5)Al2O3·(1.5~7)P2O5·(0.9~10)MxOy·(82~92)SiO2
5.按照权利要求1或2的助剂,所述VIIIB族金属选自Fe、Co和Ni中的一种或几种。
6.按照权利要求5的助剂,所述VIIIB族金属为Fe。
7.按照权利要求1的助剂,所述粘土选自高岭土、偏高岭土、硅藻土、海泡石、凹凸棒石、蒙脱石和累脱石中一种或几种的混合物。
8.按照权利要求1的助剂,所述无机氧化物粘结剂选自拟薄水铝石、铝溶胶、硅铝溶胶、水玻璃和磷铝溶胶的一种或几种的混合物。
9.按照权利要求1的助剂,所述的无机氧化物粘结剂选自拟薄水铝石、铝溶胶和磷铝溶胶中的一种或几种的混合物。
CNB2004101028138A 2004-12-28 2004-12-28 一种提高丙烯浓度的裂化助剂 Active CN100389174C (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CNB2004101028138A CN100389174C (zh) 2004-12-28 2004-12-28 一种提高丙烯浓度的裂化助剂
KR1020077017616A KR101229756B1 (ko) 2004-12-28 2005-12-28 탄화수소 분해 촉매 및 탄화수소 분해 방법
US11/813,056 US20080308455A1 (en) 2004-12-28 2005-12-28 Catalyst and a Method for Cracking Hydrocarbons
EP05824020A EP1867388A4 (en) 2004-12-28 2005-12-28 CATALYST AND HYDROCARBON OIL CRACKING PROCESS
RU2007129273/04A RU2397811C2 (ru) 2004-12-28 2005-12-28 Катализатор крекинга и способ крекинга углеводородов с его использованием
JP2007548676A JP5053098B2 (ja) 2004-12-28 2005-12-28 炭化水素をクラッキングするための触媒及び方法
AU2005321726A AU2005321726B2 (en) 2004-12-28 2005-12-28 A catalyst and a hydrocarbon oil cracking method
SG200908623-2A SG158176A1 (en) 2004-12-28 2005-12-28 A catalyst and a method for cracking hydrocarbons
PCT/CN2005/002338 WO2006069535A1 (fr) 2004-12-28 2005-12-28 Catalyseur et procede de craquage d’une huile hydrocarbure
US12/813,110 US20100311569A1 (en) 2004-12-28 2010-06-10 Catalyst and a method for cracking hydrocarbons
US13/565,145 US8658024B2 (en) 2004-12-28 2012-08-02 Catalyst and a method for cracking hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004101028138A CN100389174C (zh) 2004-12-28 2004-12-28 一种提高丙烯浓度的裂化助剂

Publications (2)

Publication Number Publication Date
CN1796496A true CN1796496A (zh) 2006-07-05
CN100389174C CN100389174C (zh) 2008-05-21

Family

ID=36817818

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004101028138A Active CN100389174C (zh) 2004-12-28 2004-12-28 一种提高丙烯浓度的裂化助剂

Country Status (1)

