[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN1764610A - 无碱玻璃 - Google Patents

无碱玻璃 Download PDF

Info

Publication number
CN1764610A
CN1764610A CNA200480008161XA CN200480008161A CN1764610A CN 1764610 A CN1764610 A CN 1764610A CN A200480008161X A CNA200480008161X A CN A200480008161XA CN 200480008161 A CN200480008161 A CN 200480008161A CN 1764610 A CN1764610 A CN 1764610A
Authority
CN
China
Prior art keywords
equal
glass
mgo
cao
smaller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA200480008161XA
Other languages
English (en)
Inventor
西泽学
加濑准一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of CN1764610A publication Critical patent/CN1764610A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

本发明提供在不明显提高应变点的前提下能够减少加热处理时产生的收缩的无碱玻璃。该无碱玻璃的特征在于,从退火点(Tan)附近至应变点(Tst)附近的温度范围内的平衡密度曲线的梯度Δan-st (ppm/℃)与50~350℃的平均线膨胀系数α50-350 (×10-6/℃)的比值(Δan-st50-350)大于等于0未满3.64。

Description

无碱玻璃
技术领域
本发明涉及适用于液晶显示器等的显示用基板、光掩模用基板的无碱玻璃。
背景技术
以往,为了形成显示器用基板,特别是在其表面形成电极和薄膜晶体管(TFT)等,要求用于需形成金属或氧化物薄膜的显示器用基板的玻璃为实质上不含碱金属氧化物的无碱玻璃。这种适用于显示器用基板的无碱玻璃在日本专利特开平8-109037号公报、特开平9-169539号公报、特开平10-72237号公报、特表2001-506223号公报、特开2002-29775号公报及特表2003-503301号公报中有所揭示。
被用于显示器用基板的玻璃除了为无碱玻璃之外,还需具备以下的特性,即,(1)薄膜形成工序中的加热不会导致玻璃基板变形,特别是不会发生热收缩(收缩),(2)对被用于形成于玻璃基板上的SiOx和SiNx的浸蚀的缓冲氢氟酸(氢氟酸和氟化铵的混合液)的耐久性(耐BHF性)高,(3)对被用于形成于玻璃基板上的金属电极或ITO(掺锡的铟氧化物)的浸蚀的硝酸、硫酸、盐酸等浸蚀液的耐久性(耐酸性)高,(4)对碱性抗蚀剥离液具有足够的耐久性,(5)为了实现显示器的轻量化而比重(密度)较小,(6)为提高显示器制造工序中的升降温速度,且使耐热冲击性有所提高而使膨胀系数较小,(7)难失透等。
这些被用于显示器用基板的无碱玻璃所要求的特性中,对于减少薄膜形成工序中因加热导致的玻璃基板的变形及/或收缩这一点,包括日本专利特开平8-109037号公报、特开平9-169539号公报、特开平10-72237号公报、特表2001-506223号公报、特开2002-29775号公报及特表2003-503301号公报中记载的无碱玻璃在内的现有的无碱玻璃是通过提高玻璃的应变点来应对的。但是,一旦提高应变点,就必须在更高的温度下实施熔解、成形等玻璃制造工序。也就是说必须使熔融炉这样的玻璃制造工序中所用的设备能够在更高的温度下使用,此外,由于设备的使用寿命缩短,所以不理想。
作为液晶显示器的驱动电路的形成于玻璃基板上的薄膜晶体管(TFT),正从由无定形硅膜制得的TFT(a-Si TFT)向采用低温工艺由多晶硅膜制得的TFT(p-Si TFT)发展。但是,与a-Si TFT相比,p-Si TFT必须在更高的温度下实施薄膜形成工序。这就意味着玻璃基板的应变点必须更高,制造工序也必须在更高的温度下实施。此外,向p-TFT发展的主要原因之一是显示器的高清晰化和高性能化,要求显示器用基板具备更高的表面精度。这也成为减少收缩的理由。
发明的揭示
本发明为了解决上述现有技术中存在的问题,作为目的1提供了在不明显提高应变点的前提下、能够减少作为显示器基板使用时的薄膜形成工序这样的加热处理时产生的收缩的无碱玻璃。
此外,本发明的目的2是提供具有下述特性的无碱玻璃,即,耐BHF性高、耐酸性高、对碱性抗蚀剥离液具备足够的耐久性、比重(密度)小、膨胀系数小、难失透。
为了实现上述目的,本发明提供了下述无碱玻璃,该玻璃的特征是,从退火点(Tan)附近至应变点(Tst)附近的温度范围内的平衡密度曲线的梯度Δan st(ppm/℃)与50~350℃的平均线膨胀系数α50-350(×10-6/℃)的比值(Δan-st50-350)大于等于0未满3.64。
此外,本发明提供了主要由以下的构成要素形成的无碱玻璃,68%≤SiO2≤80%、0%≤Al2O3<12%、0%<B2O3<7%、0%≤MgO≤12%、0%≤CaO≤15%、0%≤SrO≤4%、0%≤BaO≤1%、5%≤RO≤18%,这里,%表示上述构成要素合计为100%时的摩尔%,RO表示MgO+CaO+SrO+BaO。
另外,本发明还提供下述无碱玻璃,该玻璃的特征是,主要由以下的构成要素形成,68%≤SiO2≤80%、0%≤Al2O3<12%、0%<B2O3<7%、0%≤MgO≤12%、0%≤CaO≤15%、0%≤SrO≤4%、0%≤BaO≤1%、5%≤RO≤18%,这里,%表示上述构成要素合计为100%时的摩尔%,RO表示MgO+CaO+SrO+BaO;从退火点(Tan)附近至应变点(Tst)附近的温度范围内的平衡密度曲线的梯度Δan-st(ppm/℃)与50~350℃的平均线膨胀系数α50-350(×10-6/℃)的比值(Δan-st50-350)大于等于0未满3.64。
本发明的无碱玻璃中,前述(Δan-st50-350)较好为大于等于0小于等于3.5。
本发明的无碱玻璃中,前述SiO2的含有比例较好为68%≤SiO2≤75%。
本发明的无碱玻璃中,前述Al2O3的含有比例较好为5%≤Al2O3≤11.5%。
本发明的无碱玻璃中,前述B2O3的含有比例较好为2%≤B2O3<7%。
本发明的无碱玻璃中,前述MgO的含有比例较好为3%≤MgO≤10%。
本发明的无碱玻璃中,前述CaO的含有比例较好为0.5%≤CaO≤12%。
本发明的无碱玻璃中,前述RO的比例较好为5.5%≤RO≤18%。
本发明的无碱玻璃中,液相温度下的粘度ηL较好为大于等于103.8dPa·s。
此外,本发明提供下述无碱玻璃,该玻璃的特征是,主要由以下的构成要素形成,68%≤SiO2≤72.5%、8%≤Al2O3≤10.5%、4.5%≤B2O3<7%、3%≤MgO≤10%、2.5%≤CaO≤7%、0%≤SrO≤4%、0%≤BaO≤1%、5.5%≤RO≤18%,这里,%表示上述构成要素合计为100%时的摩尔%,RO表示MgO+CaO+SrO+BaO;从退火点(Tan)附近至应变点(Tst)附近的温度范围内的平衡密度曲线的梯度Δan-st(ppm/℃)与50~350℃的平均线膨胀系数α50-350(×10-6/℃)的比值(Δan-st50-350)大于等于0小于等于3.5;液相温度下的粘度ηL大于等于103.8dPa·s。
实施发明的最佳方式
本发明的无碱玻璃(以下称为本发明的玻璃)实质上不含碱金属氧化物。具体来讲,碱金属氧化物的合计含量较好为小于等于0.5摩尔%。
本发明的玻璃的特征是,从退火点(Tan)附近至应变点(Tst)附近的温度范围内的平衡密度曲线的梯度Δan-st(ppm/℃)与50~350℃的平均线膨胀系数α50- 350(×10-6/℃)的比值(Δan-st50-350)大于等于0未满3.64。
收缩(compaction)是指加热处理时,因玻璃结构的张弛而产生的玻璃的热收缩。收缩可由密度变化通过下式导出。
C=(1-(d0/d)1/3)×106
C:收缩值(ppm),d0:加热处理前的玻璃密度(g/cm3),d:加热处理后的玻璃密度(g/cm3)。
由上式可知,如果减小玻璃的温度变化导致的密度变化,则能够减少收缩。
本发明者进行认真研究后发现,如果从退火点(Tan)附近至应变点(Tst)附近的温度范围内的平衡密度曲线的梯度Δan-st(ppm/℃)与50~350℃的平均线膨胀系数α50-350(×10-6/℃)的比值(Δan-st50-350)小于某一特定值,则能够在不明显提高应变点的前提下减少加热处理时产生的收缩。
从退火点(Tan)附近至应变点(Tst)附近的温度范围内的平衡密度曲线可几乎近似直线。因此,本发明中的Δan-st表示该直线的倾斜度。
本发明的玻璃,通过使从退火点(Tan)附近至应变点(Tst)附近的温度范围内的平衡密度曲线的梯度Δan-st(ppm/℃)与50~350℃的平均线膨胀系数α50- 350(×10-6/℃)的比值(Δan-st50-350)大于等于0未满3.64,能够减少加热处理时产生的收缩。具体来讲,例如,按照后述的实施例中所用的下述步骤求得的收缩值未满190ppm。
[收缩值的特定]
在将熔融玻璃成形为板状后,将其在退火点附近的温度下保持1小时,然后以1℃/分钟的降温速度慢慢冷却至室温。将所得玻璃加工为规定的形状后加热至900℃,在该温度下保持1分钟后,以100℃/分钟的降温速度冷却至室温,获得试样A。然后,以100℃/小时的升温速度对试样A进行加热直至玻璃的粘度达到17.8dPa·s的温度(理论值),在该温度保持8小时后,以100℃/小时的降温速度慢慢冷却获得试样B。用重液法确定所得试样A、B的密度(dA、dB)。收缩值C(ppm)可用以上获得的密度值(dA、dB)和下式算出。
C=(1-(dA/dB)1/3)×106
重液法是采用混合溴仿和五氯乙烷使其密度几乎与玻璃的密度相同的混合液,将装有该混合液的玻璃瓶放入具备温度梯度的水槽中,通过测定玻璃试样的停留位置来测定玻璃的密度的方法。通过阿基米德法预先测定,和密度值已知的标准试样作比较,藉此确定作为测定对象的玻璃的密度值。
玻璃粘度达到17.8dPa·s时的温度(理论值)可采用退火点(粘度:13.0dPa·s)及应变点(粘度:14.5dPa·s),以1000/T(K)为横轴、粘度(dPa·s)为纵轴,由阿雷尼厄斯曲线获得。
Δan-st50-350较好为小于等于3.50。Δan-st50-350如果小于等于3.50,则由上述步骤求得的收缩值可小于等于180ppm。如果按照上述步骤求得的收缩值小于等于180ppm,则能够在不明显提高应变点的前提下使加热处理时产生的收缩充分减少。如果应变点提高,则玻璃熔解粘性上升,熔融炉等玻璃制造工序中使用的设备就必须能够承受更高的温度,但本发明的玻璃不存在这个问题。
Δan-st50-350更好为小于等于3.40,再好为小于等于3.20,进一步更好为小于等于3.00,特好为小于等于2.80。
为使本发明的玻璃的Δan-st50-350值大于等于0未满3.64,可适当选择玻璃的构成成分,具体来讲就是选择以下的7种成分的组成比来制造该玻璃。
无碱玻璃主要由SiO2、Al2O3、B2O3、MgO、CaO、SrO和BaO这7种成分构成。
SiO2、Al2O3、B2O3这3种成分为形成玻璃的主要成分,MgO、CaO、SrO和BaO这4种成分是用于熔解玻璃的熔剂成分。
本发明者改变玻璃中的上述7种成分的含有比例进行了实验,发现上述7种成分和Δan-st50-350之间存在以下的关系。
Δan-st50-350小SiO2<Al2O3<B2O3
                小MgO<CaO<SrO大
此外,考虑到物性,推定以下的关系成立。
                小MgO<CaO<SrO<BaO大
除了Δan-st50-350大于等于0未满3.64之外,本发明者还从被用于显示器基板的无碱玻璃所要求的其它特性,例如,耐BHF性、耐酸性、对碱性抗蚀剥离液的耐久性、耐冲击性、难失透等方面出发进行了研究,结果找到了以下所示的本发明的无碱玻璃的合适组成。
68%≤SiO2≤80%
0%≤Al2O3<12%
0%<B2O3<7%
0%≤MgO≤12%
0%≤CaO≤15%
0%≤SrO≤4%
0%≤BaO≤1%
5%≤RO≤18%
这里,%表示上述构成要素合计为100%时的摩尔%,RO表示MgO+CaO+SrO+BaO。
以下,将摩尔%简单表示为%,对本发明的玻璃的组成进行说明。
SiO2为网络形成体(ネットワ—クフォ—マ),是必须成分。如上所述,SiO2是形成玻璃的3种成分(SiO2、Al2O3、B2O3)中最能够减小Δan-st50-350值的成分。因此,本发明的玻璃中SiO2的含有比例最好较高。具体来讲,本发明的玻璃中的SiO2的含有比例大于等于68%小于等于80%。SiO2的含有比例如果超过80%,则玻璃的熔解性下降,且易失透。SiO2的含有比例较好是小于等于75%,更好是小于等于74%,再好为小于等于73%,进一步好为小于等于72.5%,特好为小于等于72%。SiO2的含有比例如果小于等于72.5%,则特别有利于玻璃的成形性及失透温度的下降。但是,如果未满68%,则比重增加(密度增加),应变点下降,膨胀系数增加,耐酸性下降,耐碱性下降或耐BHF性下降。SiO2的含有比例较好是大于等于69%,更好为大于等于70%。
Al2O3虽然不是必须成分,但为了抑制玻璃的分相,提高应变点,最好含有该成分。如上所述,在形成玻璃的3种成分中,Al2O3减小Δan-st50-350值的程度不如SiO2。因此,本发明的玻璃中的Al2O3的含有比例最好较低。具体来讲,本发明的玻璃中的Al2O3的含有比例大于等于0%未满12%。Al2O3的含有比例较好为小于等于11.5%,更好为小于等于11.0%,再好为小于等于10.5%,进一步好为小于等于10.0%,特好为小于等于9.5%。对其下限值无特别限定,但为了抑制分相,最好适量添加,较好为大于等于5%。Al2O3如果大于等于5%,则抑制玻璃的分相的效果和提高应变点的效果良好。Al2O3的含有比例较好为大于等于6%,更好为大于等于7%,再好为大于等于7.5%,特好为大于等于8%。Al2O3如果大于等于8%,则抑制玻璃的分相的效果和提高应变点的效果特好。
SiO2和Al2O3的合计含量较好为大于等于76%,更好为大于等于77%,特好为大于等于79%。该合计值如果大于等于76%,则提高应变点的效果良好。
B2O3是减小比重(密度)、提高耐BHF性、提高玻璃的熔解性、使玻璃不易失透、且可减小膨胀系数的成分,是必须成分。如上所述,在形成玻璃的3种成分中,B2O3最易增大Δan-st50-350值。因此,本发明的玻璃中的B2O3的含有比例最好较低。B2O3是化学物质管理促进法的指定化学物质,所以从对环境的影响考虑B2O3的含有比例也是较低为好。具体来讲,本发明的玻璃中的B2O3含有比例为超过0%未满7%。虽然对下限值无特别限定,但较好为大于等于2%。B2O3的含有比例如果为大于等于2%,则比重(密度)更小,耐BHF性及玻璃的熔解性良好,减小膨胀系数的效果良好,且使玻璃更不易失透。B2O3的含有比例较好为大于等于3%,更好为大于等于4%,再好为大于等于4.5%,最好为大于等于5%。B2O3的含有比例如果大于等于4.5%,则特别有利于成形性、失透温度的下降及耐BHF性。此外,对基板的轻量化有利。
SiO2和B2O3的合计含量SiO2+B2O3较好为大于等于75%,更好为大于等于77%,再好为大于等于78%,最好为大于等于79%。该合计含量如果大于等于75%,则比重(密度)及膨胀系数达到最佳值。
Al2O3的含量除以B2O3的含量的值Al2O3/B2O3较好是小于等于2.0,更好是小于等于1.7,再好是小于等于1.6,特好是小于等于1.5。Al2O3/B2O3如果小于等于2.0,则耐BHF性良好。此外,Al2O3/B2O3最好大于等于0.8,如果大于等于0.8,则提高应变点的效果良好。Al2O3/B2O3更好为大于等于0.9,特好为大于等于1.0。
Al2O3和B2O3的合计含量除以SiO2的含量的值(Al2O3+B2O3)/SiO2较好是小于等于0.32,更好是小于等于0.31,特好是小于等于0.30,最好是小于等于0.29。该值如果超过0.32,则可能导致耐酸性下降。
MgO不是必须成分,但为了减小比重(密度),提高玻璃的熔解性,最好含有该成分。MgO如果超过12%,则玻璃易分相,易失透,耐BHF性或耐酸性下降。此外,从抑制玻璃分相、防止失透、提高耐BHF性及耐酸性考虑,MgO的含有比例较好为小于等于10%。MgO的含有比例如果小于等于10%,则玻璃的熔解性良好。对其下限值无特别限定,如上所述,在使玻璃熔融的熔剂成分(MgO、CaO、SrO、BaO)中,MgO最能够减小Δan-st50-350值,因此,最好使本发明的玻璃中的MgO的含有比例较高。具体来讲,本发明的玻璃中的MgO的含有比例较好为大于等于2%,更好为大于等于3%,再好为大于等于4%,进一步好为大于等于5%,特好为大于等于6%。
CaO不是必须成分,但为了减小比重(密度)和提高玻璃的熔解性,或者使玻璃不易失透,可含有最多15%的CaO。CaO的含有比例如果超过15%,则可能会发生比重增加(密度增加)或者膨胀系数增加,此外,可能反而更易失透。CaO的含有比例较好为小于等于12%,更好为小于等于10%,再好为小于等于8%,特好为小于等于7%,最好为小于等于6%。含有CaO时,其含量较好为大于等于0.5%,更好为大于等于1%,再好为大于等于2%,特好为大于等于2.5%。CaO的含有比例如果大于等于2.5%小于等于7%,则在提高玻璃的熔解性的同时可使失透性有所提高,所以特别理想。
MgO的含量除以MgO和CaO的合计含量的值MgO/(MgO+CaO)较好是大于等于0.2,更好是大于等于0.25,特好是大于等于0.4。MgO/(MgO+CaO)如果大于等于0.2,则比重(密度)和膨胀系数达到最佳值,且有利于Δan-st50-350值的最小化,还能够增大杨氏模量。
SrO不是必须成分,但是抑制玻璃的分相和使玻璃不易失透的成分,基于下述理由,最好含有该成分。
如上所述,在使玻璃熔融的熔剂成分(MgO、CaO、SrO、BaO)中,MgO可减小Δan-st50-350值,所以最好使本发明的玻璃中的MgO含量较高。但是,如果使MgO的含量较高,则玻璃较易失透。本发明者发现,如果使玻璃中含有适量的SrO,就可在不使玻璃失透的前提下提高MgO的含量。但是,如果SrO的含量超过4%,则玻璃的比重(密度)会变得过高。SrO较好为小于等于3%,更好为小于等于2.5%。为了在不使玻璃失透的前提下提高MgO的含量,则其含量较好是大于等于0.1%,更好是大于等于0.5%,再好是大于等于1%,进一步好是大于等于1.5%,特好是大于等于2%。
BaO不是必须成分,但为了抑制玻璃的分相,且使玻璃不易失透,其含量至多为1%,较好为小于等于0.5%。BaO如果超过1%,则比重(密度)过大。希望比重(密度)更小时,最好不含BaO。BaO在化学物质管理促进法中被指定为有害物质,所以从对环境的影响考虑也是不含BaO为宜。
SrO和BaO的合计含量SrO+BaO以小于等于6%为宜,更好为小于等于4%。该合计量如果超过6%,则比重(密度)可能过大。希望比重更小时或SiO2+B2O3小于等于79%时,SrO+BaO较好为小于等于4%,更好为小于等于3%。希望更不易失透的情况下,SrO+BaO较好为大于等于0.5%,更好为大于等于1%,再好为大于等于2%。
本发明的玻璃中的MgO、CaO、SrO及BaO的含有比例合计,即,MgO+CaO+SrO+BaO(RO)为大于等于5%小于等于18%。RO如果超过18%,则比重(密度)可能变得过大,此外,膨胀系数也可能变得过大。RO以小于等于16.5%为宜。RO如果小于等于16.5%,则比重及膨胀系数都达到最佳值。
如果MgO+CaO+SrO+BaO(RO)未满5%,则玻璃的熔解性可能会下降。RO更好为大于等于5.5%,再好为大于等于6%,特好为大于等于7%。
本发明的玻璃实质上由上述成分构成,在不影响到本发明目的的前提下也可含有其它成分。前述其它成分的合计含量较好为小于等于10摩尔%,更好为小于等于5%。
前述其它成分例举如下。即,为了使熔解性、清晰性和成形性有所提高,可在下述范围内适当含有SO3、F、Cl、SnO2等。
SO3  0~2摩尔%,较好为0~1摩尔%
F    0~6摩尔%,较好为0~3摩尔%
Cl    0~6摩尔%,较好为0~4摩尔%
SnO2  0~4摩尔%,较好为0~1摩尔%
含有这些成分时,合计含量至多为10摩尔%,较好是不超过5摩尔%,更好是不超过3摩尔%,特好为不超过2摩尔%,更理想的是1ppm~2摩尔%。
此外,基于同样的理由,可在下述范围内适当含有Fe2O3、ZrO2、TiO2、Y2O3等。
Fe2O3 0~1摩尔%,较好为0~0.1摩尔%
ZrO2   0~2摩尔%,较好为0~1摩尔%
TiO2   0~4摩尔%,较好为0~2摩尔%
Y2O3  0~4摩尔%,较好为0~2摩尔%
CeO2   0~2摩尔%,较好为0~1摩尔%
含有上述其它成分时,合计含量(SO3+F+Cl+SnO2+Fe2O3+ZrO2+TiO2+Y2O3+CeO2)不超过15摩尔%,较好是不超过10摩尔%,更好是不超过5摩尔%,特好是不超过3摩尔%,更理想的是1ppm~3摩尔%。
从环境及再循环的角度考虑,最好实质上不含As2O3、Sb2O3、PbO、ZnO及P2O5。即,这5种成分的含量最好都小于等于0.1%。更好的是这5种成分的合计含量小于等于0.1%。
在通过浮法成形时,最好实质上不含ZnO,利用其它成形法,例如ダゥンドロ一法成形时,其含量最好不超过0.1%。特别是在希望不易失透的情况下,其含量最好不超过2%。ZnO的含量如果超过2%,则比重(密度)可能过大。
此外,在希望清晰度进一步提高的情况下,可含有As2O3、Sb2O3,特别理想的是可含有超过0.1%的Sb2O3
利用浮法成形时,最好实质上不含TiO2,利用其它成形法,例如ダウンドロ—法成形时其含量可超过0.1%。特别是希望不易失透的情况下,可含有不超过2%的TiO2。TiO2的含量如果超过2%,则比重(密度)可能过大。
本发明的玻璃的比重(密度)较好是小于等于2.46g/cm3。玻璃的比重如果小于等于2.46g/cm3,则利于显示器的轻量化。玻璃的比重更好是小于等于2.43g/cm3,再好是小于等于2.40g/cm3,特好是小于等于2.39g/cm3,最好是小于等于2.38g/cm3
本发明的玻璃的50~350℃的平均线膨胀系数α50-350较好是小于等于3.4×10-6/℃,更好是3.2×10-6/℃,特好是小于等于3.0×10-6/℃,最好是小于等于2.9×10-6/℃。α50-350如果小于等于3.4×10-6/℃,则耐热冲击性良好。此外,α50-350较好是大于等于2.4×10-6/℃,如果大于等于2.4×10-6/℃,则在玻璃基板上形成SiOx或SiNx的膜时,玻璃基板和这些膜的膨胀匹配良好。从这一观点考虑,α50-350更好是大于等于2.6×10-6/℃,再好是大于等于2.7×10-6/℃。
为了减小收缩值,具体来讲使该值未满190ppm,Δan-st(ppm/℃)较好是大于等于0未满12.0。
本发明的玻璃的应变点较好是大于等于650℃,更好是大于等于660℃,再好是大于等于670℃,进一步好为大于等于680℃,特好为大于等于690℃。
本发明的玻璃的粘度达到102dPa·s时的温度T2较好为小于等于1840℃,更好为小于等于1820℃,再好为小于等于1800℃,特好为小于等于1780℃,最好为小于等于1760℃。如果T2小于等于1840℃,则利于玻璃的熔融。
本发明的玻璃的粘度达到104dPa·s时的温度T4较好为小于等于1380℃。如果小于等于1380℃,则利于玻璃的成形。更好的是小于等于1360℃,特好是小于等于1350℃,最好是小于等于1340℃。
本发明的玻璃的液相温度下的粘度nL较好是大于等于103.6dPa·s。ηL如果大于等于103.5dPa·s,则利于玻璃的成形。从利用浮法成形玻璃及能够降低玻璃的失透温度考虑,特好为大于等于103.8dPa·s。ηL更好是大于等于104dPa·s,最好是大于等于104.1dPa·s。
特别是利用浮法成形时,即使Δan-st50-350未满3.64,考虑到成形性,ηL最好大于等于103.8dPa·s。因此,后述的实施例1~5中,实施例4的玻璃的成形性良好。
所以,本发明的无碱玻璃的较好实施方式中的玻璃具有以下特征,即,具备68%≤SiO2≤72.5%、8%≤Al2O3≤10.5%、4.5%≤B2O3<7%、3%≤MgO≤10%、2.5%≤CaO≤7%、0%≤SrO≤4%、0%≤BaO≤1%、5.5%≤RO≤18%的组成,Δan-st50-350大于等于0小于等于3.5,液相温度下的粘度ηL大于等于103.8dPa·s。
于90℃将本发明的玻璃浸渍于浓度0.1摩尔/升的盐酸水溶液中20小时时,其表面最好不产生白浊、变色和裂缝等。此外,由玻璃的表面积和通过前述浸渍出现的玻璃的质量变化求得的玻璃的每单位表面积的质量减少量(ΔWHCl)较好是小于等于0.6mg/cm2。(ΔWHCl)更好是小于等于0.4mg/cm2,特好是小于等于0.2mg/cm2,最好是小于等于0.15mg/cm2
于25℃将本发明的玻璃浸渍于以质量百分率表示浓度为40%的氟化铵水溶液和同样表示浓度为50%的氢氟酸水溶液以体积比9∶1混合形成的混合液(以下称为缓冲氢氟酸(BHF)液)中20分钟时,其表面最好不产生白浊。以下,将使用了该缓冲氢氟酸液的评价作为耐BHF性评价,将前述表面不产生白浊的情况定为耐BHF性良好。此外,由玻璃的表面积和通过前述浸渍出现的玻璃的质量变化求得的玻璃的每单位表面积的质量减少量(ΔWBHF)较好是小于等于0.6mg/cm2。(ΔWBHF)更好是小于等于0.5mg/cm2,再好是小于等于0.4mg/cm2
对本发明的玻璃的制造方法无特别限定,可采用各种制造方法。例如,调和成为目标组成的常用原料,在熔解炉中于1600~1650℃对其加热使其熔融。然后,添加起泡剂和澄清剂并通过搅拌等操作进行玻璃的均质化处理。作为液晶显示器等显示器基板和光掩模用基板使用时,通过公知的挤压法、下引(ダウンドロ—)法、浮法等方法成形为规定的板厚,慢慢冷却后进行研削和研磨等加工,获得规定尺寸和形状的基板。
因此,本发明的玻璃的尺寸可在制造时适当选择,可以是任意尺寸。本发明的玻璃作为大型的玻璃基板特别有用。即,即使收缩,即玻璃的热收缩的比例相同,如果基板的尺寸较大,则整个基板的热收缩量(热收缩的绝对值)也较大。例如,显示器用基板的尺寸如果从20英寸(50.8cm)对角发展为25英寸(63.5cm)对角,则基板的对角线的长度也随之相应延长,整个基板的热收缩量也增加。如上所述,由于本发明的玻璃的加热处理时产生的收缩有所减少,因此,整个基板的热收缩量也减少,越是大型的基板该效果越明显。
本发明的玻璃的尺寸较好是大于等于30cm见方,更好是大于等于40cm见方,再好是大于等于80cm见方,进一步好是大于等于1m见方,更进一步好是大于等于1.5m见方,特好是大于等于2m见方。玻璃的厚度较好为0.3~1.0mm左右。
实施例
实施例1~5,比较例
按照表1的SiO2~BaO栏中以摩尔%表示的组成调和原料,采用铂坩埚,于1600~1650℃进行熔解。此时采用铂搅拌棒进行搅拌,实现玻璃的均质化。然后,使熔融玻璃流出成形为板状,将其在依据玻璃组成预估的退火点附近的温度保持1小时后,以1℃/分钟的降温温度慢慢冷却,获得实施例1~5及比较例的玻璃。
[平均线膨胀系数的测定]
将所得实施例1~5及比较例的玻璃加工成规定的圆柱后,加热至退火点(Tan)附近,在该温度保持1小时后,用差示热膨胀计(TMA),按照JIS R3102规定的方法,测定以1℃/分钟的降温速度慢慢冷却了的试样的50~350℃的平均线膨胀系数α50-350
[玻璃的平衡密度曲线的制作]
将以上获得的实施例1~5及比较例的玻璃研磨加工成约4cm见方和2mm厚的尺寸。将加工后的玻璃试样在退火点(Tan)至应变点(Tst)的多个温度下保持16小时以上后,投入碳素板,急冷。用所谓的阿基米德法(JIS Z8807第4节)测定冷却后的试样的密度。重复此步骤进行测定,确认0.0001g/cm3级别的再现性。从多个温度下的密度测定结果回归对应于加热处理温度的密度的变化的趋势,制得平衡密度曲线,求出退火点(Tan)附近至应变点(Tst)附近的温度范围内的平衡密度曲线梯度Δan-st(ppm/℃)。
由以上获得的α50-350及Δan-st算出Δan-st50-350
[收缩值的测定]
将以上获得的实施例1~5及比较例的玻璃研磨加工成约5mm见方、厚度0.7mm的尺寸。将加工后的玻璃加热至900℃,在该温度保持1分钟后,以100℃/分钟的降温速度冷却至室温,获得试样A。然后,以100℃/小时的升温速度对试样A进行加热直至玻璃粘度达到17.8dPa·s的温度(理论值),在该温度保持8小时后,以100℃/小时的降温速度慢慢冷却,获得试样B。利用重液法确定所得试样A、B的密度(dA、dB)。用该求得的密度(dA、dB)和下式算出收缩值C(ppm)。
C=(1-(dA/dB)1/3)×106
玻璃粘度达到17.8dPa·s时的温度可采用退火点(Tan)(粘度:13.0dPa·s)及应变点(Tst)(粘度:14.5dPa·s),以1000/T(K)为横轴、粘度(dPa·s)为纵轴,由阿雷尼厄斯曲线获得。这里,退火点(Tan)及应变点(Tst)按照JIS R3103规定的方法测定。
[T2,T4,ηL]
用旋转粘度计测定以上获得的实施例1~5及比较例的玻璃粘度达到102.0dPa·s时的温度T2(单位:℃)及粘度达到104dPa·s时的温度T4(单位:℃)。
此外,由通过旋转粘度计获得的温度—粘度曲线和液相温度,求得液相温度下的粘度ηL(单位:dPa·s)。将多块玻璃片在不同温度下加热熔解17小时,将析出了结晶的玻璃中温度最高的玻璃的玻璃温度和未析出结晶的玻璃中温度最低的玻璃的玻璃温度的平均值作为液相温度。
[耐HCl性(ΔWHCl)]
于90℃,使以上获得的实施例1~5及比较例的玻璃在浓度0.1摩尔/升的盐酸水溶液中浸渍20小时,求出浸渍前后的玻璃的质量变化,由此变化和玻璃的表面积求出玻璃的每单位表面积的质量减少量(ΔWHCl(mg/cm2))。
[耐BHF性(ΔWBHF,白浊)]
于25℃,将以上获得的实施例1~5及比较例的玻璃浸渍于缓冲氢氟酸(BHF)液(以质量百分率表示浓度为40%的氟化铵水溶液和同样表示浓度为50%的氢氟酸水溶液以体积比9∶1混合形成的混合液)中20分钟,求出浸渍前后的玻璃的质量变化,由此变化和玻璃的表面积求出玻璃的对应于单位表面积的质量减少量(ΔWBHF(mg/cm2))。此外,目视确认浸渍后的玻璃表面有无白浊。确认玻璃表面无白浊现象时,评价耐BHF性良好(评价:○)。
上述结果示于表1。这里,比重(密度)(g/cm3)是由从按照制作平衡密度曲线的步骤获得的退火点(Tan)急冷的试样的密度变换而来的数值。
实施例6~14
与实施例1同样,按照表1所示的组成调制原料,将在熔融炉中熔解的熔融玻璃成形为板状,然后慢慢冷却,获得实施例6~14的玻璃。求出所得玻璃的α50-350、比重(密度)、应变点(Tst)、退火点(Tan)、T2及T4。利用回归计算求出对应于各玻璃成分(SiO2、Al2O3、B2O3、MgO、CaO、SrO这6种成分)的Δ的有用度ai(i=1~6(上述6种成分)),再由∑aiXi+b(Xi为各玻璃成分的摩尔分率,b为常数)通过计算求得Δan-st。α50-350、比重(密度)、应变点(Tst)、T2及T4与Δan-st同样,利用各玻璃成分的有用度通过计算求得。此外,直线回归Δ和C(收缩值),基于回归式通过计算求得收缩值。所得结果示于表1。
                                               表1(1/4)
  实施例1   实施例2   比较例   实施例3   实施例4   实施例5   实施例6   实施例7   实施例8   实施例9
  mol%   mol%   mol%   mol%   mol%   mol%   mol%   mol%   mol%   mol%
  SiO2   70.5   71.1   70.0   71.6   72.1   72.7   72.1   70.0   70.5   70.8
  Al2O3   10.1   9.5   11.0   9.0   8.5   7.8   9.5   10.5   9.8   9.7
  B2O3   6.7   6.2   7.0   5.6   5.1   4.6   5.1   6.9   6.8   6.6
  MgO   4.5   6.0   2.5   7.5   9.0   10.5   8.0   3.8   3.0   0.0
  CaO   6.0   5.1   7.5   4.2   3.2   2.3   3.2   6.7   7.8   10.8
  SrO   2.2   2.1   2.0   2.1   2.1   2.1   2.1   2.1   2.1   2.1
  BaO   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0
  RO   12.7   13.2   12.0   13.8   14.3   14.9   13.3   12.6   12.9   12.9
  SiO2+Al2O3   80.6   80.6   81.0   80.6   80.6   80.5   81.6   80.5   80.3   80.5
  SiO2+B2O3   77.2   77.3   77.0   77.2   77.2   77.3   77.2   76.5   77.3   77.4
  Al2O3+B2O3   16.8   15.7   18.0   14.6   13.6   12.4   14.6   17.4   16.6   16.3
  Al2O3+B2O3   1.51   1.53   157   1.61   1.67   1.70   1.86   1.52   1.44   1.47
  MgO/(MgO+CaO)   0.43   0.54   0.25   0.64   0.74   0.83   0.71   0.36   0.28   0.00
  SrO+BaO   2.2   2.1   2.0   2.1   2.1   2.1   2.1   2.1   2.1   2.1
  总计   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0
                                             表1(2/4)
  实施例1   实施例2   比较例   实施例3   实施例4   实施例5   实施例6   实施例7   实施例8   实施例9
  Δan-st(ppm/℃)   10.1   9.7   12.0   9.1   8.6   8.2   7.3   11.3   11.3   11.3
  α50-350(×10-6/℃)   3.15   3.19   3.30   3.24   3.21   3.20   3.10   3.31   3.44   3.67
  Δan-st50-350   3.21   3.04   3.64   2.81   2.68   256   2.36   3.40   3.27   3.09
  收缩值(ppm)   178   165   190   149   137   122   98   185   185   186
  比重(密度:g/cm3)   2.424   2.424   2.424   2.436   2.435   2.435   2.431   2.439   2.443   2.458
  应变点(℃)   698   699   699   683   683   682   689   683   682   687
  退火点(℃)   750   751   751   747   748   746   756   748   744   744
  T2(℃)   1746   1750   1742   1773   1773   1774   1781   1768   1778   1792
  T4(℃)   1332   1334   1332   1329   1327   1325   1343   1331   1335   1350
  ΔWHCl(mg/cm2)   0.03   0.03   0.06   0.05   0.05   0.05   -   -   -   -
  ΔWBHF(mg/cm2)   0.45   0.46   0.46   0.50   0.52   0.55   -   -   -   -
  耐BHF性(白浊)   ○   ○   ○   ○   ○   ○   -   -   -   -
  ηL(dPa·s)   104.0   104.3   104.2   104.1   103.8   103.6   -   -   -   -
  液相温度(℃)   1331   1287   1300   1315   1355   1345   -   -   -   -
                             表1(3/4)
  实施例10   实施例11   实施例12   实施例13   实施例14
  mol%   mol%   mol%   mol%   mol%
  SiO2   70.7   72.1   72.9   73.9   70.5
  Al2O3   9.6   10.8   9.0   8.0   10.1
  B2O3   6.8   6.9   6.3   6.3   6.5
  MgO   1.5   2.2   7.7   5.7   4.2
  CaO   9.3   4.0   2.0   4.0   5.6
  SrO   2.1   4.0   2.1   2.1   3.1
  BaO   0.0   0.0   0.0   0.0   0.0
  RO   12.9   10.2   11.8   11.8   12.9
  SiO2+Al2O3   80.3   82.9   81.9   81.9   80.6
  SiO2+B2O3   77.5   79.0   79.2   80.2   77.0
  Al2O3+B2O3   16.4   17.7   15.3   14.3   16.6
  Al2O3+B2O3   1.41   1.57   1.43   1.27   1.55
  MgO/(MgO+CaO)   0.14   0.35   0.79   0.59   0.43
  SrO+BaO   2.1   4.0   2.1   2.1   3.1
  总计   100.0   100.0   100.0   100.0   100.0
                          表4(4/4)
  实施例10   实施例11   实施例12   实施例13   实施例14
  Δan-st(ppm/℃)   11.5   10.4   8.4   8.5   10.8
  α50-350(×10-6/℃)   3.56   3.11   3.31   3.44   3.67
  Δan-st50-350   3.22   3.33   2.88   2.73   3.21
  收缩值(ppm)   187   180   130   131   182
  比重(密度:g/cm3)   2.449   2.431   2.439   2.443   2.458
  应变点(℃)   683   689   683   682   687
  退火点(℃)   742   756   747   741   748
  T2(℃)   1786   1806   1806   1829   1765
  T4(℃)   1341   1391   1351   1365   1341
  ΔWHCl(mg/cm2)   -   -   -   -   -
  ΔWBHF(mg/cm2)   -   -   -   -   -
  耐BHF性(白浊)   -   -   -   -   -
  ηL(dPa·s)   -   -   -   -   -
  液相温度(℃)   -   -   -   -   -
产业上利用的可能性
本发明的玻璃能够在不明显提高应变点的前提下减少加热处理时产生的收缩。因此,熔融、成形这样的玻璃制造工序的温度不会(明显)上升,显示器用基板的薄膜形成步骤等的加热处理时产生的收缩能够在显示器用基板所要求的水平以下。
因此,本发明的玻璃适合作为显示器用基板,特别是其表面需形成p-SiTFT的活性矩阵型LCD显示器用基板这样的在较高温度下进行加热处理仍要求较高表面精度的显示器用基板使用。
此外,即使收缩值相同,但由于玻璃基板的尺寸越大整个基板的热收缩量就越大,因此,本发明的玻璃因收缩减少而产生的效果对于大型显示器用基板特别明显。
本发明的玻璃作为显示器用基板具有各种令人满意的特性。即,由于比重小(低密度),所以能够实现液晶显示器等显示器的轻量化,此外,由于膨胀系数低,所以能够提高制造效率。另外,能够提供对被用于ITO等的浸蚀的盐酸等的耐久性良好、且对被用于SiOx或SiNx的浸蚀的缓冲氢氟酸的耐久性良好的显示器基板。另外,能够获得不易失透的玻璃,且能够提高制造效率。

Claims (12)

1.无碱玻璃,其特征在于,从退火点(Tan)附近至应变点(Tst)附近的温度范围内的平衡密度曲线的梯度Δan-st(ppm/℃)与50~350℃的平均线膨胀系数α50-350(×10-6/℃)的比值(Δan-sr50-350)大于等于0未满3.64。
2.无碱玻璃,其特征在于,主要由以下的构成要素形成,68%≤SiO2≤80%、0%≤A12O3<12%、0%<B2O3<7%、0%≤MgO≤12%、0%≤CaO≤15%、0%≤SrO≤4%、0%≤BaO≤1%、5%≤RO≤18%,这里,%表示上述构成要素合计为100%时的摩尔%,RO表示MgO+CaO+SrO+BaO。
3.如权利要求1所述的无碱玻璃,其特征还在于,主要由以下的构成要素形成,68%≤SiO2≤80%、0%≤Al2O3<12%、0%<B2O3<7%、0%≤MgO≤12%、0%≤CaO≤15%、0%≤SrO≤4%、0%≤BaO≤1%、5%≤RO≤18%,这里,%表示上述构成要素合计为100%时的摩尔%,RO表示MgO+CaO+SrO+BaO。
4.如权利要求1或3所述的无碱玻璃,其特征还在于,从前述退火点(Tan)附近至应变点(Tst)附近的温度范围内的平衡密度曲线的梯度Δan-st(ppm/℃)与50~350℃的平均线膨胀系数α50-350(×10-6/℃)的比值(Δan-st50-350)大于等于0小于等于3.5。
5.如权利要求2~4中任一项所述的无碱玻璃,其特征还在于,前述Si02的含有比例为68%≤Si02≤75%。
6.如权利要求2~5中任一项所述的无碱玻璃,其特征还在于,前述Al2O3的含有比例为5%≤Al2O3≤11.5%。
7.如权利要求2~6中任一项所述的无碱玻璃,其特征还在于,前述B2O3的含有比例为2%≤B2O3<7%。
8.如权利要求2~7中任一项所述的无碱玻璃,其特征还在于,前述MgO的含有比例为3%≤MgO≤10%。
9.如权利要求2~8中任一项所述的无碱玻璃,其特征还在于,前述CaO的含有比例为0.5%≤CaO≤12%。
1O.如权利要求2~9中任一项所述的无碱玻璃,其特征还在于,前述RO的比例为5.5%≤RO≤18%。
11.如权利要求1~10中任一项所述的无碱玻璃,其特征还在于,液相温度下的粘度ηL大于等于103.8dPa·s。
12.无碱玻璃,其特征在于,主要由以下的构成要素形成,68%≤SiO2≤72.5%、8%≤Al2O3≤10.5%、4.5%≤B2O3<7%、3%≤MgO≤10%、2.5%≤CaO≤7%、0%≤SrO≤4%、0%≤BaO≤1%、5.5%≤RO≤18%,这里,%表示上述构成要素合计为100%时的摩尔%,RO表示MgO+CaO+SrO+BaO;从退火点(Tan)附近至应变点(Tst)附近的温度范围内的平衡密度曲线的梯度Δan-st(ppm/℃)与50~350℃的平均线膨胀系数α50-350(×10-6/℃)的比值(Δan-st50-350)大于等于0小于等于3.5;液相温度下的粘度ηL大于等于103.8dPa·s。
CNA200480008161XA 2003-03-31 2004-03-31 无碱玻璃 Pending CN1764610A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP094993/2003 2003-03-31
JP2003094993 2003-03-31

Publications (1)

Publication Number Publication Date
CN1764610A true CN1764610A (zh) 2006-04-26

Family

ID=33127422

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA200480008161XA Pending CN1764610A (zh) 2003-03-31 2004-03-31 无碱玻璃

Country Status (5)

Country Link
US (1) US20060003884A1 (zh)
KR (1) KR20050109929A (zh)
CN (1) CN1764610A (zh)
DE (1) DE112004000553T5 (zh)
WO (1) WO2004087597A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101448753B (zh) * 2006-05-25 2012-07-25 日本电气硝子株式会社 无碱玻璃及无碱玻璃基板
CN102219355B (zh) * 2005-12-16 2013-05-22 日本电气硝子株式会社 无碱玻璃基板及其制造方法
CN103492333A (zh) * 2011-04-25 2014-01-01 日本电气硝子株式会社 液晶透镜用玻璃基板
CN104271526A (zh) * 2012-04-27 2015-01-07 旭硝子株式会社 无碱玻璃及其制造方法
CN107207324A (zh) * 2015-02-06 2017-09-26 旭硝子株式会社 光选择透射型玻璃和层叠基板
CN109153596A (zh) * 2016-05-25 2019-01-04 Agc株式会社 无碱玻璃基板、层叠基板和玻璃基板的制造方法
TWI756254B (zh) * 2016-08-23 2022-03-01 日商Agc股份有限公司 無鹼玻璃

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713297B2 (en) * 1998-04-11 2010-05-11 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
FR2856055B1 (fr) * 2003-06-11 2007-06-08 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques, composites les renfermant et composition utilisee
CN1898168B (zh) * 2003-12-26 2012-08-01 旭硝子株式会社 无碱玻璃、其制造方法及液晶显示板
US20060127443A1 (en) * 2004-12-09 2006-06-15 Helmus Michael N Medical devices having vapor deposited nanoporous coatings for controlled therapeutic agent delivery
FR2879591B1 (fr) * 2004-12-16 2007-02-09 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
US7608542B2 (en) * 2005-06-17 2009-10-27 Shin-Etsu Chemical Co., Ltd. Large-size glass substrate for photomask and making method, computer-readable recording medium, and mother glass exposure method
KR101346446B1 (ko) 2005-06-28 2014-01-15 코닝 인코포레이티드 보로알루미노 실리케이트 유리의 청징방법
KR100977699B1 (ko) * 2005-07-06 2010-08-24 아사히 가라스 가부시키가이샤 무알칼리 유리의 제조 방법 및 무알칼리 유리판
US7823417B2 (en) * 2005-11-04 2010-11-02 Ocv Intellectual Capital, Llc Method of manufacturing high performance glass fibers in a refractory lined melter and fiber formed thereby
US9187361B2 (en) 2005-11-04 2015-11-17 Ocv Intellectual Capital, Llc Method of manufacturing S-glass fibers in a direct melt operation and products formed there from
US8586491B2 (en) 2005-11-04 2013-11-19 Ocv Intellectual Capital, Llc Composition for high performance glass, high performance glass fibers and articles therefrom
US8338319B2 (en) * 2008-12-22 2012-12-25 Ocv Intellectual Capital, Llc Composition for high performance glass fibers and fibers formed therewith
US9656903B2 (en) * 2005-11-04 2017-05-23 Ocv Intellectual Capital, Llc Method of manufacturing high strength glass fibers in a direct melt operation and products formed there from
US7799713B2 (en) 2005-11-04 2010-09-21 Ocv Intellectual Capital, Llc Composition for high performance glass, high performance glass fibers and articles therefrom
CN103172259B (zh) 2006-02-10 2015-10-21 康宁股份有限公司 具有高的热稳定性和化学稳定性的玻璃组合物及其制备方法
US20080110775A1 (en) * 2006-11-13 2008-05-15 Theodora Beck Absorbent articles with replaceable core components having stiffness characteristics and method for evaluating such characteristics
US7534734B2 (en) 2006-11-13 2009-05-19 Corning Incorporated Alkali-free glasses containing iron and tin as fining agents
US8697591B2 (en) * 2006-12-14 2014-04-15 Ppg Industries Ohio, Inc. Low dielectric glass and fiber glass
US9394196B2 (en) 2006-12-14 2016-07-19 Ppg Industries Ohio, Inc. Low density and high strength fiber glass for reinforcement applications
US7829490B2 (en) * 2006-12-14 2010-11-09 Ppg Industries Ohio, Inc. Low dielectric glass and fiber glass for electronic applications
US9156728B2 (en) 2006-12-14 2015-10-13 Ppg Industries Ohio, Inc. Low density and high strength fiber glass for ballistic applications
US9056786B2 (en) 2006-12-14 2015-06-16 Ppg Industries Ohio, Inc. Low density and high strength fiber glass for ballistic applications
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US7942926B2 (en) 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US8029554B2 (en) * 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US7938855B2 (en) * 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
US20090118809A1 (en) * 2007-11-02 2009-05-07 Torsten Scheuermann Endoprosthesis with porous reservoir and non-polymer diffusion layer
US20090118812A1 (en) * 2007-11-02 2009-05-07 Boston Scientific Scimed, Inc. Endoprosthesis coating
WO2009078421A1 (ja) * 2007-12-19 2009-06-25 Nippon Electric Glass Co., Ltd. ガラス基板
US8975199B2 (en) 2011-08-12 2015-03-10 Corsam Technologies Llc Fusion formable alkali-free intermediate thermal expansion coefficient glass
USD615218S1 (en) 2009-02-10 2010-05-04 Owens Corning Intellectual Capital, Llc Shingle ridge vent
USD628718S1 (en) 2008-10-31 2010-12-07 Owens Corning Intellectual Capital, Llc Shingle ridge vent
US8252707B2 (en) * 2008-12-24 2012-08-28 Ocv Intellectual Capital, Llc Composition for high performance glass fibers and fibers formed therewith
US8835011B2 (en) * 2010-01-07 2014-09-16 Corning Incorporated Cover assembly for electronic display devices
JPWO2013005401A1 (ja) * 2011-07-01 2015-02-23 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板およびその製造方法
KR101409707B1 (ko) 2011-07-01 2014-06-19 아반스트레이트 가부시키가이샤 평판 디스플레이용 유리 기판 및 그의 제조 방법
JPWO2013024649A1 (ja) * 2011-08-16 2015-03-05 旭硝子株式会社 フロートガラス製造装置、及び、これを用いたフロートガラス製造方法
CN103998383B (zh) * 2011-12-19 2016-03-30 旭硝子株式会社 熔融玻璃制造装置、熔融玻璃制造方法及使用该制造装置和制造方法的平板玻璃的制造方法
US10370855B2 (en) 2012-10-10 2019-08-06 Owens Corning Intellectual Capital, Llc Roof deck intake vent
USD710985S1 (en) 2012-10-10 2014-08-12 Owens Corning Intellectual Capital, Llc Roof vent
KR101872576B1 (ko) 2012-12-21 2018-06-28 코닝 인코포레이티드 개선된 총 피치 안정성을 갖는 유리
US9150448B2 (en) 2013-03-14 2015-10-06 Corning Incorporated Dimensionally-stable, damage-resistant, glass sheets
KR102255630B1 (ko) 2013-08-15 2021-05-25 코닝 인코포레이티드 중간 내지 높은 cte 유리 및 이를 포함하는 유리 물품
CN113060935A (zh) 2013-08-15 2021-07-02 康宁股份有限公司 掺杂有碱金属和不含碱金属的硼铝硅酸盐玻璃
JP6742593B2 (ja) * 2015-01-05 2020-08-19 日本電気硝子株式会社 支持ガラス基板の製造方法及び積層体の製造方法
JP7044064B2 (ja) * 2016-08-05 2022-03-30 Agc株式会社 無アルカリガラス基板、積層基板、およびガラス基板の製造方法
WO2018226513A1 (en) * 2017-06-05 2018-12-13 Corning Incorporated Methods of etching glass articles
TWI814817B (zh) 2018-05-01 2023-09-11 美商康寧公司 低鹼金屬高透射玻璃
CN113203767B (zh) * 2020-12-22 2022-05-27 湖北新华光信息材料有限公司 一种玻璃退火温度范围测试方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394453A (en) * 1981-09-08 1983-07-19 Corning Glass Works Envelopes for tungsten-halogen lamps
JPS6374935A (ja) * 1986-09-17 1988-04-05 Nippon Electric Glass Co Ltd 耐薬品性に優れたガラス基板
US4824808A (en) * 1987-11-09 1989-04-25 Corning Glass Works Substrate glass for liquid crystal displays
US5508237A (en) * 1994-03-14 1996-04-16 Corning Incorporated Flat panel display
DE19680966T1 (de) * 1995-09-28 1998-01-08 Nippon Electric Glass Co Alkalifreies Glassubstrat
DE19603698C1 (de) * 1996-02-02 1997-08-28 Schott Glaswerke Alkalifreies Aluminoborosilicatglas und dessen Verwendung
JPH11292563A (ja) * 1998-04-03 1999-10-26 Nippon Electric Glass Co Ltd 無アルカリガラス基板
CN1160268C (zh) * 1998-11-30 2004-08-04 康宁股份有限公司 用于平板显示器的玻璃
DE19934072C2 (de) * 1999-07-23 2001-06-13 Schott Glas Alkalifreies Aluminoborosilicatglas, seine Verwendungen und Verfahren zu seiner Herstellung
JP4576680B2 (ja) * 1999-08-03 2010-11-10 旭硝子株式会社 無アルカリガラス
DE19942259C1 (de) * 1999-09-04 2001-05-17 Schott Glas Erdalkalialuminoborosilicatglas und dessen Verwendungen
DE10000837C1 (de) * 2000-01-12 2001-05-31 Schott Glas Alkalifreie Aluminoborosilicatgläser und ihre Verwendungen
JP2005053712A (ja) * 2003-08-04 2005-03-03 Nippon Electric Glass Co Ltd 無アルカリガラス
CN1898168B (zh) * 2003-12-26 2012-08-01 旭硝子株式会社 无碱玻璃、其制造方法及液晶显示板

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102219355B (zh) * 2005-12-16 2013-05-22 日本电气硝子株式会社 无碱玻璃基板及其制造方法
CN101448753B (zh) * 2006-05-25 2012-07-25 日本电气硝子株式会社 无碱玻璃及无碱玻璃基板
CN103492333A (zh) * 2011-04-25 2014-01-01 日本电气硝子株式会社 液晶透镜用玻璃基板
CN104271526A (zh) * 2012-04-27 2015-01-07 旭硝子株式会社 无碱玻璃及其制造方法
CN104271526B (zh) * 2012-04-27 2016-12-07 旭硝子株式会社 无碱玻璃及其制造方法
CN107207324A (zh) * 2015-02-06 2017-09-26 旭硝子株式会社 光选择透射型玻璃和层叠基板
CN107207323A (zh) * 2015-02-06 2017-09-26 旭硝子株式会社 玻璃基板、层叠基板以及玻璃基板的制造方法
TWI675018B (zh) * 2015-02-06 2019-10-21 日商Agc股份有限公司 玻璃基板、積層基板、及玻璃基板之製造方法
CN107207323B (zh) * 2015-02-06 2020-12-11 Agc株式会社 玻璃基板、层叠基板以及玻璃基板的制造方法
CN109153596A (zh) * 2016-05-25 2019-01-04 Agc株式会社 无碱玻璃基板、层叠基板和玻璃基板的制造方法
TWI756254B (zh) * 2016-08-23 2022-03-01 日商Agc股份有限公司 無鹼玻璃

Also Published As

Publication number Publication date
US20060003884A1 (en) 2006-01-05
KR20050109929A (ko) 2005-11-22
WO2004087597A1 (ja) 2004-10-14
DE112004000553T5 (de) 2006-03-02

Similar Documents

Publication Publication Date Title
CN1764610A (zh) 无碱玻璃
JP5233998B2 (ja) ガラス板およびその製造方法ならびにtftパネルの製造方法
TWI461381B (zh) A glass plate for a substrate, a method for manufacturing the same, and a method for manufacturing a thin film transistor panel
CN1215005C (zh) 不含碱金属的玻璃以及用于显示器的玻璃板
JP5510315B2 (ja) ディスプレイパネル用ガラス板、その製造方法およびtftパネルの製造方法
TWI613174B (zh) 無鹼玻璃及使用其之無鹼玻璃板
CN1898168A (zh) 无碱玻璃、其制造方法及液晶显示板
JP6348100B2 (ja) フラットパネルディスプレイ用ガラス基板およびその製造方法
JP5109225B2 (ja) 無アルカリガラスおよび液晶ディスプレイパネル
JP2010006649A (ja) 無アルカリガラス
WO2015030013A1 (ja) 無アルカリガラス
CN114751643A (zh) 无碱玻璃
JP6575223B2 (ja) 無アルカリガラス
CN105555725B (zh) 无碱玻璃
JP2004315354A (ja) 無アルカリガラス
KR20160023698A (ko) 무알칼리 유리
CN105324342B (zh) 无碱玻璃
TWI518045B (zh) 平板顯示器用玻璃基板
KR102291417B1 (ko) 무알칼리 유리
WO2014208524A1 (ja) 無アルカリガラス

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication