CN1789290A - Highly active supporting method of non-metallocene catalyst - Google Patents
Highly active supporting method of non-metallocene catalyst Download PDFInfo
- Publication number
- CN1789290A CN1789290A CN 200410066068 CN200410066068A CN1789290A CN 1789290 A CN1789290 A CN 1789290A CN 200410066068 CN200410066068 CN 200410066068 CN 200410066068 A CN200410066068 A CN 200410066068A CN 1789290 A CN1789290 A CN 1789290A
- Authority
- CN
- China
- Prior art keywords
- carrier
- metallocene
- catalyst
- tetrahydrofuran
- groups
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012968 metallocene catalyst Substances 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims description 34
- 150000001336 alkenes Chemical class 0.000 claims abstract description 46
- 239000002131 composite material Substances 0.000 claims abstract description 44
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims abstract description 44
- 238000011068 loading method Methods 0.000 claims abstract description 34
- 239000002685 polymerization catalyst Substances 0.000 claims abstract description 32
- 239000000126 substance Substances 0.000 claims abstract description 27
- 239000002904 solvent Substances 0.000 claims abstract description 24
- 150000002681 magnesium compounds Chemical class 0.000 claims abstract description 19
- 239000012190 activator Substances 0.000 claims abstract description 17
- 238000001035 drying Methods 0.000 claims abstract description 13
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 12
- 230000000694 effects Effects 0.000 claims abstract description 10
- 238000001914 filtration Methods 0.000 claims abstract description 9
- 238000005406 washing Methods 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 230000004913 activation Effects 0.000 claims abstract description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 54
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 52
- 229910002027 silica gel Inorganic materials 0.000 claims description 33
- 239000000741 silica gel Substances 0.000 claims description 33
- 150000002430 hydrocarbons Chemical class 0.000 claims description 29
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 26
- -1 magnesium halides Chemical class 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 20
- 239000007787 solid Substances 0.000 claims description 13
- 229910052717 sulfur Inorganic materials 0.000 claims description 13
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 12
- 239000012298 atmosphere Substances 0.000 claims description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 9
- 125000000524 functional group Chemical group 0.000 claims description 9
- 229930195733 hydrocarbon Natural products 0.000 claims description 9
- 239000011777 magnesium Substances 0.000 claims description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 8
- 229910044991 metal oxide Inorganic materials 0.000 claims description 8
- 150000004706 metal oxides Chemical class 0.000 claims description 8
- 239000011574 phosphorus Substances 0.000 claims description 8
- 229910052711 selenium Inorganic materials 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000003446 ligand Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical group [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 238000007725 thermal activation Methods 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 125000004429 atom Chemical group 0.000 claims description 5
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 5
- 229910001507 metal halide Inorganic materials 0.000 claims description 5
- 239000011593 sulfur Substances 0.000 claims description 5
- 150000003624 transition metals Chemical group 0.000 claims description 5
- 239000004215 Carbon black (E152) Substances 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- 125000005843 halogen group Chemical group 0.000 claims description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- 239000012046 mixed solvent Substances 0.000 claims description 4
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 4
- 239000011669 selenium Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 125000004434 sulfur atom Chemical group 0.000 claims description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 4
- FCAJYRVEBULFKS-UHFFFAOYSA-N 2-(oxolan-2-yl)ethanol Chemical compound OCCC1CCCO1 FCAJYRVEBULFKS-UHFFFAOYSA-N 0.000 claims description 3
- 238000001994 activation Methods 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 239000002480 mineral oil Substances 0.000 claims description 3
- 235000010446 mineral oil Nutrition 0.000 claims description 3
- 238000013021 overheating Methods 0.000 claims description 3
- 125000000923 (C1-C30) alkyl group Chemical group 0.000 claims description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- 150000004703 alkoxides Chemical class 0.000 claims description 2
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 2
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- 150000002391 heterocyclic compounds Chemical class 0.000 claims description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 150000005309 metal halides Chemical class 0.000 claims description 2
- 239000011368 organic material Substances 0.000 claims description 2
- 150000003961 organosilicon compounds Chemical class 0.000 claims description 2
- 150000003377 silicon compounds Chemical class 0.000 claims description 2
- 230000007062 hydrolysis Effects 0.000 claims 1
- 238000006460 hydrolysis reaction Methods 0.000 claims 1
- 239000003054 catalyst Substances 0.000 abstract description 48
- 239000002245 particle Substances 0.000 abstract description 8
- CPOFMOWDMVWCLF-UHFFFAOYSA-N methyl(oxo)alumane Chemical compound C[Al]=O CPOFMOWDMVWCLF-UHFFFAOYSA-N 0.000 abstract description 7
- 229920000098 polyolefin Polymers 0.000 abstract description 5
- 238000006116 polymerization reaction Methods 0.000 description 24
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 21
- 229920000642 polymer Polymers 0.000 description 18
- 230000003197 catalytic effect Effects 0.000 description 11
- 238000007334 copolymerization reaction Methods 0.000 description 11
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 8
- 239000005977 Ethylene Substances 0.000 description 8
- 230000037048 polymerization activity Effects 0.000 description 8
- 150000004820 halides Chemical class 0.000 description 6
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 5
- 239000003426 co-catalyst Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000004711 α-olefin Substances 0.000 description 4
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 229910001502 inorganic halide Inorganic materials 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 125000005373 siloxane group Chemical group [SiH2](O*)* 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- XWJBRBSPAODJER-UHFFFAOYSA-N 1,7-octadiene Chemical compound C=CCCCCC=C XWJBRBSPAODJER-UHFFFAOYSA-N 0.000 description 2
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 2
- KANXHFLJQBZBGE-UHFFFAOYSA-N 6-(oxolan-2-yl)hexan-1-ol Chemical compound OCCCCCCC1CCCO1 KANXHFLJQBZBGE-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 125000005234 alkyl aluminium group Chemical group 0.000 description 2
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000012876 carrier material Substances 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- 238000012685 gas phase polymerization Methods 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 125000000565 sulfonamide group Chemical group 0.000 description 2
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 2
- 229910003452 thorium oxide Inorganic materials 0.000 description 2
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 2
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 2
- LSWWNKUULMMMIL-UHFFFAOYSA-J zirconium(iv) bromide Chemical compound Br[Zr](Br)(Br)Br LSWWNKUULMMMIL-UHFFFAOYSA-J 0.000 description 2
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- DWSOVFBEGLOUQD-UHFFFAOYSA-N 1-naphthalen-1-ylethanol;oxolane Chemical compound C1CCOC1.C1=CC=C2C(C(O)C)=CC=CC2=C1 DWSOVFBEGLOUQD-UHFFFAOYSA-N 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- XVYHFICIWQBZDI-UHFFFAOYSA-N 3-(oxolan-2-yl)propan-1-ol Chemical compound OCCCC1CCCO1 XVYHFICIWQBZDI-UHFFFAOYSA-N 0.000 description 1
- USGLOBLTQVEPRF-UHFFFAOYSA-N 4-(oxolan-2-yl)butan-1-ol Chemical compound OCCCCC1CCCO1 USGLOBLTQVEPRF-UHFFFAOYSA-N 0.000 description 1
- OJGLUOIJKRRSAQ-UHFFFAOYSA-N 5-(oxolan-2-yl)pentan-1-ol Chemical compound OCCCCCC1CCCO1 OJGLUOIJKRRSAQ-UHFFFAOYSA-N 0.000 description 1
- DGUIVGMCWWYMBQ-UHFFFAOYSA-N 7-(oxolan-2-yl)heptan-1-ol Chemical compound OCCCCCCCC1CCCO1 DGUIVGMCWWYMBQ-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910007926 ZrCl Inorganic materials 0.000 description 1
- LIQLLTGUOSHGKY-UHFFFAOYSA-N [B].[F] Chemical compound [B].[F] LIQLLTGUOSHGKY-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- CWHURMWFDJXSKT-UHFFFAOYSA-N cyclohexanol;oxolane Chemical group C1CCOC1.OC1CCCCC1 CWHURMWFDJXSKT-UHFFFAOYSA-N 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical group C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- RQZBNYCXSXDAQL-UHFFFAOYSA-N cyclopentanol;oxolane Chemical compound C1CCOC1.OC1CCCC1 RQZBNYCXSXDAQL-UHFFFAOYSA-N 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000005906 dihydroxylation reaction Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- 229910001623 magnesium bromide Inorganic materials 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- BLQJIBCZHWBKSL-UHFFFAOYSA-L magnesium iodide Chemical compound [Mg+2].[I-].[I-] BLQJIBCZHWBKSL-UHFFFAOYSA-L 0.000 description 1
- 229910001641 magnesium iodide Inorganic materials 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N n-decene Natural products CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- WGKFEHTZYOEVGW-UHFFFAOYSA-N naphthalen-1-ylmethanol;oxolane Chemical compound C1CCOC1.C1=CC=C2C(CO)=CC=CC2=C1 WGKFEHTZYOEVGW-UHFFFAOYSA-N 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 150000002901 organomagnesium compounds Chemical class 0.000 description 1
- 125000002734 organomagnesium group Chemical group 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- ILAUTJQYGKHZMS-UHFFFAOYSA-N oxolane;1-phenylbutan-1-ol Chemical compound C1CCOC1.CCCC(O)C1=CC=CC=C1 ILAUTJQYGKHZMS-UHFFFAOYSA-N 0.000 description 1
- CSXJVIBDGHCMLT-UHFFFAOYSA-N oxolane;1-phenylethanol Chemical compound C1CCOC1.CC(O)C1=CC=CC=C1 CSXJVIBDGHCMLT-UHFFFAOYSA-N 0.000 description 1
- LSDNJJHDIZUUHR-UHFFFAOYSA-N oxolane;phenylmethanol Chemical compound C1CCOC1.OCC1=CC=CC=C1 LSDNJJHDIZUUHR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- 150000003682 vanadium compounds Chemical class 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
非茂金属催化剂的高活性负载化方法:将载体与化学活化剂作用,得到修饰载体;将镁化合物溶解于四氢呋喃-醇混合体系中形成溶液,再将修饰载体加入到此溶液中进行反应,经过滤洗涤、干燥和抽干后制得复合载体;将非茂金属烯烃聚合催化剂溶解于溶剂中,然后与复合载体反应后洗涤过滤、干燥抽干,制得负载型非茂金属催化剂。还可以是:载体与化学活化剂作用之前先进行热活化处理;复合载体在与催化剂反应之前先与化学处理剂作用,制得修饰复合载体,修饰复合载体与催化剂反应制得负载型非茂金属催化剂。本发明可获得高活性的负载型催化剂;用较少的甲基铝氧烷获得高性能负载型催化剂;采用本发明制备的催化剂制得的聚烯烃具有优良的颗粒形态。Highly active loading method for non-metallocene catalysts: the carrier is reacted with a chemical activator to obtain a modified carrier; the magnesium compound is dissolved in a tetrahydrofuran-alcohol mixed system to form a solution, and then the modified carrier is added to the solution for reaction. The composite carrier is obtained after filtering, washing, drying and drying; dissolving the non-metallocene olefin polymerization catalyst in a solvent, reacting with the composite carrier, washing, filtering, drying and drying to obtain a loaded non-metallocene catalyst. It can also be: heat activation treatment is carried out before the carrier reacts with the chemical activator; the composite carrier reacts with the chemical treatment agent before reacting with the catalyst to obtain a modified composite carrier, and the modified composite carrier reacts with the catalyst to obtain a loaded non-metallocene catalyst. The invention can obtain a high-activity supported catalyst; use less methyl aluminoxane to obtain a high-performance supported catalyst; and the polyolefin prepared by using the catalyst prepared by the invention has excellent particle shape.
Description
技术领域technical field
本发明属于催化剂的负载化技术领域,涉及一种非茂金属催化剂的负载化方法,是一种在复合载体上负载非茂金属烯烃聚合催化剂,通过负载,得到高活性的负载型非茂金属催化剂。这种复合载体负载型非茂金属催化剂可以用于催化烯烃聚合和共聚合,特别是用于催化乙烯的均聚或乙烯与其它α-烯烃的共聚合。The invention belongs to the technical field of catalyst loading, and relates to a loading method of a non-metallocene catalyst, which is a non-metallocene olefin polymerization catalyst loaded on a composite carrier, and a highly active loaded non-metallocene catalyst is obtained by loading . The composite carrier-supported non-metallocene catalyst can be used for catalyzing olefin polymerization and copolymerization, especially for catalyzing the homopolymerization of ethylene or the copolymerization of ethylene and other α-olefins.
背景技术Background technique
已知均相的过渡金属催化剂在烯烃聚合中有很高的催化活性,如非负载的齐格勒-纳塔催化剂、茂金属烯烃聚合催化剂、限定几何构型烯烃聚合催化剂或非茂金属烯烃聚合催化剂。非茂金属烯烃聚合催化剂配位原子为氧、氮、硫和碳等,不含有环戊二烯基团,是二十世纪九十年代初期发现并得到展开研究的,其催化活性可以达到甚至超过茂金属烯烃聚合催化剂,而且同时保持了茂金属催化体系的聚合物可控、分子量分布窄、可以对聚合物进行分子剪裁、聚合物分子量和支化度可以调控等优点,而且由于此类催化剂亲氧性弱,可以实现极性单体与烯烃的共聚,从而生产出性能优异的功能化聚烯烃材料。Homogeneous transition metal catalysts known to be highly active in olefin polymerization, such as unsupported Ziegler-Natta catalysts, metallocene olefin polymerization catalysts, constrained geometry olefin polymerization catalysts or non-metallocene olefin polymerization catalyst. The coordination atoms of non-metallocene olefin polymerization catalysts are oxygen, nitrogen, sulfur and carbon, etc., and do not contain cyclopentadiene groups. It was discovered and studied in the early 1990s, and its catalytic activity can reach or even exceed Metallocene olefin polymerization catalysts, and at the same time maintain the advantages of metallocene catalyst systems, such as controllable polymers, narrow molecular weight distribution, molecular tailoring of polymers, and controllable molecular weight and branching degree of polymers. Oxygen is weak, and the copolymerization of polar monomers and olefins can be realized, thereby producing functionalized polyolefin materials with excellent performance.
均相聚合时,形成的聚合物会产生粘釜和缠绕搅拌桨的现象,这对反应器的正常运转和反应器内物料的热交换有较大的影响,不利于工业化的连续生产。另外,均相催化体系中需要大量的助催化剂甲基铝氧烷,使聚烯烃的生产成本增加,而且由于大量助催化剂的引入,对产品性能也产生了不利的影响,有些甚至需要在后序加工中除去聚合过程中引入的铝,进一步增加了过程的成本。专利WO03/010207所制备的一种烯烃聚合及共聚合催化剂或催化体系,具有广泛的烯烃聚合和共聚性能,适用于多种形式的聚合工艺,但在烯烃聚合时需要较高的助催化剂用量才能获得合适的烯烃聚合活性,而且聚合过程存在着粘釜现象。During homogeneous polymerization, the formed polymer will stick to the kettle and entangle the stirring paddle, which has a great impact on the normal operation of the reactor and the heat exchange of materials in the reactor, which is not conducive to industrial continuous production. In addition, a large amount of co-catalyst methylaluminoxane is required in the homogeneous catalytic system, which increases the production cost of polyolefins, and due to the introduction of a large amount of co-catalyst, it also has an adverse effect on product performance. Processing removes the aluminum introduced during polymerization, further adding to the cost of the process. An olefin polymerization and copolymerization catalyst or catalytic system prepared by patent WO03/010207 has a wide range of olefin polymerization and copolymerization properties, and is suitable for various forms of polymerization processes, but requires a high amount of co-catalyst for olefin polymerization. Appropriate olefin polymerization activity is obtained, and there is a phenomenon of sticking in the polymerization process.
根据茂金属烯烃聚合催化剂工业化应用的经验(Chem Rev,2000,100:1347;Chem Rev,2000,100:1377),均相非茂金属烯烃聚合催化剂的负载化十分必要。According to the experience of industrial application of metallocene olefin polymerization catalysts (Chem Rev, 2000, 100: 1347; Chem Rev, 2000, 100: 1377), the support of homogeneous non-metallocene olefin polymerization catalysts is very necessary.
催化剂负载化的主要目的是为了改善催化剂的聚合性能和聚合物的成粒形态。其表现为在一定程度上适当降低了催化剂的初始活性,从而减少甚至避免了聚合过程中的结块或暴聚现象;催化剂经负载化后能够改善聚合物的形态,提高聚合物的表观密度,可以使其满足更多的聚合工艺过程,如气相聚合或淤浆聚合等,同时负载化过程可以大幅度地降低催化剂的制备和烯烃聚合成本,改善聚合性能,延长催化剂聚合活性寿命等。EP0206794使用MAO改性氧化物载体和随后使用金属茂,客观上限制了载体材料的性能对聚合物颗粒度的控制能力。EP685494将甲基铝氧烷作用于亲水性氧化物,用多官能度有机交联剂和随后使用活化MAO/金属茂配合物,有可能降低聚合产物的堆积密度,不利于工业使用。The main purpose of catalyst support is to improve the polymerization performance of the catalyst and the granulation morphology of the polymer. It is shown that the initial activity of the catalyst is appropriately reduced to a certain extent, thereby reducing or even avoiding the phenomenon of agglomeration or sudden aggregation during the polymerization process; after the catalyst is loaded, it can improve the morphology of the polymer and increase the apparent density of the polymer , can make it meet more polymerization processes, such as gas phase polymerization or slurry polymerization, etc. At the same time, the loading process can greatly reduce the cost of catalyst preparation and olefin polymerization, improve polymerization performance, and extend catalyst polymerization activity life. EP0206794's use of MAO-modified oxide supports and subsequent use of metallocenes objectively limits the ability of the properties of the support material to control the particle size of the polymer. EP685494 uses methylaluminoxane to act on hydrophilic oxides, uses a multifunctional organic crosslinking agent and then uses an activated MAO/metallocene complex, which may reduce the bulk density of the polymer product, which is not conducive to industrial use.
专利CN1352654选用有机铝、有机硅、有机镁和有机硼化合物处理载体,然后负载杂原子配体的单中心烯烃聚合催化剂,所得到的负载型催化剂具有高活性和长贮存期。EP295312描述了在有机或无机粒状载体存在的情况下,将铝氧烷溶液和一种不能溶解铝氧烷的溶剂接触,导致铝氧烷沉淀在载体上。WO97/26285描述高压下制备负载型茂金属催化剂的方法,生产周期长,负载效率不高。而CN1307065在超声波振荡作用下,用烷基铝氧烷处理载体后负载茂金属催化剂,负载化过程并不经济。Patent CN1352654 uses organoaluminum, organosilicon, organomagnesium and organoboron compounds to treat the carrier, and then supports heteroatom ligands as a single-center olefin polymerization catalyst. The obtained supported catalyst has high activity and long storage period. EP295312 describes contacting a solution of aluminoxane in the presence of an organic or inorganic particulate support with a solvent in which the aluminoxane is insoluble, resulting in the precipitation of the aluminoxane on the support. WO97/26285 describes a method for preparing a supported metallocene catalyst under high pressure, which has a long production cycle and low loading efficiency. However, in CN1307065, under the action of ultrasonic vibration, the metallocene catalyst is loaded after the carrier is treated with alkyl aluminoxane, and the loading process is not economical.
为了提高载体和催化剂之间的结合强度,CN1162601采用双官能度交联剂继续处理经过铝氧烷或烷基铝化合物处理的载体。专利CN1174849将脱羟基的二氧化硅在甲苯介质中用MAO处理后,再负载茂金属催化剂,文中没有给出负载型催化剂的聚合活性数据。专利CN1120550提出一种催化剂负载化的方法,其主要是将亲水的、大孔的、细碎的无机载体,先热活化后与铝氧烷反应,继而与多官能有机交联剂反应,最后与金属茂和活化剂的反应产物混合,从而制得负载型金属茂催化剂,但在负载过程中铝氧烷的用量较高。CN1053673采用微波作用使催化剂和负载在载体材料上的助催化剂在悬浮液中互相接触,进而制得一种稳定结构的负载型催化剂,但这种方法需要微波装置,操作起来并不简单。CN1323319采用催化剂材料浸渍机械流动状态的多孔颗粒载体,即将相当于载体孔体积的催化剂溶液喷至载体上,进而干燥制得负载型催化剂,这种负载化方法客观上要求催化剂的溶解度足够大,否则不能保证催化剂负载的均匀性和负载量。专利WO96/00243描述了一种负载型催化剂组合物的制备方法,包括在溶剂中混合桥连的双茚基金属茂和铝氧烷形成溶液,然后使所述溶液与多孔载体结合,其中所述溶液的总体积低于形成浆液时的溶液体积。In order to improve the bonding strength between the carrier and the catalyst, CN1162601 uses a bifunctional crosslinking agent to continue to treat the carrier treated with aluminoxane or alkylaluminum compound. Patent CN1174849 treats the dehydroxylated silica with MAO in toluene medium, and then supports the metallocene catalyst. The article does not give the polymerization activity data of the supported catalyst. Patent CN1120550 proposes a catalyst loading method, which is mainly to heat-activate a hydrophilic, macroporous, and finely divided inorganic carrier first, then react with aluminoxane, then react with a multifunctional organic crosslinking agent, and finally react with The reaction products of the metallocene and the activator are mixed to prepare a supported metallocene catalyst, but the amount of aluminoxane used in the loading process is relatively high. CN1053673 uses microwave action to make the catalyst and the co-catalyst supported on the carrier material contact each other in the suspension, and then prepare a supported catalyst with a stable structure, but this method requires a microwave device and is not easy to operate. CN1323319 adopts catalyst material to impregnate the porous particle carrier of mechanical flow state, is about to spray the catalyst solution equivalent to the pore volume of the carrier onto the carrier, and then dry to obtain the supported catalyst. This loading method objectively requires the solubility of the catalyst to be large enough, otherwise Catalyst loading uniformity and loading cannot be guaranteed. Patent WO96/00243 describes a method for the preparation of a supported catalyst composition, comprising mixing a bridged bis-indenyl metallocene and aluminoxane in a solvent to form a solution, and then combining the solution with a porous support, wherein the The total volume of the solution is less than the volume of the solution when the slurry is formed.
以无水氯化镁为载体的催化剂在烯烃聚合过程中显示出较高的催化活性,但此类催化剂非常脆,在聚合反应器中容易破碎,从而导致聚合物形态不好。二氧化硅负载的催化剂具有很好的流动性,可用于气相流化床聚合,但二氧化硅负载茂金属和非茂催化剂则表现出较低的催化活性。因此如果将氯化镁和二氧化硅进行很好的有机结合,就可能制备出具有高催化活性,粒度大小可控及良好耐磨损强度的催化剂。Catalysts supported on anhydrous magnesium chloride show high catalytic activity in olefin polymerization, but such catalysts are very brittle and easily broken in the polymerization reactor, resulting in poor polymer morphology. Silica-supported catalysts have good fluidity and can be used in gas-phase fluidized-bed polymerization, but silica-supported metallocene and non-metallocene catalysts show low catalytic activity. Therefore, if magnesium chloride and silicon dioxide are well organically combined, it is possible to prepare a catalyst with high catalytic activity, controllable particle size and good wear resistance.
EP0878484报道了用低氯化镁含量(小于3%)的MgCl2/SiO2双载体负载锆茂金属制备的催化剂可用于乙烯的均聚或共聚,具有较好的催化活性。EP0878484 reported that the catalyst prepared by MgCl 2 /SiO 2 dual carrier supporting zirconium metallocene with low magnesium chloride content (less than 3%) can be used for homopolymerization or copolymerization of ethylene, and has good catalytic activity.
专利CN1364817公开了氯化镁/二氧化硅负载的β-二酮半茂钛金属催化剂的制备方法和聚合应用,其乙烯聚合活性达到7.42×106克聚乙烯/摩尔钛·小时,但专利中没有关于聚合物成粒性能方面的具体数据。Patent CN1364817 discloses the preparation method and polymerization application of magnesium chloride/silica-supported β-diketone semi-titanium metal catalyst, and its ethylene polymerization activity reaches 7.42×10 6 g polyethylene/mole titanium·hour, but there is no information about Specific data on polymer pelletizing properties.
专利EP260130提出将负载型茂金属或非茂过渡金属催化剂负载于甲基铝氧烷处理的硅胶载体之上,这里的非茂过渡金属仅仅是指ZrCl4、TiCl4或者VOCl3,专利认为最优的是载体表面经有机镁或镁化合物与烷基铝的混合物,但是这个过程比较复杂,需要经过许多制备步骤。Patent EP260130 proposes to load a supported metallocene or non-transition metal catalyst on a silica gel carrier treated with methylaluminoxane, where the non-transition metal refers only to ZrCl 4 , TiCl 4 or VOCl 3 , which the patent considers to be optimal What is more is the mixture of organomagnesium or magnesium compound and alkylaluminum on the surface of the carrier, but this process is more complicated and needs to go through many preparation steps.
专利WO03/047752A1和WO03/047751A1提供了复合催化剂(齐格勒-纳塔与茂金属催化剂、或者非茂金属催化剂和茂金属催化剂)在硅胶上的负载化方法,专利认为,钛或钒的氯化物或氯氧化合物是非茂金属催化剂组份,由此得到的催化剂是双金属催化剂。Patents WO03/047752A1 and WO03/047751A1 provide a method for loading composite catalysts (Ziegler-Natta and metallocene catalysts, or non-metallocene catalysts and metallocene catalysts) on silica gel. According to the patent, the chloride of titanium or vanadium Compounds or oxychlorides are non-metallocene catalyst components and the resulting catalysts are bimetallic catalysts.
烯烃聚合催化剂的活性是其应用的首要条件。但是,非茂金属催化剂经过惰性载体负载后,催化烯烃聚合活性都会有或多或少的减少,有些甚至活性降低一个数量级以上,从而导致负载型催化剂在应用上的不经济。更为甚者,活性降低后,所得聚合物灰分增加,在生产中需要附加脱灰工艺,更导致成本增加和生产装置的复杂度,限制了其在聚烯烃催化生产中的进一步应用。The activity of olefin polymerization catalyst is the first condition for its application. However, when the non-metallocene catalyst is supported by an inert carrier, the catalytic olefin polymerization activity will be more or less reduced, and some even reduce the activity by more than an order of magnitude, which leads to the uneconomical application of the supported catalyst. What's more, after the activity is reduced, the ash content of the obtained polymer increases, and an additional deashing process is required in production, which leads to increased cost and complexity of production equipment, which limits its further application in the catalytic production of polyolefins.
发明内容Contents of the invention
为此,本发明的目的是在现有技术的基础上提供一种非茂金属催化剂的高活性负载化方法。通过不同的聚合条件,可以得到不同聚合活性和不同性能的聚乙烯产物或乙烯与其它α-烯烃共聚产物。本发明提供的新型催化剂还可以改善聚合物的形态;增加聚合物的堆积密度和提高聚合活性。For this reason, the object of the present invention is to provide a kind of highly active loading method of non-metallocene catalyst on the basis of prior art. Through different polymerization conditions, polyethylene products or copolymerization products of ethylene and other α-olefins can be obtained with different polymerization activities and different properties. The novel catalyst provided by the invention can also improve the morphology of the polymer; increase the packing density of the polymer and improve the polymerization activity.
本发明涉及一类非茂金属烯烃聚合催化剂在复合载体上的负载化工艺。其可以用于催化烯烃聚合和共聚合过程,如催化乙烯的均聚和乙烯与其它α-烯烃,包括3个或更多碳原子的α-烯烃的共聚,如与丙烯、异丁烯、丁烯、戊烯、己烯、辛烯和癸烯,双烯烃如丁二烯、1,7-辛二烯,1,4-己二烯或环烯烃如降冰片烯等的二元、三元或者更多元的共聚合。The invention relates to a loading process of a non-metallocene olefin polymerization catalyst on a composite carrier. It can be used to catalyze olefin polymerization and copolymerization processes, such as catalyzing the homopolymerization of ethylene and the copolymerization of ethylene with other α-olefins, including α-olefins with 3 or more carbon atoms, such as propylene, isobutylene, butene, Pentene, hexene, octene and decene, diolefins such as butadiene, 1,7-octadiene, 1,4-hexadiene or cycloolefins such as norbornene, binary, ternary or higher Multivariate copolymerization.
本发明的非茂金属催化剂的高活性负载化方法包括以下步骤:The highly active loading method of the non-metallocene catalyst of the present invention comprises the following steps:
将载体与化学活化剂作用,得到修饰载体;The carrier is reacted with a chemical activator to obtain a modified carrier;
将镁化合物溶解于四氢呋喃-醇混合体系中形成溶液,再将修饰载体加入到此溶液中进行反应,经过滤洗涤、干燥和抽干后制得复合载体;Dissolving the magnesium compound in the tetrahydrofuran-alcohol mixed system to form a solution, then adding the modified carrier to the solution for reaction, filtering, washing, drying and draining to obtain a composite carrier;
将非茂金属烯烃聚合催化剂溶解于溶剂中,然后与复合载体反应后洗涤过滤、干燥抽干,制得负载型非茂金属催化剂。The non-metallocene olefin polymerization catalyst is dissolved in a solvent, then reacted with a composite support, washed, filtered, dried and sucked dry to prepare a supported non-metallocene catalyst.
以上方法的优化方案是,增加以下步骤中的一个或两个:The optimization scheme of the above method is to add one or two of the following steps:
作为载体的多孔固体进行热活化处理;Thermally activated porous solid as carrier;
复合载体与化学处理剂作用制得修饰复合载体。The composite carrier reacts with the chemical treatment agent to prepare the modified composite carrier.
对优化方案增加的两个步骤的意义说明如下:The significance of the two steps added to the optimization scheme is explained as follows:
金属氧化物表面一般都是有酸性的表面羟基、可以与催化剂反应而使之失活。在使用之前,载体要经历脱羟基过程,其可以是在真空或惰性气氛下,焙烧活化。载体是在100-1000℃、惰性气氛或减压条件下焙烧1~24h完成的。这里所说的惰性气氛是指气体中仅含有及其微量或者不含有可与载体反应的组份。焙烧条件优选在500~800℃、N2或Ar气氛下持续2~12h,最优为4~8h。经热活化的载体需要在惰性气氛下保存。The surface of metal oxides generally has acidic surface hydroxyl groups, which can react with catalysts to deactivate them. Before use, the carrier undergoes a dehydroxylation process, which can be activated by calcination under vacuum or an inert atmosphere. The carrier is calcined at 100-1000° C. for 1-24 hours under inert atmosphere or reduced pressure. The inert atmosphere mentioned here means that the gas only contains a very small amount or does not contain components that can react with the carrier. The calcination conditions are preferably 500-800° C. under N 2 or Ar atmosphere for 2-12 hours, most preferably 4-8 hours. Heat-activated supports need to be stored under an inert atmosphere.
硅胶载体的热活化的目的是使载体表面具有高活性的基团,有报道(JAm Chem Soc,1996,118:401)指出,当干燥温度为200℃~500℃时,易于除去的羟基基团被可逆地除去,产生低反应活性的硅氧烷基团,但在干燥温度超过600℃的情况下,羟基基团强制性地被除去,转化成水,产生具有高的环应力和很高反应活性的硅氧烷基团。也可以采用化学活化剂将载体表面的官能团转化成其它不反应的硅氧烷基团。The purpose of the thermal activation of the silica gel carrier is to make the surface of the carrier have highly active groups. It has been reported (JAm Chem Soc, 1996, 118: 401) that when the drying temperature is 200 ° C to 500 ° C, the easily removed hydroxyl groups is reversibly removed, resulting in low-reactivity siloxane groups, but at drying temperatures above 600 °C, the hydroxyl groups are forcibly removed, converted to water, resulting in high ring stress and very reactive reactive siloxane groups. Chemical activators can also be used to convert functional groups on the surface of the support to other non-reactive siloxane groups.
复合载体可以直接与非茂金属烯烃聚合催化剂溶液接触,从而负载得到负载型非茂金属烯烃聚合催化剂。但是本研究发现如果要获得活性更优的负载型非茂金属烯烃聚合催化剂,进一步的处理制得修饰复合载体是非常关键的。与负载型催化剂所获得的额外活性相比,这一处理步骤的成本是微不足道的。The composite support can be directly contacted with the solution of the non-metallocene olefin polymerization catalyst, so as to be supported to obtain a supported non-metallocene olefin polymerization catalyst. However, this study found that if a supported non-metallocene olefin polymerization catalyst with better activity is to be obtained, further processing to prepare a modified composite support is very critical. The cost of this treatment step is insignificant compared to the additional activity gained with supported catalysts.
这一过程是将复合载体与化学处理剂相接触,采用溶液浸渍法,将载体浸渍于化学处理剂溶液中搅拌0.5~72h,优选2~24h,最优选2~6h。化学处理剂选自化学活化剂选自铝氧烷、烷基铝、硼烷、IVA、IVB或VB族金属的卤化物、烷基化合物、烷氧基化合物或卤代烷基化合物中的一种或多种所组成的多元处理剂。In this process, the composite carrier is contacted with the chemical treatment agent, and the carrier is dipped in the chemical treatment agent solution and stirred for 0.5-72 hours, preferably 2-24 hours, most preferably 2-6 hours, by means of a solution dipping method. The chemical treatment agent is selected from one or more chemical activators selected from aluminoxane, aluminum alkyl, borane, halide, alkyl compound, alkoxy compound or haloalkyl compound of IVA, IVB or VB metal A multi-component treatment agent composed of two kinds.
增加优化方案的步骤以后,本方法的各步骤可以叙述为:After adding the steps of the optimization scheme, each step of the method can be described as:
作为载体的多孔固体进行热活化处理;Thermally activated porous solid as carrier;
将热活化后的载体与化学活化剂作用,得到修饰载体;The heat-activated carrier is reacted with a chemical activator to obtain a modified carrier;
将镁化合物溶解于四氢呋喃-醇混合体系中形成溶液,再将修饰载体加入到此溶液中进行反应,经过滤洗涤、干燥和抽干后制得复合载体;Dissolving the magnesium compound in the tetrahydrofuran-alcohol mixed system to form a solution, then adding the modified carrier to the solution for reaction, filtering, washing, drying and draining to obtain a composite carrier;
复合载体与化学处理剂作用制得修饰复合载体;The composite carrier is reacted with a chemical treatment agent to prepare a modified composite carrier;
将非茂金属烯烃聚合催化剂溶解于溶剂中,然后与复合载体或修饰复合载体Dissolve the non-metallocene olefin polymerization catalyst in the solvent, and then combine with composite support or modified composite support
反应后洗涤过滤、干燥抽干,制得负载型非茂金属催化剂。After the reaction, it is washed, filtered, dried and sucked dry to obtain a supported non-metallocene catalyst.
本发明所用的多孔固体可以是任意的、表面具有官能团的多孔固体。其可以是:含有有机官能团的有机材料如聚乙烯、聚丙烯、聚丁烯、聚乙烯醇、环糊精和上述聚合物所基于的单体的共聚物,聚酯、聚酰胺、聚氯乙烯、聚丙烯酸酯、聚甲基丙烯酸酯、聚苯乙烯、或部分交联的聚合物,有机官能团选自羟基、伯氨基、仲氨基、磺酸基、羧基、酰胺基、N-单取代的酰胺基、磺酸胺基、N-单取代的磺酸胺基、巯基、酰亚氨基和酰肼基。优选部分交联具有表面羟基官能团的苯乙烯聚合物;IIA、IIIA、IVA族和IVB族金属氧化物在内的固体无机氧化物或卤化物,如氧化硅(硅胶)、氧化铝、氧化镁、氧化钛、氧化锆、氧化钍、氯化镁,以及无机氧化物所组成的混合物和混合氧化物,官能团选自表面羟基或羧基。或是由气态金属氧化物或硅化合物通过高温水解过程而制备的氧化材料;粘土、或分子筛,如云母、蒙脱土、膨润土、硅藻土、ZSM-5、MCM-41。比较适宜作为本发明的载体为表面具有羟基基团,包括氧化硅在内的以及与一种或多种IIA、IIIA族混合氧化物,如氧化硅-氧化镁混合氧化物、氧化硅-氧化铝混合氧化物,优选氧化硅、氧化铝和氧化硅与一种或多种IIA、IIIA族的金属氧化物的混合氧化物作为载体材料,优选硅胶作为载体(适宜的硅胶载体是任意可通过购买的商业产品,如,Grace 955,Grace 948,Grace SP9-351,Grace SP9-485,Grace SP9-10046,Davsion Syloid 245,ES70,ES70X,ES70Y,ES757,Aerosil812,或CS-2133和MS-3040),硅胶在用于载体之前,优选在100-1000℃、惰性气氛或减压条件下,干燥或焙烧1~24h进行过热活化;The porous solid used in the present invention may be any porous solid having functional groups on the surface. It can be: Copolymers of organic materials containing organofunctional groups such as polyethylene, polypropylene, polybutene, polyvinyl alcohol, cyclodextrin and the monomers on which the above polymers are based, polyesters, polyamides, polyvinyl chloride , polyacrylate, polymethacrylate, polystyrene, or partially crosslinked polymers, organic functional groups selected from hydroxyl, primary amino, secondary amino, sulfonic acid, carboxyl, amido, N-monosubstituted amides group, sulfonamide group, N-monosubstituted sulfonamide group, mercapto group, imido group and hydrazide group. Preferably partially cross-linked styrene polymers with surface hydroxyl functionality; solid inorganic oxides or halides including group IIA, IIIA, IVA and IVB metal oxides such as silica (silica gel), alumina, magnesia, Titanium oxide, zirconium oxide, thorium oxide, magnesium chloride, and mixtures and mixed oxides composed of inorganic oxides, the functional groups are selected from surface hydroxyl or carboxyl groups. Or oxidized materials prepared by pyrohydrolysis process from gaseous metal oxides or silicon compounds; clays, or molecular sieves, such as mica, montmorillonite, bentonite, diatomaceous earth, ZSM-5, MCM-41. It is more suitable as the carrier of the present invention to have hydroxyl groups on the surface, including silicon oxide, and mixed oxides with one or more IIA and IIIA groups, such as silicon oxide-magnesia mixed oxide, silicon oxide-alumina Mixed oxides, preferably the mixed oxides of silicon oxide, aluminum oxide and silicon oxide and one or more metal oxides of IIA, IIIA groups as carrier material, preferably silica gel as carrier (suitable silica gel carrier is any available through the purchase Commercial products such as Grace 955, Grace 948, Grace SP9-351, Grace SP9-485, Grace SP9-10046, Davsion Syloid 245, ES70, ES70X, ES70Y, ES757, Aerosil812, or CS-2133 and MS-3040), Silica gel is preferably dried or calcined for 1 to 24 hours at 100-1000°C in an inert atmosphere or under reduced pressure for overheating activation before being used as a carrier;
适合本发明所需要的载体的表面积(BET法测定)优选从10~1000m2/g,更优选为从100~600m2/g。载体孔体积(氮吸附法测定)优选0.1~4cm3/g之间,更优选在0.2~2cm3/g。载体的平均粒径(激光粒度仪测定)优选从1~500μm,更优选从1~100μm。在上述的载体材料中,优选IIA、IIIA、IVA族和IVB族金属氧化物在内具有表面羟基的固体无机氧化物或卤化物载体,最优选硅胶。其可以是任意形态的,如粒状、球状、聚集体或其它形式。羟基的含量可用已知的技术来测定,如红外光谱法、核磁共振法、四氯化钛法、烷基金属或金属氢化物滴定技术。The surface area (measured by BET method) of the carrier suitable for the present invention is preferably from 10 to 1000 m 2 /g, more preferably from 100 to 600 m 2 /g. The pore volume of the carrier (measured by nitrogen adsorption method) is preferably 0.1-4 cm 3 /g, more preferably 0.2-2 cm 3 /g. The average particle size of the carrier (measured by laser particle size analyzer) is preferably from 1 to 500 μm, more preferably from 1 to 100 μm. Among the above-mentioned support materials, solid inorganic oxide or halide supports having surface hydroxyl groups inside metal oxides of groups IIA, IIIA, IVA and IVB are preferred, and silica gel is most preferred. It can be in any shape, such as granular, spherical, aggregated or other forms. The hydroxyl content can be determined by known techniques such as infrared spectroscopy, nuclear magnetic resonance, titanium tetrachloride, metal alkyl or metal hydride titration techniques.
用于化学活化的化学活化剂为能与载体表面羟基反应的化合物,如金属卤化物、金属烷基化物、金属烷氧基化物、有机硅化合物或它们的混合物。The chemical activator used for chemical activation is a compound capable of reacting with hydroxyl groups on the surface of the support, such as metal halides, metal alkyls, metal alkoxides, organosilicon compounds or their mixtures.
负载化方法中镁化合物选自卤化镁、烷氧基卤化镁、烷氧基镁,或它们的混合物。将热活化过的硅胶与镁化合物作用的过程中,所述的四氢呋喃-醇混合溶剂选自四氢呋喃-脂肪醇、四氢呋喃-环醇或四氢呋喃-芳香醇、四氢呋喃-乙醇。镁化合物优选卤化镁,最优选氯化镁,氯化镁和硅胶质量比为1∶0.1~40,最佳为1∶1~10。The magnesium compound in the loading method is selected from magnesium halide, alkoxymagnesium halide, alkoxymagnesium, or their mixtures. In the process of reacting the thermally activated silica gel with the magnesium compound, the tetrahydrofuran-alcohol mixed solvent is selected from tetrahydrofuran-aliphatic alcohol, tetrahydrofuran-cyclic alcohol or tetrahydrofuran-aromatic alcohol, tetrahydrofuran-ethanol. The magnesium compound is preferably magnesium halide, most preferably magnesium chloride, and the mass ratio of magnesium chloride to silica gel is 1:0.1-40, most preferably 1:1-10.
将非茂金属烯烃聚合催化剂溶解于溶剂中,与上述载体进行接触,进行溶液法浸渍、或等体积浸渍过程,或者先溶液浸渍,过滤干燥后再进行等体积浸渍过程,从而完成非茂金属催化剂在载体上的负载化过程。Dissolve the non-metallocene olefin polymerization catalyst in a solvent, contact with the above-mentioned carrier, and perform solution impregnation or equal volume impregnation process, or first solution impregnation, filter and dry and then perform equal volume impregnation process, so as to complete the non-metallocene catalyst Loading process on the carrier.
负载化过程中所用到的溶剂可以是矿物油或不同的液态碳氢化合物,典型的溶剂是从5到12个碳原子的烃类溶剂,或是被氯原子取代的烃类溶剂,或是6到10个碳原子的脂肪族溶剂,6到12个碳原子的环脂肪族溶剂,优选四氢呋喃、甲苯或己烷。The solvent used in the loading process can be mineral oil or different liquid hydrocarbons, typical solvents are hydrocarbon solvents from 5 to 12 carbon atoms, or hydrocarbon solvents substituted by chlorine atoms, or 6 Aliphatic solvents of up to 10 carbon atoms, cycloaliphatic solvents of 6 to 12 carbon atoms, preferably tetrahydrofuran, toluene or hexane.
本发明所涉及的非茂金属烯烃聚合催化剂,是具有如下结构的配合物:The non-metallocene olefin polymerization catalyst involved in the present invention is a complex with the following structure:
其中:in:
m:1、2或3;m: 1, 2 or 3;
q:0或1;q: 0 or 1;
d:0或1;d: 0 or 1;
n:1、2、3或4;n: 1, 2, 3 or 4;
M:过渡金属原子;M: transition metal atom;
X:是包括卤原子、氢原子、C1-C30的烃基及C1-C30的取代的烃基、含氧基团、含氮基团、含硫基团、含硼基团、含铝基团、含磷基团、含硅基团、含锗基团、或含锡基团在内的基团,几个X可以相同,也可以不同,还可以彼此成键成环;X: Including halogen atoms, hydrogen atoms, C 1 -C 30 hydrocarbon groups and C 1 -C 30 substituted hydrocarbon groups, oxygen-containing groups, nitrogen-containing groups, sulfur-containing groups, boron-containing groups, aluminum-containing groups Groups, phosphorus-containing groups, silicon-containing groups, germanium-containing groups, or tin-containing groups, several Xs can be the same or different, and can also form bonds with each other to form a ring;
结构式中所有配体所带负电荷总数的绝对值应与结构式中金属M所带正电荷的绝对值相同,所有配体包括X及多齿配体;The absolute value of the total number of negative charges carried by all ligands in the structural formula should be the same as the absolute value of the positive charge carried by the metal M in the structural formula, and all ligands include X and multidentate ligands;
A:氧原子、硫原子、硒原子、R21N或R21P;A: Oxygen atom, sulfur atom, selenium atom, R 21 N or R 21 P;
B:指含氮基团、含磷基团或C1-C30的烃类;B: Refers to nitrogen-containing groups, phosphorus-containing groups or C 1 -C 30 hydrocarbons;
D:指氧原子、硫原子、硒原子、含C1-C30烃基的含氮基团、含C1-C30的烃基的含氮或C1-C30的烃基的含磷基团、其中N、O、S、Se、P为配位原子;D: Refers to oxygen atom, sulfur atom, selenium atom, nitrogen-containing group containing C 1 -C 30 hydrocarbon group, nitrogen-containing group containing C 1 -C 30 hydrocarbon group or phosphorus-containing group of C 1 -C 30 hydrocarbon group, Wherein N, O, S, Se, P are coordination atoms;
E:指含氮基团、含氧基团、含硫基团、含硒基团、含磷基团,其中N、O、S、Se、P为配位原子;E: Refers to nitrogen-containing groups, oxygen-containing groups, sulfur-containing groups, selenium-containing groups, and phosphorus-containing groups, where N, O, S, Se, and P are coordination atoms;
G:为惰性基团,包括C1-C30的烃基、C1-C30的取代烃基或惰性功能性基团;G: an inert group, including a C1-C30 hydrocarbon group, a C1-C30 substituted hydrocarbon group or an inert functional group;
→:指单键或双键;→: refers to a single bond or a double bond;
......:指配位键、共价键或离子键;......: Refers to coordination bonds, covalent bonds or ionic bonds;
—:指共价键或离子键;—: refers to a covalent bond or an ionic bond;
R1、R2、R3、R21、氢、C1-C30烃基、卤素原子、C1-C30的取代烃基或惰性功能性基团,R1、R2、R3、R21基团彼此间可以相同也可以不同,其中相邻基团如R1、R2,R3部分可以彼此成键成环;R 1 , R 2 , R 3 , R 21 , hydrogen, C 1 -C 30 hydrocarbon group, halogen atom, C 1 -C 30 substituted hydrocarbon group or inert functional group, R 1 , R 2 , R 3 , R 21 The groups can be the same or different, wherein adjacent groups such as R 1 , R 2 , and R 3 can form bonds with each other to form a ring;
烃基指含C1-C30的烷基、C1-C30的环状烃基、C2-C30的含碳碳双键的基团、C2-C30的含碳碳三键的基团、C6-C30的芳香烃基、C8-C30的稠环烃基或C4-C30的杂环化合物。Hydrocarbyl refers to C 1 -C 30 alkyl group, C 1 -C 30 cyclic hydrocarbon group, C 2 -C 30 carbon-carbon double bond group, C 2 -C 30 carbon-carbon triple bond group group, C 6 -C 30 aromatic hydrocarbon group, C 8 -C 30 condensed ring hydrocarbon group or C 4 -C 30 heterocyclic compound.
优选具有下列结构的非茂金属催化剂。Non-metallocene catalysts having the following structures are preferred.
以本发明的复合载体负载的非茂金属催化剂为主催化剂,以铝氧烷、烷基铝、路易斯酸或硼氟化合物之一为助催化剂,可以用于催化C2~C10的烯烃,尤其是乙烯,或含有功能性基团有机单体进行淤浆聚合、气相聚合、乳液聚合、溶液聚合或者共聚合,最优用于淤浆聚合。The non-metallocene catalyst supported by the composite carrier of the present invention is used as the main catalyst and one of aluminoxane, aluminum alkyl, Lewis acid or boron fluorine compound as the co-catalyst, which can be used to catalyze C2-C10 olefins, especially ethylene , or organic monomers containing functional groups for slurry polymerization, gas phase polymerization, emulsion polymerization, solution polymerization or copolymerization, optimally used for slurry polymerization.
在本发明中,元素和金属隶属于某一族均是指按该元素周期表的族和族群对应于用IUPAC体系编组的族或族群作为依据的。In the present invention, elements and metals belonging to a certain group mean that the group or group of the periodic table of elements corresponds to the group or group organized by the IUPAC system.
有益效果:采用本发明公开的负载化方法,可以在负载型催化剂上获得高的非茂金属催化剂负载量。Beneficial effects: by adopting the loading method disclosed in the invention, a high loading capacity of the non-metallocene catalyst can be obtained on the loaded catalyst.
采用本发明的负载化方法,可以得到催化烯烃聚合高活性的负载型催化剂;By adopting the loading method of the present invention, a high-activity supported catalyst for catalyzing olefin polymerization can be obtained;
本发明发现,采用本发明所提供的负载化方法,仅需要比较少的甲基铝氧烷就可以获得性能高的负载型催化剂;The present invention finds that by adopting the loading method provided by the present invention, only a relatively small amount of methyl aluminoxane can be used to obtain a high-performance supported catalyst;
本发明发现,采用本发明所制备的负载型非茂金属烯烃聚合催化剂所制得的聚烯烃具有优良的颗粒形态。The present invention finds that the polyolefin prepared by using the supported non-metallocene olefin polymerization catalyst prepared by the present invention has excellent particle morphology.
本发明提供的新型催化剂还改善了聚合物的形态;增加了聚合物的堆积密度。The novel catalyst provided by the invention also improves the morphology of the polymer; increases the bulk density of the polymer.
具体实施方式Detailed ways
实施例1,非茂金属催化剂的高活性负载化方法,主要包括以下步骤:Embodiment 1, the highly active loading method of non-metallocene catalyst, mainly comprises the following steps:
载体多孔的固体采用硅胶Grace 955,将硅胶在500~800℃、N2或Ar气氛下持续干燥或焙烧4~8h。经热活化的脱羟基硅胶需要在惰性气氛下保存。The porous solid of the carrier is silica gel Grace 955, and the silica gel is continuously dried or calcined at 500-800°C under N2 or Ar atmosphere for 4-8 hours. Heat-activated dehydroxylated silica gel needs to be stored under an inert atmosphere.
化学活化剂采用四氯化钛;将活化后的载体与四氯化钛作用,过滤洗涤干燥和抽干后得到修饰载体。四氯化钛与硅胶的质量比为1∶40;The chemical activator adopts titanium tetrachloride; the activated carrier is reacted with titanium tetrachloride, and the modified carrier is obtained after filtering, washing, drying and pumping. The mass ratio of titanium tetrachloride and silica gel is 1: 40;
将氯化镁溶解于四氢呋喃-乙醇混合体系中形成溶液,再将修饰载体加入到此溶液中,在0~60℃搅拌条件下充分反应形成透明体系。时间为1~48小时,优选4~24小时。经过滤洗涤、干燥和抽干后制得复合载体。氯化镁含水量应小于质量的1%,平均粒径为1~100μm,优选20~40μm;比表面积为5~100m2/g,优选5~30m2/g。Magnesium chloride is dissolved in a tetrahydrofuran-ethanol mixed system to form a solution, and then the modified carrier is added into the solution, and fully reacted under the stirring condition of 0-60° C. to form a transparent system. The time is 1 to 48 hours, preferably 4 to 24 hours. The composite carrier was obtained after filtering, washing, drying and suctioning. The water content of magnesium chloride should be less than 1% by mass, the average particle size is 1-100 μm, preferably 20-40 μm; the specific surface area is 5-100 m 2 /g, preferably 5-30 m 2 /g.
将无水氯化镁加入到四氢呋喃-醇混合体系中搅拌形成溶液,提高搅拌温度有助于缩短溶解过程,温度范围从0~60℃,优选40~50℃。Anhydrous magnesium chloride is added to the tetrahydrofuran-alcohol mixed system and stirred to form a solution. Increasing the stirring temperature helps to shorten the dissolution process, and the temperature ranges from 0 to 60°C, preferably 40 to 50°C.
采用甲基铝氧烷对复合载体进行化学修饰,得到修饰复合载体;Using methyl aluminoxane to chemically modify the composite carrier to obtain the modified composite carrier;
将具有以下结构的非茂金属烯烃聚合催化剂溶解于溶剂中:A non-metallocene olefin polymerization catalyst having the following structure is dissolved in a solvent:
然后与复合载体或修饰复合载体接触后洗涤过滤、干燥抽干成负载型非茂金属催化剂。Then it is contacted with a composite support or a modified composite support, washed, filtered, dried and sucked to form a supported non-metallocene catalyst.
由此所得到的复合载体、修饰复合载体和负载型非茂金属催化剂复制载体形态,都是干的、可流动的固体粉末。The obtained composite carrier, modified composite carrier and supported non-metallocene catalyst replication carrier form are all dry and flowable solid powders.
本发明所涉及的“非茂金属烯烃聚合催化剂”是同领域技术人员公知的,所以本实施例中的非茂金属烯烃聚合催化剂可以用任意一个同类催化剂替换,其反应步骤基本相同。The "non-metallocene olefin polymerization catalyst" involved in the present invention is well known to those skilled in the art, so the non-metallocene olefin polymerization catalyst in this example can be replaced by any catalyst of the same type, and the reaction steps are basically the same.
实施例1-1,与实施例1基本相同,但有如下改变:Embodiment 1-1 is basically the same as Embodiment 1, but has the following changes:
将氟化镁溶解于四氢呋喃-甲醇混合体系中形成溶液。Dissolve magnesium fluoride in tetrahydrofuran-methanol mixed system to form a solution.
实施例1-2,与实施例1基本相同,但有如下改变:Embodiment 1-2 is basically the same as Embodiment 1, but has the following changes:
将碘化镁溶解于四氢呋喃-丙醇混合体系中形成溶液。Dissolve magnesium iodide in tetrahydrofuran-propanol mixed system to form a solution.
实施例1-3,与实施例1基本相同,但有如下改变:Embodiment 1-3 is basically the same as Embodiment 1, but has the following changes:
将溴化镁溶解于四氢呋喃-丁醇混合体系中形成溶液。Dissolve magnesium bromide in tetrahydrofuran-butanol mixed system to form a solution.
实施例1-4,与实施例1基本相同,但有如下改变:Embodiment 1-4 is basically the same as Embodiment 1, but has the following changes:
化学活化剂采用金属卤化物四氯化锆;将活化后的载体与四氯化锆作用,过滤洗涤干燥和抽干后得到修饰载体。氯化锆与硅胶的质量比为1∶40;The chemical activator adopts metal halide zirconium tetrachloride; the activated carrier is reacted with zirconium tetrachloride, filtered, washed, dried and sucked dry to obtain the modified carrier. The mass ratio of zirconium chloride to silica gel is 1:40;
将氯化镁溶解于四氢呋喃-戊醇混合体系中形成溶液。Magnesium chloride is dissolved in tetrahydrofuran-pentanol mixed system to form a solution.
实施例1-5,与实施例1基本相同,但有如下改变:Embodiment 1-5 is basically the same as Embodiment 1, but has the following changes:
将氯化镁溶解于四氢呋喃-己醇混合体系中形成溶液。Magnesium chloride was dissolved in tetrahydrofuran-hexanol mixed system to form a solution.
实施例1-6,与实施例1基本相同,但有如下改变:Embodiment 1-6 is basically the same as Embodiment 1, but has the following changes:
化学活化剂采用金属卤化物溴化锆;将活化后的载体与溴化锆作用,过滤洗涤干燥和抽干后得到修饰载体。溴化锆与硅胶的质量比为1∶40;The chemical activator adopts metal halide zirconium bromide; the activated carrier is reacted with zirconium bromide, filtered, washed, dried and sucked dry to obtain the modified carrier. The mass ratio of zirconium bromide to silica gel is 1:40;
将氯化镁溶解于四氢呋喃-己醇混合体系中形成溶液。Magnesium chloride was dissolved in tetrahydrofuran-hexanol mixed system to form a solution.
实施例1-7,与实施例1基本相同,但有如下改变:Embodiment 1-7 is basically the same as Embodiment 1, but has the following changes:
化学活化剂采用金属卤化物氟化铝;将活化后的载体与氟化铝作用,过滤洗涤干燥和抽干后得到修饰载体。氟化铝与硅胶的质量比为1∶40;The chemical activator adopts metal halide aluminum fluoride; the activated carrier is reacted with aluminum fluoride, filtered, washed, dried and drained to obtain the modified carrier. The mass ratio of aluminum fluoride to silica gel is 1:40;
将氯化镁溶解于四氢呋喃-庚醇混合体系中形成溶液。Magnesium chloride was dissolved in a tetrahydrofuran-heptanol mixed system to form a solution.
实施例2,与实施例1基本相同,但有如下改变:Embodiment 2 is basically the same as Embodiment 1, but has the following changes:
非茂金属烯烃聚合催化剂改为具有以下结构式的化合物:The non-metallocene olefin polymerization catalyst was changed to a compound of the following structural formula:
载体硅胶的热活化条件是:100-1000℃、减压条件下,干燥或焙烧2~12h;The thermal activation conditions of the carrier silica gel are: 100-1000°C, under reduced pressure, dry or roast for 2-12 hours;
氯化镁与硅胶的质量比为1∶0.1;The mass ratio of magnesium chloride to silica gel is 1: 0.1;
化学活化剂采用四氯化钛;The chemical activator adopts titanium tetrachloride;
经过热活化的硅胶与四氯化钛溶液反应一定时间后,过滤洗涤干燥得到修饰载体。硅胶与四氯化钛溶液反应时间的长短对影响到四氯化钛在硅胶表面的含量,长时间反应将可以得到高四氯化钛含量的硅胶载体,短时间则相反。经本发明发现,0.5~24h可以得到比较优的结果,最优是采用反应1~6h。温度在这里没有限定,但是很明显,在较低的温度条件下,四氯化钛因汽化而离开反应体系的损耗量是很小的,这有利于四氯化钛在硅胶载体上的负载效率,提高四氯化钛的含量。对于催化烯烃聚合催化剂,高四氯化钛含量将有助于提高催化剂的催化烯烃聚合活性,但在实际的操作过程中,提高四氯化钛的含量并不容易,一般需要在低温下长时间的条件下,采用纯的四氯化钛来浸泡载体,或者采用多次浸泡载体。本发明的特色之一就是可以在温和的条件下提供一种高的四氯化钛含量的载体。四氯化钛溶液可以是任意可与四氯化钛形成性能稳定、性质均一的四氯化钛和溶剂混合物,优选四氯化钛的己烷溶液。过滤洗涤溶剂最优选择己烷溶剂;After heat-activated silica gel reacts with titanium tetrachloride solution for a certain period of time, the modified carrier is obtained by filtering, washing and drying. The length of reaction time between silica gel and titanium tetrachloride solution affects the content of titanium tetrachloride on the surface of silica gel. A long-term reaction will result in a silica gel carrier with high titanium tetrachloride content, and the opposite is true for a short time. It is found by the present invention that a better result can be obtained in 0.5-24 hours, and the optimum reaction time is 1-6 hours. The temperature is not limited here, but it is obvious that under lower temperature conditions, the loss of titanium tetrachloride leaving the reaction system due to vaporization is very small, which is conducive to the loading efficiency of titanium tetrachloride on the silica gel carrier. , Increase the content of titanium tetrachloride. For catalytic olefin polymerization catalysts, high titanium tetrachloride content will help to improve the catalytic olefin polymerization activity of the catalyst, but in the actual operation process, it is not easy to increase the content of titanium tetrachloride, and generally requires a long time at low temperature Under certain conditions, use pure titanium tetrachloride to soak the carrier, or use multiple times to soak the carrier. One of the characteristics of the present invention is that it can provide a support with high titanium tetrachloride content under mild conditions. The titanium tetrachloride solution can be any mixture of titanium tetrachloride and solvent that can form stable and uniform properties with titanium tetrachloride, preferably a hexane solution of titanium tetrachloride. Hexane solvent is the best choice for filtering and washing solvent;
干燥后的修饰硅胶载体是干的可流动的粉末。The dried modified silica gel support is a dry flowable powder.
四氢呋喃-醇混合体系改为四氢呋喃-环醇,本实施例为四氢呋喃-环己醇;The tetrahydrofuran-alcohol mixed system is changed to tetrahydrofuran-cycloalcohol, and this embodiment is tetrahydrofuran-cyclohexanol;
其中溶解的镁化合物改为烷氧基卤化镁,本实施例为MgClOCH3;Wherein the dissolved magnesium compound is changed to alkoxymagnesium halide, and the present embodiment is MgClOCH 3 ;
对复合载体进行化学修饰的修饰剂改为烷基铝,例如:三甲基铝、三乙基铝、三异丁基铝、等。The modifying agent for chemically modifying the composite carrier is changed to alkylaluminum, for example: trimethylaluminum, triethylaluminum, triisobutylaluminum, etc.
实施例2-1,与实施例2基本相同,但有如下改变:Embodiment 2-1 is basically the same as Embodiment 2, but has the following changes:
四氢呋喃-醇混合体系改为四氢呋喃-环戊醇;Tetrahydrofuran-alcohol mixed system was changed to tetrahydrofuran-cyclopentanol;
镁化合物改为MgClOCH2CH3;The magnesium compound is changed to MgClOCH 2 CH 3 ;
对复合载体进行化学修饰的修饰剂改为三乙基铝。The modifier for chemically modifying the composite support was changed to triethylaluminum.
实施例2-2,与实施例2基本相同,但有如下改变:Embodiment 2-2 is basically the same as Embodiment 2, but has the following changes:
四氢呋喃-醇混合体系改为四氢呋喃-环辛醇;Tetrahydrofuran-alcohol mixed system was changed to tetrahydrofuran-cyclooctyl alcohol;
镁化合物改为MgClOC4H9;The magnesium compound is changed to MgClOC 4 H 9 ;
对复合载体进行化学修饰的修饰剂改为三异丁基铝;The modifier for chemically modifying the composite carrier is changed to triisobutylaluminum;
实施例2-3,与实施例2基本相同,但有如下改变:Embodiment 2-3 is basically the same as Embodiment 2, but has the following changes:
镁化合物改为MgBrOCH3;The magnesium compound is changed to MgBrOCH 3 ;
实施例2-4,与实施例2基本相同,但有如下改变:Embodiment 2-4 is basically the same as Embodiment 2, but has the following changes:
镁化合物改为MgBrOCH2CH3。The magnesium compound was changed to MgBrOCH 2 CH 3 .
实施例2-5,与实施例2基本相同,但有如下改变:Embodiment 2-5 is basically the same as Embodiment 2, but has the following changes:
镁化合物改为MgBrOC4H9。The magnesium compound was changed to MgBrOC 4 H 9 .
实施例3,与实施例1基本相同,但有如下改变:Embodiment 3 is basically the same as Embodiment 1, but has the following changes:
载体硅胶的热活化条件是:Ar气氛下干燥或焙烧1~24h进行;The thermal activation conditions of the carrier silica gel are: drying or roasting under Ar atmosphere for 1 to 24 hours;
氯化镁与硅胶的质量比为1∶10;The mass ratio of magnesium chloride to silica gel is 1:10;
实施例4,与实施例1~3基本相同,但有如下改变:Embodiment 4 is basically the same as Embodiments 1 to 3, but has the following changes:
硅胶不进行热活化,直接与氯化镁作用得到复合载体;氯化镁与硅胶的质量比为1∶1。Silica gel does not undergo thermal activation, and directly reacts with magnesium chloride to obtain a composite carrier; the mass ratio of magnesium chloride to silica gel is 1:1.
实施例5,与实施例1~3基本相同,但有如下改变:Embodiment 5 is basically the same as Embodiments 1 to 3, but has the following changes:
复合载体直接与非茂金属烯烃聚合催化剂反应,不与化学处理剂作用,不需制成修饰复合载体。The composite carrier directly reacts with the non-metallocene olefin polymerization catalyst, does not interact with chemical treatment agents, and does not need to be made into a modified composite carrier.
实施例6,与实施例1~3基本相同,但同时有如下两个改变:Embodiment 6 is basically the same as Embodiments 1 to 3, but has the following two changes at the same time:
硅胶不进行热活化,直接与氯化镁作用得到复合载体;氯化镁与硅胶的质量比为1∶1;Silica gel does not undergo thermal activation, and directly reacts with magnesium chloride to obtain a composite carrier; the mass ratio of magnesium chloride to silica gel is 1:1;
复合载体直接与非茂金属烯烃聚合催化剂反应,不与化学处理剂作用,不需制成修饰复合载体。The composite carrier directly reacts with the non-metallocene olefin polymerization catalyst, does not interact with chemical treatment agents, and does not need to be made into a modified composite carrier.
实施例7,与实施例1~3或4~6基本相同,但有如下改变:Embodiment 7 is basically the same as Embodiments 1 to 3 or 4 to 6, but has the following changes:
作为载体的多孔固体改为:IIA、IIIA、IVA族和IVB族金属氧化物在内的固体无机氧化物或卤化物,如:氧化铝、氧化镁、氧化钛、氧化锆、氧化钍、氯化镁。The porous solid as the carrier is changed to: solid inorganic oxides or halides including metal oxides of groups IIA, IIIA, IVA and IVB, such as: alumina, magnesia, titania, zirconia, thorium oxide, and magnesium chloride.
实施例8,与实施例1~3或4~6基本相同,但有如下改变:Embodiment 8 is basically the same as Embodiments 1 to 3 or 4 to 6, but has the following changes:
用于制备修饰复合载体的化学处理剂改为:甲基铝氧烷与四氯化钛两者的混合物;The chemical treatment agent used to prepare the modified composite carrier is changed to: a mixture of methyl aluminoxane and titanium tetrachloride;
四氢呋喃-醇混合体系改为四氢呋喃-芳香醇,例如:四氢呋喃-苯基甲醇、四氢呋喃-苯基乙醇、四氢呋喃-苯基丁醇、四氢呋喃-萘基甲醇、四氢呋喃-萘基乙醇、四氢呋喃-萘基丁醇、等;The tetrahydrofuran-alcohol mixed system is changed to tetrahydrofuran-aromatic alcohol, such as: tetrahydrofuran-phenylmethanol, tetrahydrofuran-phenylethanol, tetrahydrofuran-phenylbutanol, tetrahydrofuran-naphthylmethanol, tetrahydrofuran-naphthyl ethanol, tetrahydrofuran-naphthylbutyl Alcohol, etc.;
其中溶解的镁化合物改为:烷氧基镁,例如:Mg(OCH3)2、Mg(OCH2CH3)2、Mg(OC4H9)2等;The dissolved magnesium compound is changed to: magnesium alkoxide, for example: Mg(OCH 3 ) 2 , Mg(OCH 2 CH 3 ) 2 , Mg(OC 4 H 9 ) 2 , etc.;
本发明所涉及的各种化学活化剂、镁化合物、四氢呋喃-醇混合溶剂、溶剂等因素,在本领域技术人员专业范围内,可用多种公知的等同物替换,而不影响本发明方法的实施。Various chemical activators, magnesium compounds, tetrahydrofuran-alcohol mixed solvents, solvents and other factors involved in the present invention can be replaced by various known equivalents within the professional scope of those skilled in the art without affecting the implementation of the method of the present invention .
Claims (8)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100660686A CN100362024C (en) | 2004-12-17 | 2004-12-17 | A highly active loading method for non-metallocene catalysts |
PCT/CN2005/001737 WO2006063501A1 (en) | 2004-12-17 | 2005-10-21 | Supported non-metallocene olefin polymerization catalyst, and preparation and use thereof |
KR1020077016440A KR101075404B1 (en) | 2004-12-17 | 2005-10-21 | Supported non-metallocene olefin polymerization catalyst, preparation and use thereof |
EP05801846.6A EP1829897B1 (en) | 2004-12-17 | 2005-10-21 | Supported non-metallocene olefin polymerization catalyst, and preparation and use thereof |
JP2007545817A JP5346469B2 (en) | 2004-12-17 | 2005-10-21 | Supported nonmetallocene olefin polymerization catalyst, preparation method and use method thereof |
US11/793,046 US7875568B2 (en) | 2004-12-17 | 2005-10-21 | Supported nonmetallocene olefin polymerization catalyst, preparation method and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100660686A CN100362024C (en) | 2004-12-17 | 2004-12-17 | A highly active loading method for non-metallocene catalysts |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1789290A true CN1789290A (en) | 2006-06-21 |
CN100362024C CN100362024C (en) | 2008-01-16 |
Family
ID=36787434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100660686A Expired - Fee Related CN100362024C (en) | 2004-12-17 | 2004-12-17 | A highly active loading method for non-metallocene catalysts |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100362024C (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009052701A1 (en) | 2007-10-16 | 2009-04-30 | Sinopec Yangzi Petrochemical Company Ltd. | Non-metallocene catalyst supported on magnesium compound and its preparation method |
WO2011050566A1 (en) | 2009-10-26 | 2011-05-05 | 中国石油化工股份有限公司 | Supported non-metallocene catalyst, preparation method and uses thereof |
WO2011050565A1 (en) | 2009-10-26 | 2011-05-05 | 中国石油化工股份有限公司 | Supported non-metallocene catalyst, manufacturing method and application thereof |
WO2011057468A1 (en) | 2009-11-13 | 2011-05-19 | 中国石油化工股份有限公司 | Supported non-metallocene catalyst, preparation method and application thereof |
WO2011057469A1 (en) | 2009-11-13 | 2011-05-19 | 中国石油化工股份有限公司 | Supported non-metallocene catalyst and preparation method and uses thereof |
CN101412766B (en) * | 2007-10-16 | 2011-10-19 | 中国石化扬子石油化工有限公司 | Magnesium compound load type non-metallocene catalyst and preparation thereof |
CN102399321A (en) * | 2010-09-16 | 2012-04-04 | 中国石油化工股份有限公司 | Supported non-metallocene catalyst, and its preparation method and application |
CN101412765B (en) * | 2007-10-16 | 2012-04-04 | 中国石化扬子石油化工有限公司 | Supported catalyst, supported non-metallocene catalyst and preparation method thereof |
US8193288B2 (en) | 2007-10-16 | 2012-06-05 | Sinopec Yangzi Petro-Chemical Ltd. | Supported nonmetallocene catalyst and preparation thereof |
CN102964482A (en) * | 2011-08-31 | 2013-03-13 | 中国石油化工股份有限公司 | Supported non-metallocene catalyst, preparation method and application |
CN102964483A (en) * | 2011-08-31 | 2013-03-13 | 中国石油化工股份有限公司 | Supported non-metallocene catalyst, preparation method and application |
CN101412769B (en) * | 2007-10-16 | 2014-05-07 | 中国石化扬子石油化工有限公司 | Load type non-metallocene catalyst and preparation thereof |
CN115888845A (en) * | 2022-11-18 | 2023-04-04 | 萍乡市路盟环保新材料研发中心有限公司 | Spherical catalyst pressed by mould |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101610879B1 (en) | 2013-06-18 | 2016-04-08 | 주식회사 엘지화학 | A silica support and preparation method of metallocene catalyst using the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0878484B1 (en) * | 1997-03-27 | 2004-12-15 | Council of Scientific and Industrial Research | A process for the preparation of a megnesium halide supported metallocene catalyst |
CN1136239C (en) * | 2001-01-18 | 2004-01-28 | 中国石油化工股份有限公司 | Magnesium halide/silicon dioxide loaded semi-metallocene catalyst and its preparation and use |
CN1218970C (en) * | 2002-02-09 | 2005-09-14 | 中国科学院上海有机化学研究所 | New olefine polymerization catalyst |
CN1269852C (en) * | 2003-10-29 | 2006-08-16 | 扬子石油化工股份有限公司 | Loaded method of load type Non-metallocene catalyst-and polymerizing application |
CN1281634C (en) * | 2003-10-29 | 2006-10-25 | 扬子石油化工股份有限公司 | Loaded method of Non-metallocene catalyst loaded by composite carrier and polymerizing application |
-
2004
- 2004-12-17 CN CNB2004100660686A patent/CN100362024C/en not_active Expired - Fee Related
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8716416B2 (en) | 2007-10-16 | 2014-05-06 | Sinopec Yangzi Petrochemical Company Ltd. | Magnesium-compound supported nonmetallocene catalyst and preparation thereof |
WO2009052701A1 (en) | 2007-10-16 | 2009-04-30 | Sinopec Yangzi Petrochemical Company Ltd. | Non-metallocene catalyst supported on magnesium compound and its preparation method |
CN101412766B (en) * | 2007-10-16 | 2011-10-19 | 中国石化扬子石油化工有限公司 | Magnesium compound load type non-metallocene catalyst and preparation thereof |
CN101412765B (en) * | 2007-10-16 | 2012-04-04 | 中国石化扬子石油化工有限公司 | Supported catalyst, supported non-metallocene catalyst and preparation method thereof |
US8193288B2 (en) | 2007-10-16 | 2012-06-05 | Sinopec Yangzi Petro-Chemical Ltd. | Supported nonmetallocene catalyst and preparation thereof |
CN101412769B (en) * | 2007-10-16 | 2014-05-07 | 中国石化扬子石油化工有限公司 | Load type non-metallocene catalyst and preparation thereof |
WO2011050566A1 (en) | 2009-10-26 | 2011-05-05 | 中国石油化工股份有限公司 | Supported non-metallocene catalyst, preparation method and uses thereof |
WO2011050565A1 (en) | 2009-10-26 | 2011-05-05 | 中国石油化工股份有限公司 | Supported non-metallocene catalyst, manufacturing method and application thereof |
US8981023B2 (en) | 2009-10-26 | 2015-03-17 | China Petroleum & Chemical Corp. | Supported nonmetallocene catalyst, preparation and use thereof |
US8952112B2 (en) | 2009-10-26 | 2015-02-10 | China Petroleum & Chemical Corp. | Supported nonmetallocene catalyst, preparation and use thereof |
US8952113B2 (en) | 2009-11-13 | 2015-02-10 | China Petroleum & Chemical Corp. | Supported nonmetallocene catalyst, preparation and use thereof |
WO2011057469A1 (en) | 2009-11-13 | 2011-05-19 | 中国石油化工股份有限公司 | Supported non-metallocene catalyst and preparation method and uses thereof |
US8957169B2 (en) | 2009-11-13 | 2015-02-17 | China Petroleum & Chemical Corp. | Supported nonmetallocene catalyst, preparation and use thereof |
WO2011057468A1 (en) | 2009-11-13 | 2011-05-19 | 中国石油化工股份有限公司 | Supported non-metallocene catalyst, preparation method and application thereof |
CN102399321B (en) * | 2010-09-16 | 2014-03-19 | 中国石油化工股份有限公司 | Supported non-metallocene catalyst, and its preparation method and application |
CN102399321A (en) * | 2010-09-16 | 2012-04-04 | 中国石油化工股份有限公司 | Supported non-metallocene catalyst, and its preparation method and application |
CN102964483A (en) * | 2011-08-31 | 2013-03-13 | 中国石油化工股份有限公司 | Supported non-metallocene catalyst, preparation method and application |
CN102964482A (en) * | 2011-08-31 | 2013-03-13 | 中国石油化工股份有限公司 | Supported non-metallocene catalyst, preparation method and application |
CN102964482B (en) * | 2011-08-31 | 2015-04-01 | 中国石油化工股份有限公司 | Supported non-metallocene catalyst, preparation method and application |
CN102964483B (en) * | 2011-08-31 | 2015-04-08 | 中国石油化工股份有限公司 | Supported non-metallocene catalyst, preparation method and application |
CN115888845A (en) * | 2022-11-18 | 2023-04-04 | 萍乡市路盟环保新材料研发中心有限公司 | Spherical catalyst pressed by mould |
Also Published As
Publication number | Publication date |
---|---|
CN100362024C (en) | 2008-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1281634C (en) | Loaded method of Non-metallocene catalyst loaded by composite carrier and polymerizing application | |
CN1039335C (en) | Solid component of catalyst for (co) polymerization of ethylene | |
CN1789290A (en) | Highly active supporting method of non-metallocene catalyst | |
US7875568B2 (en) | Supported nonmetallocene olefin polymerization catalyst, preparation method and use thereof | |
CN1269852C (en) | Loaded method of load type Non-metallocene catalyst-and polymerizing application | |
RU2587080C2 (en) | Methods for polymerisation of olefins using extracted metal carboxylates | |
CN1097063C (en) | Aluminum compound-containing solid catalyst component catayst for olefin polymerization and method for producing olefin polymer | |
JP2008524344A5 (en) | ||
CN1887924A (en) | Use of non-metallocene polyolefin catalyst in synthesizing ethylene/polar monomer copolymer | |
CN1727367A (en) | Catalyst system for in situ copolymerization of ethylene to produce linear low density polyethylene | |
CN1789292A (en) | Application of supported non-metallocene catalyst in ethene polymerization process by slurry method | |
CN102887967A (en) | Composite catalyst for producing polyethylene with wide molecular weight distribution as well as production method and application thereof | |
CN1408733A (en) | Olefine polymerization catalyst containing double schiff base ligand and preparing method and use | |
CN1113483A (en) | Process for purifying alpha-alkenes for polymerization and process for preparing poly-alpha-alkenes | |
CN101619111B (en) | Silica gel loaded alpha-nickel diimine olefin polymerization catalyst, preparation method and application | |
CN1817918A (en) | Olefin polymerization catalyst, its production and use | |
CN1181105C (en) | High activity silica gel carrier catalyst component for ethylene polymerisation or copolymerisation and its catalyst and use of said catalyst | |
WO2011057469A1 (en) | Supported non-metallocene catalyst and preparation method and uses thereof | |
CN1208355C (en) | Carrier bifunction catalyst and its preparation method and application | |
WO2014134761A1 (en) | Supported polyolefin catalyst and preparation and application thereof | |
CN115894746B (en) | Supported catalyst composition and preparation method and application thereof | |
CN1167716C (en) | A kind of in-situ copolymerization catalyst system for preparing linear low density polyethylene | |
CN1621423A (en) | Process for preparing linear low density polyethylene | |
CN1184243C (en) | Process for preparing long-chain branched polyethylene elastomer | |
CN1624011A (en) | A kind of polyethylene catalyst and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: SINOPEC YANGZI PETROCHEMICAL CO. Free format text: FORMER OWNER: YANGZI PETROCHEMICAL CO., LTD. Effective date: 20071221 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20071221 Address after: No. 777, Dachang Xinhua Road, Liuhe District, Nanjing, Jiangsu Patentee after: SINOPEC YANGZI PETROCHEMICAL Co.,Ltd. Address before: No. 777, Dachang Xinhua Road, Liuhe District, Nanjing, Jiangsu Patentee before: Yangzi Petrochemical Co.,Ltd. |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080116 |
|
CF01 | Termination of patent right due to non-payment of annual fee |