Country Link
CN (1) CN100389174C (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101745413B (zh) * 2008-12-17 2011-12-07 中国石油天然气股份有限公司 一种催化裂化催化剂及其制备方法
CN101204668B (zh) * 2006-12-19 2011-12-28 石大卓越科技股份有限公司 一种多产丙烯的催化裂化催化剂及其制备方法
CN101745412B (zh) * 2008-12-08 2012-01-11 中国石油天然气股份有限公司 催化裂化催化剂及制备方法
CN102847551A (zh) * 2011-06-30 2013-01-02 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103007986A (zh) * 2011-09-22 2013-04-03 中国石油化工股份有限公司 一种提高催化裂化低碳烯烃浓度的裂化助剂
CN103007989A (zh) * 2011-09-22 2013-04-03 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103007987A (zh) * 2011-09-22 2013-04-03 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103007992A (zh) * 2011-09-22 2013-04-03 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103007993A (zh) * 2011-09-22 2013-04-03 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103007988A (zh) * 2011-09-22 2013-04-03 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103007990A (zh) * 2011-09-22 2013-04-03 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103785455A (zh) * 2012-10-26 2014-05-14 中国石油化工股份有限公司 一种提高催化裂化低碳烯烃浓度的裂化助剂
CN103785456A (zh) * 2012-10-26 2014-05-14 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN104998677A (zh) * 2014-04-24 2015-10-28 中国石油化工股份有限公司 一种提高低碳烯烃浓度的催化裂化助剂及其制备方法
CN105013526A (zh) * 2014-04-24 2015-11-04 中国石油化工股份有限公司 一种提高低碳烯烃浓度的催化裂化助剂及其制备方法
CN107185586A (zh) * 2017-06-29 2017-09-22 李瑛� 多产丙烯和异戊烯的催化裂化助剂及其制备方法和应用
CN110813367A (zh) * 2019-11-20 2020-02-21 延安大学 一种磷和稀土协同改性zsm-5及其催化裂化增产丙烯的方法
CN114082440A (zh) * 2022-01-20 2022-02-25 河北鑫鹏新材料科技有限公司 一种利用费托合成催化剂细粉制备增产丙烯助剂的方法及产品、应用
CN114453009A (zh) * 2020-10-21 2022-05-10 中国石油化工股份有限公司 一种用于提高液化气中丁烯浓度的催化裂化添加剂及其应用
CN114453008A (zh) * 2020-10-21 2022-05-10 中国石油化工股份有限公司 一种用于提高液化气中丙烯浓度的催化裂化助剂及其应用
CN115805099A (zh) * 2023-02-17 2023-03-17 河北鑫鹏新材料科技有限公司 一种最大化丙烯辛烷值助剂及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3676354A1 (en) * 2017-08-28 2020-07-08 Saudi Arabian Oil Company Chemical looping processes for catalytic hydrocarbon cracking

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236880A (en) * 1989-12-11 1993-08-17 W. R. Grace & Co.-Conn. Catalyst for cracking of paraffinic feedstocks
US20020049133A1 (en) * 1999-03-02 2002-04-25 Michael S. Ziebarth High zeolite content and attrition resistant catalyst, methods for preparing the same and catalyzed processes therewith
CN1176020C (zh) * 2002-06-27 2004-11-17 中国石油化工股份有限公司 一种含磷和过渡金属的mfi结构分子筛

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101204668B (zh) * 2006-12-19 2011-12-28 石大卓越科技股份有限公司 一种多产丙烯的催化裂化催化剂及其制备方法
CN101745412B (zh) * 2008-12-08 2012-01-11 中国石油天然气股份有限公司 催化裂化催化剂及制备方法
CN101745413B (zh) * 2008-12-17 2011-12-07 中国石油天然气股份有限公司 一种催化裂化催化剂及其制备方法
CN102847551A (zh) * 2011-06-30 2013-01-02 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103007986B (zh) * 2011-09-22 2014-12-31 中国石油化工股份有限公司 一种提高催化裂化低碳烯烃浓度的裂化助剂
CN103007989B (zh) * 2011-09-22 2014-10-29 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103007987A (zh) * 2011-09-22 2013-04-03 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103007992A (zh) * 2011-09-22 2013-04-03 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103007993A (zh) * 2011-09-22 2013-04-03 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103007988A (zh) * 2011-09-22 2013-04-03 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103007990A (zh) * 2011-09-22 2013-04-03 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103007989A (zh) * 2011-09-22 2013-04-03 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103007987B (zh) * 2011-09-22 2015-04-29 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103007988B (zh) * 2011-09-22 2014-08-20 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103007992B (zh) * 2011-09-22 2015-04-29 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103007990B (zh) * 2011-09-22 2014-12-03 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103007986A (zh) * 2011-09-22 2013-04-03 中国石油化工股份有限公司 一种提高催化裂化低碳烯烃浓度的裂化助剂
CN103785456B (zh) * 2012-10-26 2015-12-09 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103785456A (zh) * 2012-10-26 2014-05-14 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂
CN103785455A (zh) * 2012-10-26 2014-05-14 中国石油化工股份有限公司 一种提高催化裂化低碳烯烃浓度的裂化助剂
CN104998677A (zh) * 2014-04-24 2015-10-28 中国石油化工股份有限公司 一种提高低碳烯烃浓度的催化裂化助剂及其制备方法
CN105013526A (zh) * 2014-04-24 2015-11-04 中国石油化工股份有限公司 一种提高低碳烯烃浓度的催化裂化助剂及其制备方法
CN105013526B (zh) * 2014-04-24 2017-11-03 中国石油化工股份有限公司 一种提高低碳烯烃浓度的催化裂化助剂及其制备方法
CN104998677B (zh) * 2014-04-24 2017-11-03 中国石油化工股份有限公司 一种提高低碳烯烃浓度的催化裂化助剂及其制备方法
CN107185586A (zh) * 2017-06-29 2017-09-22 李瑛� 多产丙烯和异戊烯的催化裂化助剂及其制备方法和应用
CN107185586B (zh) * 2017-06-29 2020-06-05 李瑛� 多产丙烯和异戊烯的催化裂化助剂及其制备方法和应用
CN110813367A (zh) * 2019-11-20 2020-02-21 延安大学 一种磷和稀土协同改性zsm-5及其催化裂化增产丙烯的方法
CN114453008A (zh) * 2020-10-21 2022-05-10 中国石油化工股份有限公司 一种用于提高液化气中丙烯浓度的催化裂化助剂及其应用
CN114453009A (zh) * 2020-10-21 2022-05-10 中国石油化工股份有限公司 一种用于提高液化气中丁烯浓度的催化裂化添加剂及其应用
CN114453008B (zh) * 2020-10-21 2023-11-10 中国石油化工股份有限公司 一种用于提高液化气中丙烯浓度的催化裂化助剂及其应用
CN114453009B (zh) * 2020-10-21 2023-11-10 中国石油化工股份有限公司 一种用于提高液化气中丁烯浓度的催化裂化添加剂及其应用
CN114082440B (zh) * 2022-01-20 2022-05-03 河北鑫鹏新材料科技有限公司 一种利用费托合成催化剂细粉制备增产丙烯助剂的方法及产品、应用
CN114082440A (zh) * 2022-01-20 2022-02-25 河北鑫鹏新材料科技有限公司 一种利用费托合成催化剂细粉制备增产丙烯助剂的方法及产品、应用
CN115805099A (zh) * 2023-02-17 2023-03-17 河北鑫鹏新材料科技有限公司 一种最大化丙烯辛烷值助剂及其制备方法

Also Published As

Publication number Publication date
CN100389174C (zh) 2008-05-21

Similar Documents

Publication Publication Date Title
CN1796496A (zh) 一种提高丙烯浓度的裂化助剂
CN1611299A (zh) 一种含磷和金属组分的mfi结构分子筛及其应用
CN100537030C (zh) 一种提高液化气丙烯浓度的催化裂化助剂
CN1049406C (zh) 具有mfi结构含磷和稀土的分子筛
CN1205306C (zh) 一种石油烃裂解制取低碳烯烃的催化剂
CN1923971A (zh) 增产丙烯的催化转化方法
CN1796494A (zh) 一种烃油裂化方法
CN100351345C (zh) 一种石油烃催化裂化方法
CN1267533C (zh) 一种增产乙烯和丙烯的催化热裂解催化剂
CN1872957A (zh) 一种石油烃类催化裂化方法
CN1224455C (zh) 一种含分子筛和锰的裂化催化剂
CN1796497A (zh) 一种提高催化裂化液化气中丙烯浓度的催化助剂
CN1292052C (zh) 一种含沸石的烃类转化催化剂及其制备方法
CN1142252C (zh) 一种抗钒的烃类裂化催化剂及制备
CN1796498A (zh) 一种增产丙烯的裂化助剂
CN1224667C (zh) 一种烃油裂化方法
CN1180059C (zh) 含磷的烃类裂化催化剂及其制备
CN1292051C (zh) 一种烃油转化方法
CN1796495A (zh) 一种催化裂化助剂
CN1796493A (zh) 一种提高液化气中丙烯浓度的催化裂化方法
CN1239261C (zh) 一种含氟的沸石组合物及其制备方法
CN1267190C (zh) 一种含分子筛和锰的裂化催化剂
CN1721506A (zh) 一种烃油转化方法
CN1224456C (zh) 一种烃类裂化催化剂及其制备方法
CN1267529C (zh) 一种烃油裂化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant