CN1630157A - 用于风轮机发电机的连续无功功率支持 - Google Patents
用于风轮机发电机的连续无功功率支持 Download PDFInfo
- Publication number
- CN1630157A CN1630157A CNA2004100567649A CN200410056764A CN1630157A CN 1630157 A CN1630157 A CN 1630157A CN A2004100567649 A CNA2004100567649 A CN A2004100567649A CN 200410056764 A CN200410056764 A CN 200410056764A CN 1630157 A CN1630157 A CN 1630157A
- Authority
- CN
- China
- Prior art keywords
- wind turbine
- reactive power
- power
- generators
- turbine generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims abstract 6
- 230000005284 excitation Effects 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- 230000006870 function Effects 0.000 description 15
- 238000012546 transfer Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 230000009897 systematic effect Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/007—Control circuits for doubly fed generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0272—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor by measures acting on the electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
- F03D9/255—Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
- F03D9/255—Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
- F03D9/257—Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor the wind motor being part of a wind farm
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/12—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
- H02J3/16—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
- H02J3/1821—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
- H02J3/1835—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
- H02J3/1842—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/96—Preventing, counteracting or reducing vibration or noise
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/337—Electrical grid status parameters, e.g. voltage, frequency or power demand
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/28—The renewable source being wind energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2101/00—Special adaptation of control arrangements for generators
- H02P2101/15—Special adaptation of control arrangements for generators for wind-driven turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/20—Active power filtering [APF]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Eletrric Generators (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Wind Motors (AREA)
Abstract
风轮机发电机系统的有效和无功功率控制。在此描述的技术提供电压,以利用风轮机发电机系统(400)的总容量,从而提供动态VAR(无功功率支持)。由系统中的单个风轮机发电机(410,412)提供的VAR支持可动态改变以适应使用参数。
Description
技术领域
本发明涉及电功率的产生和分配。更具体地,本发明涉及用于无功负载的电功率供给补偿。
背景技术
输配电网从发电装置发送电能给终端用户。输配电系统上的电压管理是该系统运行和设计的重要因素。在典型的系统中,无功功率流对电压具有很大的影响。无功功率流可受到发电源、输配电系统中的改变、旁路无功元件的增加以及负载的影响。此外,过大的无功功率流可升高电压并在输电线、变压器和其它电子元件上施加过度的应力。
参考图1、2和3,电功率具有至少两个与功率分配有关的特性:电压和电流。在大型功率配电网中,电压和电流都随时间变化。当瞬时电压与瞬时电流相乘时,结果为瞬时功率。在大多数配电网中,电压和电流具有正弦波形。
如果无功功率(即VAR)流为零,电压和电流波同相,如图1所示,其中v(ωt)为随时间变化的电压波形,i(ωt)为随时间变化的电流波形。然而,如果无功功率(即感性或容性)不为零,电压波形v(ωt)将不与电流波形i(ωt)同相。电流滞后或超前电压的量可通过功率因数角φ进行量化,该功率因数角表示一个周期中电流超前或滞后电压的部分。一个周期为2π或360度,功率因数角φ为电流和电压的周期差。
关于恒定电压波形v(ωt),滞后电流用图2中的i(ωt-φ)表示,超前电流用图3中的i(ωt+φ)表示。电流滞后或超前电压的量可通过功率因数角φ进行量化,该功率因数角表示一个周期中电流超前或滞后电压的部分。一个周期为2π或360度,功率因数角φ为电流和电压的周期差。
从电力传输的观点考虑,无功功率因数是非常重要的。由于大多数输电系统为感性的,因此增加的无功电流分量(即,容性VAR)将使得电压升高。相反,减小的无功功率分量(即,感性VAR)将使得电压降低。
风力农场无功功率流控制可由单个风轮机发电机,旁路元件(如,开关电容器或开关电抗器),变压器抽头变换器或这些元件的某些组合来实现。
发明内容
一种变速风轮机发电机系统网络,包括产生有效功率和无功功率的发电机和与发电机连接的系统控制器,该系统控制器基于单个发电机的热容量和/或电压极限控制由单个发电机产生的有效和无功功率,从而使得该发电机系统网络提供所需要的有效和无功功率。
附图说明
本发明通过实施例但并非为限定方式示于附图中,其中相同的附图标记表示相同的元件。
图1示出了电压与电流同相的波形。
图2示出了电压超前电流的波形。
图3示出了电压滞后电流的波形。
图4是风轮机系统的闭环实施例的框图,其中风轮机发电机可单独进行控制以提供无功功率支持。
图5是风轮机系统的开环实施例的框图,其中风轮机发电机可单独进行控制以提供无功功率支持。
图6是风轮机的有效和无功功率容量的曲线概念图。
图7是风轮机系统中单个风轮机的动态无功功率控制的一个实施例的流程图。
图8是优化控制器的一个实施例的框图。
图9是在电力系统中的固定位置上提供期望电压曲线的实例传递函数。
图10是单个网络的实例优化比较。
图11是与图10的优化比较相对应的简单网络。
图12是双反馈感应发电机系统的一个实施例的框图。
具体实施方式
在下面的描述中,为了便于解释,给出大量的特定细节以提供本发明的透彻理解。然而,对于本领域的技术人员来说没有这些特定细节的情况下,本发明能够实现也是很明显的。在其他实施例中,为了避免使发明不清楚,结构和设备以框图的形式示出。
此处所述的技术提供电压以利用风轮机发电机系统(即,风力农场)的总容量,从而提供动态VAR(无功功率支持)。系统中由单个风轮机发电机提供的VAR支持可动态改变以适应使用参数。
风轮机发电机可基于有效功率产生和功率因数提供VAR支持。这类VAR支持可用例如方程式进行表示,该方程式为:
VAR=Watt*tan(θ)
其中θ为功率因数角。功率因数控制具有一些缺点。由于VAR支持与功率输出的平方成比例,因此该技术不使用每个风轮机发电机的总容量,如图6所示。同样,功率因数控制有时可导致执行错误的动作从而自然的在公共耦合点(PCC)上维持期望电压。
在一个实施例中,电压控制器监测风轮机发电机系统(例如风力农场)和与公共电网的连接之间的公共耦合点(PCC)。该电压控制器测量电网电压并且将该电网电压与期望的电压比较。该电压控制器计算从风力农场系统所需的无功功率量,从而使得电网电压在期望范围内。
在一个实施例中,为了在PCC上提供期望功率(包括无功功率),动态电压控制器通过配电控制网络发送无功功率指令给每个风轮机发电机。该风轮机发电机翻译所收到的指令并激励其发电机产生所要求的无功功率。当无功功率改变时,所测得的电网电压向期望电压电平移动。因此,该系统提供闭环电压控制系统。
风轮机发电机由与涡轮叶片机械连接的旋转电机组成。风轮机的机械能通过收集器系统转变为传递给电网的电能。电力变换器用来控制有效和无功功率流。
在一个实施例中,如图12所示,发电机是具有绕线转子和滑环的双反馈感应发电机。与发电机转子连接的变频电力变换器激励系统使得发电机以从(例如)800rpm到1600rpm范围内的速度运行。该变频电力变换器激励系统也用于调节发电机的无功功率输出。
为了产生无功功率,频率变换器发电机系统的响应时间等效于静态VAR调节器。该电力变换器也可独立于发电机进行控制,从而为收集器系统提供无功功率,如图12所示。
图4是风轮机系统的闭环实施例的框图,其中风轮发电机可单独进行控制以提供无功功率支持。示出了风轮机系统400,其具有两个风轮机(410和412),每一个包括一个发电机。然而,在使用在此所述的技术的系统中,可包括任何数量的风轮机。
每个风轮机电连接到公共耦合点(PCC)420上。由于许多风轮机系统包括大量的大面积分布的风轮机,因此每个风轮机和PCC420之间的距离可以改变。
系统测量430与PCC420连接。系统测量430的一个功能是监测PCC420上的电压,电流和功率。系统测量430基于PCC420上的电压将信号提供给滤波器440和441,线路电压降补偿器445和电压控制器450。在提供给滤波器440,线路电压降补偿器445和电压控制器450的信号中也可包括其他因数。
线路电压降补偿器445是用于补偿电压降的任意元件,该电压降由从PCC420到公共电网430的传送所引起。在一个实施例中,该补偿包括线路负载的影响。在一个实施例中,PCC上的电压(Es)和电流(Is)测量和公共电网中所计算的电压(Er)之间的关系为:Er=A·Es+B·Is,其中A和B为派生出传输线参数(如线路阻抗和旁路电抗)的复合系数。图9是提供在电力系统的固定位置上的期望电压曲线的实施例传递函数。通常,传递函数的形状对于各个应用可以不相同,这取决于详细的电力系统研究。
系统测量430将与在PCC420上测得的电压对应的信号提供给滤波器440,将与在PCC420上测得的电流对应的信号提供给滤波器441。滤波器440滤出谐波和噪声,并将与PCC420上的电压对应的滤波信号提供给电压控制器450和线路电压降补偿器445。滤波器441滤出谐波和噪声,并将与PCC420上的电流对应的滤波信号提供给线路电压降补偿器445。线路电压降补偿器445是用作补偿电压降的任意元件,该电压降由从PCC420到公共电网430或在系统400内的传送所引起。在一个实施例中,来自滤波器440和线路电压降补偿器445的输出信号结合以提供输入信号给电压控制器450。
在一个实施例中,PI控制器450确定将要提供给PCC420的期望无功功率。可根据作为整体的系统400、单个风轮机和涡轮机组提供该无功功率。
优化控制器460是接收来自电力调制器470的电力调节信号、来自电压控制器450的风力农场VAR信号、来自旁路电容器/电抗器管理480的VAR调节信号的任意元件。该优化控制器460为每个风轮机计算单个无功功率指令,该无功功率指令使风力农场系统损耗最小或者优化了收集器系统电压分配。优化控制器的一个实施例在下面参考图8进行更详细的描述。
数学上的优化问题通常描述为使满足某些约束条件的目标函数J(u,x)最小。以矩阵符号表示为:
最小J(u,x)
满足:d(u,x)=0
e(u,x)≤0
x:系统变量(如,母线电压,功率因数)
u:控制变量(如,发电机无功功率)
J(u,x):目标函数
d(u,x):等式约束
e(u,x):不等式约束
采样目标函数示于方程式(1)。该函数旨在使满足维持在风力农场PCC上的功率因数的配电线路损耗(PL)最小。其可要求为建立特性体系,以执行节点支路上更紧密的电压公差带。
最小
方程式(1)
满足:系统PF=0.95(过激)
为了进行演示,对于图11的简单网络,图10中示出了简单的优化对比。
某些风力农场应用要求在风力农场中增加开关电容器404和开关电抗器406。旁路电容器/电抗器管理480是将这些开关元件的运行和风轮机410与412的无功功率输出进行协调和优化的任意元件。任一变压器抽头变换器402也可与开关电抗器406、电容器404以及风轮机VAR信号进行协调。
系统400的风轮机从电压控制器450和任意优化控制器460接收功率指令,并且单独对这些指令作出反应。功率调节和VAR指令可通过共享的数据总线分配给风轮机,同时每个风轮机具有地址和其他识别器。可替换地,功率调节和VAR指令可通过每个连接如通过集线器设备分配到风轮机上。
当风轮机对指令作出反应时,每个风轮机的控制系统导致必要的改变(如叶片螺距改变,发电机转矩改变),从而提供由功率指令所指示的有效和无功功率。单个风轮机控制的结果是,PCC420上的有效和无功功率可被动态调节从而提供期望特性,这些特性提高了风轮机系统400的性能及附加好处。这些好处包括,但并不局限于,闪烁减小,电压管理,电力缩小,以及电力系统稳定。
图5是风轮机系统的开环实施例的框图,其中风轮机发电机可单独进行控制从而提供无功功率支持。风轮机系统500包括如上所述的风轮机(410和412)和与公共电网430连接的PCC420。与图4的系统400一样,可包括任何数量的风轮机。
系统测量550监测由风轮机提供给PCC420的功率。系统测量550将与PCC420上测得的功率对应的信号提供给滤波器560。滤波器560滤出快速的功率波动,并将与PCC420上的功率对应的滤波信号提供给VAR/Watt传递函数590。在一个实施例中,VAR/Watt传递函数590为恒定功率因数特性曲线。VAR/Watt传递函数逼近电力系统中的一点上的期望电压曲线。VAR/Watt传递函数的一个实施例示于图9中。
VAR/Watt传递函数590比较来自滤波器560的功率信号(P)和VAR/Watt曲线,从而动态地确定由系统500提供的无功功率。
为了进行局部控制,在一个实施例中,两个信号(Q0和dQ/dP)由VAR/Watt传递函数590传送到风轮机(410和412)。该风轮机(410和412)局部控制形式为:
Q0+(dQ/dP)P
其中Q0为在系统中提供给所有风轮机发电机的公共无功功率项,以及
(dQ/dP)
为用于通过风轮机(410和412)局部控制而进行快速动态控制的斜率项。
图6是风轮机发电机的有效和无功功率容量的示意图。该有效功率可在图6所示的界限内进行动态调节。
图4和5的系统结构提供几种重要的特点。系统中作为静态VAR补偿器运行的每个风轮机发电机的容量在图6所示的容量曲线内进行使用。在一个实施例中,当风轮机不运行时,风轮机电力变换器的无功功率补偿容量可进行使用。在一个实施例中,电力系统衰减(如功率摆动角,功率摆动角改变的频率和速率)可通过调制在单个发电机电平和系统电平上的有效和无功功率产生而进行控制。
图7是风轮机系统中的单个风轮机的动态功率控制的一实施例的流程图。确定提供给预定位置的期望的公共控制信号(如,电压、功率因数或VAR),710。该预定位置典型的为公共耦合点(PCC);然而,例如,如果风轮机系统位于很远的位置,预定位置可为基于线路电压降补偿算法的计划点。
测量传送给预定位置的风力农场功率或电压输出,720。所测得的输出与期望控制信号进行比较,730。响应该比较,风力农场的控制系统确定需要将期望功率提供给预定位置的任何校正的大小。
该控制系统确定由每个风轮机发电机提供的有效和无功功率,从而将期望控制提供给预定位置。在一个实施例中,每个风轮机发电机可接收指令从而提供有效和无功功率的不同组合。风力农场的物理结构包括,例如,发电机的类型、风轮机的位置、收集器系统设计和风轮机和PCC之间的距离,该风力农场物理结构可用于确定提供给每个风轮机发电机的功率指令,从而改进减少损耗的系统性能和电压曲线。
将功率指令传送给每个风轮机发电机,740。该功率指令可采用本领域中已经公知的任何媒介进行传送,不论是有线的还是无线的。同样,本领域中能在一组电压接收站内将指令传送给每个接收站的任何协议均可使用。如果必要,每个风轮机发电机响应功率指令来调节它们的每个输出,750。
图8是优化控制器的一个实施例的框图。方框810执行风力农场VAR信号和由开关电容器和电抗器产生的VAR之间的误差上的死区(deadband)特性。方框820的时间积分用于建立激励电容器和电抗器组的开关的逆时特性。方框830用于确定哪个电容器和电抗器组进行开关。
说明书中“一个实施例”或“实施例”的标志意味着,结合该实施例描述的特定特征、结构或特点包括在本发明的至少一个实施例中。说明书中不同位置中的短语“一个实施例中”的出现不一定都表示相同的
实施例。
在前述的说明书中,本发明已经参考其特定实施例进行描述。然而,明显的是不脱离本发明的更宽的精神和范围可进行各种变形和改变。因此,说明书和附图仅为示意性示出而不是限定性的。
Claims (10)
1.一种变速风轮机发电机系统的网络,包括:
多个发电机,以产生有效和无功功率,其中一个或多个发电机包括控制有效功率和无功功率流的变频变换器激励系统,并且其中变频变换器激励系统能够与所述多个发电机无关地分配无功功率;以及
与多个发电机连接的系统控制器,从而基于单个发电机的热容量和/或电压极限控制由多个发电机中的单个发电机产生的有效和无功功率,从而使得多个发电机提供要求的有效和无功功率。
2.根据权利要求1所述的变速风轮机发电机系统的网络,还包括与多个发电机和系统控制器连接的开关功率管理元件,其中该开关功率管理元件由系统控制器进行控制。
3.根据权利要求1所述的变速风轮机发电机系统的网络,其中有效和无功功率指令可由系统控制器从公共电网操作者进行接收。
4.根据权利要求2所述的变速风轮机发电机系统的网络,其中无功功率指令与开关功率管理元件的调节相协调。
5.根据权利要求2所述的变速风轮机发电机系统的网络,其中系统控制器使多个发电机中的所述单个发电机的每个基本上产生相同的无功功率。
6.一种方法,包括:
确定提供给预定位置的功率;
将指令提供给多风轮机系统中的每个风轮机发电机,其中一个或多个发电机包括控制有效和无功功率流的变频变换器激励系统,并且其中变频变换器激励系统能够与所述多个发电机无关地分配无功功率,该指令基于单个发电机的热容量和/或电压极限控制由多个发电机中的单个发电机产生的有效和无功功率,从而使得多个发电机提供要求的有效和无功功率;以及
响应该指令从风轮机发电机提供功率。
7.根据权利要求6所述的方法,其中每个风轮机发电机的指令进一步包括有效和/或无功功率调制信号,从而基于公共参考指令调节网络功率。
8.根据权利要求6所述的方法,进一步包括控制与多个发电机和系统控制器连接的开关功率管理元件。
9.根据权利要求6所述的方法,其中单个发电机作为静态VAR调节器在任何风力条件下运行。
10.根据权利要求6所述的方法,其中单个风轮机发电机的指令包括形式为
Q0+(dQ/dP)P的无功功率成分,其中Q0为额定VAR运行点,其提供给系统中所有的风轮机发电机,且(dQ/dP)P为风轮机发电机功率(P)乘以无功功率/有效功率增长斜率。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/643297 | 2003-08-18 | ||
US10/643,297 US6924565B2 (en) | 2003-08-18 | 2003-08-18 | Continuous reactive power support for wind turbine generators |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1630157A true CN1630157A (zh) | 2005-06-22 |
CN100375364C CN100375364C (zh) | 2008-03-12 |
Family
ID=34063455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100567649A Expired - Lifetime CN100375364C (zh) | 2003-08-18 | 2004-08-18 | 变速风轮机发电机系统的网络及控制方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US6924565B2 (zh) |
EP (1) | EP1508951B1 (zh) |
CN (1) | CN100375364C (zh) |
AU (1) | AU2004203836B2 (zh) |
BR (1) | BRPI0403608B1 (zh) |
DK (1) | DK1508951T3 (zh) |
ES (1) | ES2593005T3 (zh) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101640419A (zh) * | 2008-07-29 | 2010-02-03 | 通用电气公司 | 用于紧密耦合的风力场的区域内主无功控制器 |
CN102074969A (zh) * | 2009-11-23 | 2011-05-25 | 瑞能系统股份公司 | 风力发电站与风力发电站的运行方法 |
CN102257721A (zh) * | 2009-01-30 | 2011-11-23 | 西门子公司 | 用于发电系统的电力系统频率惯性 |
CN102290810A (zh) * | 2010-06-16 | 2011-12-21 | 西门子公司 | 电力控制系统和包括该电力控制系统的电力设施 |
CN102354989A (zh) * | 2011-10-22 | 2012-02-15 | 东北电力大学 | 含恒速异步风电机组风电场暂态电压控制方法 |
CN102611118A (zh) * | 2012-03-14 | 2012-07-25 | 清华大学 | 一种引入预测信息的风电场综合无功电压控制方法 |
CN102822509A (zh) * | 2010-02-25 | 2012-12-12 | 维斯塔斯风力系统集团公司 | 用于控制无功功率源的方法和控制装置 |
CN102822508A (zh) * | 2010-02-25 | 2012-12-12 | 维斯塔斯风力系统集团公司 | 采用微分极控制算法的风力涡轮机控制器 |
CN103004050A (zh) * | 2010-06-03 | 2013-03-27 | 维斯塔斯风力系统集团公司 | 用于控制风力发电厂中的中央电容器的方法和控制装置 |
CN103168403A (zh) * | 2010-06-30 | 2013-06-19 | 维斯塔斯风力系统有限公司 | 控制风力发电厂变压器 |
CN103248056A (zh) * | 2013-05-25 | 2013-08-14 | 南京南瑞集团公司 | 一种风电场集中并网地区的无功电压紧急控制方法 |
CN101392724B (zh) * | 2007-08-02 | 2013-12-18 | 诺德克斯能源有限公司 | 具有多个风能设备的风电场和该风电场的运行方法 |
CN101861690B (zh) * | 2007-09-19 | 2014-04-09 | 再生动力系统欧洲公司 | 具有风力发电装置的电压调节的风电场及运行方法 |
CN101719676B (zh) * | 2008-10-09 | 2014-04-23 | 通用电气公司 | 风电场的电压控制系统和方法 |
CN103792852A (zh) * | 2012-10-18 | 2014-05-14 | 雷勃美国股份有限公司 | 用于仿真并行电力产生系统中的无功功率的电压调节器和方法 |
CN105308312A (zh) * | 2013-06-03 | 2016-02-03 | 维斯塔斯风力系统集团公司 | 风力发电厂控制器 |
CN107949968A (zh) * | 2015-09-03 | 2018-04-20 | 乌本产权有限公司 | 用于馈入电功率的方法 |
CN110249493A (zh) * | 2017-02-03 | 2019-09-17 | 利莱森玛电机公司 | 用于调节并联交流发电机以分配无功负载的方法 |
CN110268592A (zh) * | 2016-12-09 | 2019-09-20 | 维斯塔斯风力系统集团公司 | 风力发电厂中无功供电的改进 |
CN111492551A (zh) * | 2017-12-20 | 2020-08-04 | 维斯塔斯风力系统集团公司 | 可再生能源发电厂的自适应有功功率控制 |
Families Citing this family (130)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6600240B2 (en) * | 1997-08-08 | 2003-07-29 | General Electric Company | Variable speed wind turbine generator |
US7119452B2 (en) * | 2003-09-03 | 2006-10-10 | General Electric Company | Voltage control for wind generators |
SE526001C2 (sv) * | 2003-09-26 | 2005-06-14 | Abb Research Ltd | System för överföring av elektrisk kraft |
JP4269941B2 (ja) * | 2004-01-08 | 2009-05-27 | 株式会社日立製作所 | 風力発電装置およびその制御方法 |
BRPI0419255A (pt) * | 2004-12-28 | 2007-12-18 | Vestas Wind Sys As | método de controlar uma turbina eólica, sistema de controle, e turbina eólica |
US7215035B2 (en) * | 2005-02-22 | 2007-05-08 | Xantrex Technology, Inc. | Method and apparatus for converting wind generated electricity to constant frequency electricity for a utility grid |
ES2277724B1 (es) * | 2005-02-23 | 2008-06-16 | GAMESA INNOVATION & TECHNOLOGY, S.L. | Procedimiento y dispositivo para inyectar intensidad reactiva durante un hueco de tension de red. |
DK1880459T3 (da) * | 2005-05-13 | 2013-11-04 | Siemens Ag | Effektstyresystem til vindmøllepark |
US7239036B2 (en) * | 2005-07-29 | 2007-07-03 | General Electric Company | System and method for power control in wind turbines |
US7345373B2 (en) * | 2005-11-29 | 2008-03-18 | General Electric Company | System and method for utility and wind turbine control |
US7276807B2 (en) * | 2006-01-19 | 2007-10-02 | General Electric Company | Wind turbine dump load system and method |
US7505833B2 (en) * | 2006-03-29 | 2009-03-17 | General Electric Company | System, method, and article of manufacture for controlling operation of an electrical power generation system |
US8032614B2 (en) * | 2006-04-30 | 2011-10-04 | General Electric Company | Method for configuring a windfarm network |
US7312537B1 (en) * | 2006-06-19 | 2007-12-25 | General Electric Company | Methods and apparatus for supplying and/or absorbing reactive power |
DE102006039693A1 (de) * | 2006-08-21 | 2008-03-20 | Nordex Energy Gmbh | Verfahren zum Betreiben von Windenergieanlagen |
US7710693B2 (en) * | 2006-09-22 | 2010-05-04 | Schweitzer Engineering Laboratories, Inc. | Apparatus and method for providing protection for a synchronous electrical generator in a power system |
ES2611131T3 (es) | 2006-10-02 | 2017-05-05 | Vestas Wind Systems A/S | Método de accionamiento de una turbina eólica conectada a una red de distribución eléctrica durante perturbación de red de distribución eléctrica, turbina eólica y parque eólico |
US7983799B2 (en) * | 2006-12-15 | 2011-07-19 | General Electric Company | System and method for controlling microgrid |
US7531911B2 (en) * | 2006-12-22 | 2009-05-12 | Ingeteam Energy, S.A. | Reactive power control for operating a wind farm |
US7622815B2 (en) * | 2006-12-29 | 2009-11-24 | Ingeteam Energy, S.A. | Low voltage ride through system for a variable speed wind turbine having an exciter machine and a power converter not connected to the grid |
US7800349B2 (en) * | 2007-02-02 | 2010-09-21 | The Hong Kong Polytechnic University | Voltage dip and undervoltage compensator |
DE102007017870B4 (de) * | 2007-04-13 | 2022-03-31 | Senvion Gmbh | Verfahren zum Betreiben einer Windenergieanlage bei Überspannungen im Netz |
ES2571935T3 (es) | 2007-06-01 | 2016-05-27 | Acciona Windpower Sa | Sistema y procedimiento de control de aerogeneradores |
DE102007057925A1 (de) | 2007-12-01 | 2009-06-04 | Nordex Energy Gmbh | Verfahren zum Betreiben einer Windenergieanlage mit einer spannungsabhängigen Steuerung einer bereitzustellenden elektrischen Blindgröße |
EP2232697A1 (en) * | 2007-12-14 | 2010-09-29 | Vestas Wind Systems A/S | Lifetime optimization of a wind turbine generator by controlling the generator temperature |
BRPI0722046A2 (pt) * | 2007-12-14 | 2014-03-25 | Mitsubishi Heavy Ind Ltd | Sistema de geração de energia eólica e método de controle de operação para o mesmo |
KR101158703B1 (ko) * | 2007-12-14 | 2012-06-25 | 미츠비시 쥬고교 가부시키가이샤 | 풍력 발전 시스템 및 그 운전 제어 방법 |
CN101896872B (zh) * | 2007-12-20 | 2012-11-28 | 维斯塔斯风力系统集团公司 | 用于控制至少两个风轮机的共同输出的方法、中央风轮机控制系统、风场以及风场组 |
US8049352B2 (en) * | 2007-12-28 | 2011-11-01 | Vestas Wind Systems A/S | Apparatus and method for controlling the reactive power from a cluster of wind turbines connected to a utility grid |
ES2327484B1 (es) * | 2008-01-22 | 2010-08-03 | Acciona Windpower S,A, | Sistema y metodo de control de un parque eolico. |
US8237301B2 (en) * | 2008-01-31 | 2012-08-07 | General Electric Company | Power generation stabilization control systems and methods |
US7994658B2 (en) * | 2008-02-28 | 2011-08-09 | General Electric Company | Windfarm collector system loss optimization |
US7944184B2 (en) * | 2008-04-07 | 2011-05-17 | Korea Electric Power Corporation | Static compensator apparatus for HVDC system |
CN101828032B (zh) * | 2008-08-14 | 2012-12-05 | 三菱重工业株式会社 | 风力发电装置 |
US8406019B2 (en) | 2008-09-15 | 2013-03-26 | General Electric Company | Reactive power compensation in solar power system |
DE102008048258B4 (de) * | 2008-09-22 | 2016-12-08 | Senvion Gmbh | Windpark und Verfahren zum Betreiben eines Windparks |
US8058753B2 (en) * | 2008-10-31 | 2011-11-15 | General Electric Company | Wide area transmission control of windfarms |
WO2010062398A1 (en) * | 2008-11-26 | 2010-06-03 | Maloney Michael A | Power distribution controller and related systems and methods |
EP2219277B1 (en) * | 2009-02-12 | 2012-07-11 | Viserge Ltd. | AC-connection of an off-shore wind-park to an on-shore electricity grid |
ES2382786B1 (es) * | 2009-03-17 | 2013-05-07 | Acciona Windpower S.A. | Metodo y sistema de control de tension de una central de generacion electrica y parque eolico |
AT508182B1 (de) * | 2009-04-20 | 2011-09-15 | Hehenberger Gerald Dipl Ing | Verfahren zum betreiben einer energiegewinnungsanlage, insbesondere windkraftanlage |
EP2430292A1 (en) | 2009-05-12 | 2012-03-21 | Icr Turbine Engine Corporation | Gas turbine energy storage and conversion system |
US8655495B2 (en) * | 2009-06-24 | 2014-02-18 | Vestas Wind Systems A/S | Current control of a wind park |
EP2299568B1 (en) * | 2009-08-21 | 2016-06-22 | Vestas Wind Systems A/S | System and method for monitoring power filters and detecting power filter failure in a wind turbine electrical generator |
US7750490B2 (en) * | 2009-08-28 | 2010-07-06 | General Electric Company | Method and system for extracting inertial energy from a wind turbine |
US7923862B2 (en) * | 2009-10-06 | 2011-04-12 | General Electric Company | Reactive power regulation and voltage support for renewable energy plants |
US8405940B2 (en) * | 2009-10-13 | 2013-03-26 | Schweitzer Engineering Laboratories Inc | Systems and methods for generator ground fault protection |
US7990743B2 (en) * | 2009-10-20 | 2011-08-02 | General Electric Company | System and method for decreasing solar collector system losses |
US9466984B2 (en) * | 2009-10-26 | 2016-10-11 | General Electric Company | Power ramp rate control for renewable variable power generation systems |
US8283803B2 (en) * | 2009-11-04 | 2012-10-09 | Repower Systems Ag | Wind farm and method for operation of a wind farm |
US10137542B2 (en) | 2010-01-14 | 2018-11-27 | Senvion Gmbh | Wind turbine rotor blade components and machine for making same |
DK2524134T3 (da) | 2010-01-14 | 2014-08-11 | Neptco Inc | Rotorvingekomponenter til en vindmølle og fremgangsmåder til fremstilling deraf |
JP5320311B2 (ja) * | 2010-01-18 | 2013-10-23 | 三菱重工業株式会社 | 可変速発電装置及びその制御方法 |
US8866334B2 (en) | 2010-03-02 | 2014-10-21 | Icr Turbine Engine Corporation | Dispatchable power from a renewable energy facility |
ES2613734T3 (es) | 2010-03-31 | 2017-05-25 | Vestas Wind Systems A/S | Método de funcionamiento de una turbina eólica, turbina eólica, sistema de control de turbina eólica y sistema de procesamiento |
JP5167365B2 (ja) * | 2010-05-28 | 2013-03-21 | 三菱重工業株式会社 | 監視制御装置及び方法並びにそれを備えたウィンドファーム |
EP2397689A1 (en) * | 2010-06-16 | 2011-12-21 | Siemens Aktiengesellschaft | Method and system for controlling a power production entity |
WO2011161692A2 (en) | 2010-06-21 | 2011-12-29 | Raghunathan V R | Reactive power management for wind turbine applications |
WO2012000510A1 (en) * | 2010-06-29 | 2012-01-05 | Vestas Wind Systems A/S | Method and system for monitoring structural health of a filter in a wind turbine, and a wind turbine |
WO2012000548A1 (en) * | 2010-06-30 | 2012-01-05 | Abb Technology Ag | A multi-terminal dc transmission system and method and means for control thereof |
US8984895B2 (en) | 2010-07-09 | 2015-03-24 | Icr Turbine Engine Corporation | Metallic ceramic spool for a gas turbine engine |
US8664800B2 (en) * | 2010-08-31 | 2014-03-04 | General Electric Company | System and method for distribution of inverter VAR support |
CA2813680A1 (en) | 2010-09-03 | 2012-03-08 | Icr Turbine Engine Corporation | Gas turbine engine configurations |
AU2011313939B2 (en) | 2010-10-12 | 2015-04-09 | American Superconductor Corporation | Centralized power conditioning |
US20120133209A1 (en) * | 2010-11-30 | 2012-05-31 | General Electric Company | Integration of renewable power generating technologies with integrated volt/var control systems |
US8150641B2 (en) * | 2010-12-06 | 2012-04-03 | General Electric Company | System, device, and method for estimating possible power output of wind turbines |
DE102010054233A1 (de) | 2010-12-11 | 2012-06-14 | Adensis Gmbh | Energieversorgungsnetz mit Blindleistungsmanagement |
CN102074967B (zh) * | 2011-01-10 | 2013-05-22 | 清华大学 | 一种具有并网特性的储能型风电场控制方法 |
CN102624023B (zh) * | 2011-01-31 | 2014-07-09 | 华锐风电科技(集团)股份有限公司 | 双馈型机组风电场的无功电压控制系统 |
DK2482418T3 (en) * | 2011-02-01 | 2018-11-12 | Siemens Ag | Active desynchronization of switching inverters |
EP2485358B2 (en) * | 2011-02-07 | 2021-12-22 | Siemens Gamesa Renewable Energy A/S | System and method for mitigating an electric unbalance of a three-phase current at a Point of Common Coupling between a wind farm and a power grid |
DE102011012695A1 (de) | 2011-03-01 | 2012-09-06 | Adensis Gmbh | Geographisch beeinflusstes Blindleistungsmanagement |
CN102157943B (zh) * | 2011-03-09 | 2014-01-29 | 深圳市禾望电气有限公司 | 一种稳定风力发电机组网侧电压的方法 |
US8531173B2 (en) * | 2011-03-31 | 2013-09-10 | General Electric Company | System and method for operating a tap changer |
US9051873B2 (en) | 2011-05-20 | 2015-06-09 | Icr Turbine Engine Corporation | Ceramic-to-metal turbine shaft attachment |
DE102011112025A1 (de) | 2011-08-31 | 2013-02-28 | Repower Systems Se | Schnelle Spannungsregelung |
US10103661B2 (en) * | 2011-09-28 | 2018-10-16 | Vestas Wind Systems A/S | Wind power plant and a method for operating thereof |
US9588557B2 (en) * | 2011-11-11 | 2017-03-07 | Thomas Alexander Wilkins | Reactive following for distributed generation and loads of other reactive controller(s) |
US9252596B2 (en) | 2011-11-28 | 2016-02-02 | General Electric Company | System and method for reactive power compensation in power networks |
EP2605357A1 (en) * | 2011-12-15 | 2013-06-19 | Siemens Aktiengesellschaft | Control of reactive power output from a wind park |
US9046077B2 (en) * | 2011-12-28 | 2015-06-02 | General Electric Company | Reactive power controller for controlling reactive power in a wind farm |
US8848400B2 (en) | 2012-02-15 | 2014-09-30 | General Electric Company | System and method for reactive power regulation |
JP5734516B2 (ja) * | 2012-05-31 | 2015-06-17 | 三菱重工業株式会社 | 電圧制御装置、その制御方法およびその電圧制御プログラム |
US10094288B2 (en) | 2012-07-24 | 2018-10-09 | Icr Turbine Engine Corporation | Ceramic-to-metal turbine volute attachment for a gas turbine engine |
EP2700815B1 (en) | 2012-08-24 | 2016-04-20 | Siemens Aktiengesellschaft | Operating a wind turbine with multiple temperature sensors |
US9371821B2 (en) | 2012-08-31 | 2016-06-21 | General Electric Company | Voltage control for wind turbine generators |
US8669669B1 (en) * | 2012-09-13 | 2014-03-11 | General Electric Company | Voltage control in a doubly-fed induction generator wind turbine system |
US9680307B2 (en) | 2012-12-21 | 2017-06-13 | General Electric Company | System and method for voltage regulation of a renewable energy plant |
US8941961B2 (en) | 2013-03-14 | 2015-01-27 | Boulder Wind Power, Inc. | Methods and apparatus for protection in a multi-phase machine |
US10050447B2 (en) * | 2013-04-04 | 2018-08-14 | General Electric Company | Multi-farm wind power generation system |
EP2799944B1 (en) * | 2013-04-29 | 2019-02-20 | Siemens Aktiengesellschaft | A method for controlling a power generation plant |
US9442137B2 (en) * | 2013-05-03 | 2016-09-13 | Siemens Aktiengesellschaft | Method and arrangement for determining an electrical characteristics at a regulation point |
KR101480533B1 (ko) * | 2013-06-28 | 2015-01-08 | 한국전력공사 | 분산전원 전력계통 연계 운전장치 및 방법 |
EP2851558B1 (en) * | 2013-09-18 | 2017-07-19 | Siemens Aktiengesellschaft | Method of controlling a wind turbine |
DE102013222452A1 (de) | 2013-11-05 | 2015-05-07 | Wobben Properties Gmbh | Verfahren zum Betreiben einer Windenergieanlage |
US10288688B2 (en) | 2014-07-24 | 2019-05-14 | Schweitzer Engineering Laboratories, Inc. | Systems and methods for monitoring and protecting an electric power generator |
CN106795858A (zh) * | 2014-10-07 | 2017-05-31 | 维斯塔斯风力系统集团公司 | 来自风力涡轮机设施的无功功率支持 |
DK201470628A1 (en) * | 2014-10-10 | 2016-04-18 | Deif As | Utilization of capability of generators |
US9496707B2 (en) | 2014-12-22 | 2016-11-15 | Schweitzer Engineering Laboratories, Inc. | Generator protection element |
US9831810B2 (en) | 2015-03-10 | 2017-11-28 | General Electric Company | System and method for improved reactive power speed-of-response for a wind farm |
US10270253B2 (en) | 2015-05-14 | 2019-04-23 | Varentec, Inc. | System and method for regulating the reactive power flow of one or more inverters coupled to an electrical grid |
CN107810322B (zh) * | 2015-06-26 | 2019-07-16 | 维斯塔斯风力系统集团公司 | 通过风力涡轮机增加有功功率 |
DE102016105662A1 (de) | 2016-03-29 | 2017-10-05 | Wobben Properties Gmbh | Verfahren zum Einspeisen elektrischer Leistung in ein elektrisches Versorgungsnetz mit einem Windpark sowie Windpark |
DE102016106215A1 (de) | 2016-04-05 | 2017-10-05 | Wobben Properties Gmbh | Verfahren sowie Windenergieanlage zum Einspeisen elektrischer Leistung |
US10756658B2 (en) * | 2017-07-06 | 2020-08-25 | General Electric Company | Allocating reactive power production for doubly fed induction generator wind turbine system |
JP2019058002A (ja) * | 2017-09-21 | 2019-04-11 | 学校法人東京電機大学 | 発電システム |
US10333291B2 (en) | 2017-09-25 | 2019-06-25 | Schweitzer Engineering Laboratories, Inc. | Multiple generator ground fault detection |
US10931097B2 (en) | 2017-09-25 | 2021-02-23 | Schweitzer Engineering Laboratories, Inc. | Generator stator ground protection using third harmonic |
US10570882B2 (en) | 2017-11-13 | 2020-02-25 | General Electric Company | Dynamic active and reactive power capability for wind farms |
CN108400619A (zh) * | 2018-02-06 | 2018-08-14 | 北京天润新能投资有限公司 | 一种基于avc系统的风机调节方法及系统 |
US10491146B2 (en) | 2018-03-30 | 2019-11-26 | General Electric Company | System and method for compensating for generator-induced flicker in a wind turbine |
EP3788695A1 (en) * | 2018-05-03 | 2021-03-10 | Vestas Wind Systems A/S | Integrated hybrid power plants for off-grid systems |
US10797632B2 (en) | 2018-08-21 | 2020-10-06 | Schweitzer Engineering Laboratories, Inc. | Sensitive directional element for generator protection |
US11196369B2 (en) | 2018-08-31 | 2021-12-07 | Schweitzer Engineering Laboratories, Inc. | Generator loss-of-field protection |
CN113424389B (zh) | 2018-12-20 | 2024-07-26 | 维斯塔斯风力系统集团公司 | 提升来自风力涡轮发电机的无功电流注入 |
US10978943B2 (en) | 2019-04-03 | 2021-04-13 | General Electric Company | System and method for auto-ramping and energy dump for a superconducting wind turbine generator |
US11521771B2 (en) | 2019-04-03 | 2022-12-06 | General Electric Company | System for quench protection of superconducting machines, such as a superconducting wind turbine generator |
US10742149B1 (en) | 2019-04-22 | 2020-08-11 | General Electric Company | System and method for reactive power control of a wind turbine by varying switching frequency of rotor side converter |
US11056884B2 (en) | 2019-05-06 | 2021-07-06 | General Electric Company | Wind turbine system with integrated reactive power compensation device |
US10790668B1 (en) | 2019-05-06 | 2020-09-29 | General Electric Company | Method for reactive power oscillation damping for a wind turbine system with integrated reactive power compensation device |
US10731628B1 (en) | 2019-05-06 | 2020-08-04 | General Electric Company | System and method for coordinated control of reactive power from a generator and a reactive power compensation device in a wind turbine system |
US10581247B1 (en) | 2019-05-06 | 2020-03-03 | General Electric Company | System and method for reactive power control of wind turbines in a wind farm supported with auxiliary reactive power compensation |
US10865773B1 (en) * | 2019-05-22 | 2020-12-15 | General Electric Company | System and method for mitigating flicker in a power grid from a wind turbine power system |
US11316455B2 (en) | 2019-08-28 | 2022-04-26 | Schweitzer Engineering Laboratories, Inc. | Generator rotor turn-to-turn fault detection using fractional harmonics |
US10819261B1 (en) | 2019-10-25 | 2020-10-27 | Schweitzer Engineering Laboratories, Inc. | Security improvements for electric power generator protection |
US11530685B2 (en) | 2020-08-20 | 2022-12-20 | General Electric Company | System and method for managing output flicker generated by a wind farm |
US11631972B2 (en) | 2020-12-16 | 2023-04-18 | Schweitzer Engineering Laboratories, Inc. | Accurate modeling of equipment overexcitation damage curves |
CN112769141A (zh) * | 2020-12-30 | 2021-05-07 | 西南交通大学 | 一种采用svg补偿的风电并网运行电压控制方法 |
NO20220626A1 (en) * | 2022-05-31 | 2023-12-01 | Wei Hua | A method for improving power transmission efficiency |
US11946966B1 (en) | 2023-02-20 | 2024-04-02 | Schweitzer Engineering Laboratories, Inc. | Selective stator ground fault protection using positive-sequence voltage reference |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5083039B1 (en) | 1991-02-01 | 1999-11-16 | Zond Energy Systems Inc | Variable speed wind turbine |
US5187427A (en) | 1991-11-27 | 1993-02-16 | U.S. Windpower, Inc. | Static reactive power compensator |
US5652485A (en) * | 1995-02-06 | 1997-07-29 | The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency | Fuzzy logic integrated electrical control to improve variable speed wind turbine efficiency and performance |
WO1997004521A1 (en) * | 1995-07-18 | 1997-02-06 | Midwest Research Institute | A variable speed wind turbine generator system with zero-sequence filter |
US5798631A (en) * | 1995-10-02 | 1998-08-25 | The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University | Performance optimization controller and control method for doubly-fed machines |
US6137187A (en) * | 1997-08-08 | 2000-10-24 | Zond Energy Systems, Inc. | Variable speed wind turbine generator |
US6600240B2 (en) * | 1997-08-08 | 2003-07-29 | General Electric Company | Variable speed wind turbine generator |
DE19844258A1 (de) * | 1998-09-26 | 2000-03-30 | Dewind Technik Gmbh | Windenergieanlage |
US6566764B2 (en) * | 2000-05-23 | 2003-05-20 | Vestas Wind Systems A/S, R&D | Variable speed wind turbine having a matrix converter |
EP1246335A2 (en) * | 2001-03-30 | 2002-10-02 | Mitsubishi Heavy Industries, Ltd. | Power factor control apparatus and method |
US20040030457A1 (en) * | 2001-12-28 | 2004-02-12 | Bayoumi Deia Salah-Eldin | On-line control of distributed resources with different dispatching levels |
CN1433117A (zh) * | 2002-01-07 | 2003-07-30 | 中电电能监控技术有限公司 | 一种新型低压电力电容器组多组分级循环自动投切控制装置 |
-
2003
- 2003-08-18 US US10/643,297 patent/US6924565B2/en not_active Expired - Lifetime
-
2004
- 2004-08-12 AU AU2004203836A patent/AU2004203836B2/en not_active Expired
- 2004-08-13 DK DK04254881.8T patent/DK1508951T3/en active
- 2004-08-13 EP EP04254881.8A patent/EP1508951B1/en not_active Expired - Lifetime
- 2004-08-13 ES ES04254881.8T patent/ES2593005T3/es not_active Expired - Lifetime
- 2004-08-17 BR BRPI0403608A patent/BRPI0403608B1/pt active IP Right Grant
- 2004-08-18 CN CNB2004100567649A patent/CN100375364C/zh not_active Expired - Lifetime
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101392724B (zh) * | 2007-08-02 | 2013-12-18 | 诺德克斯能源有限公司 | 具有多个风能设备的风电场和该风电场的运行方法 |
CN101861690B (zh) * | 2007-09-19 | 2014-04-09 | 再生动力系统欧洲公司 | 具有风力发电装置的电压调节的风电场及运行方法 |
CN101640419A (zh) * | 2008-07-29 | 2010-02-03 | 通用电气公司 | 用于紧密耦合的风力场的区域内主无功控制器 |
CN101640419B (zh) * | 2008-07-29 | 2015-01-07 | 通用电气公司 | 用于紧密耦合的风力场的区域内主无功控制器 |
CN101719676B (zh) * | 2008-10-09 | 2014-04-23 | 通用电气公司 | 风电场的电压控制系统和方法 |
CN102257721B (zh) * | 2009-01-30 | 2014-06-25 | 西门子公司 | 用于发电系统的电力系统频率惯性 |
CN102257721A (zh) * | 2009-01-30 | 2011-11-23 | 西门子公司 | 用于发电系统的电力系统频率惯性 |
US8994200B2 (en) | 2009-01-30 | 2015-03-31 | Siemens Aktiengesellschaft | Power system frequency inertia for power generation system |
CN102074969A (zh) * | 2009-11-23 | 2011-05-25 | 瑞能系统股份公司 | 风力发电站与风力发电站的运行方法 |
CN102074969B (zh) * | 2009-11-23 | 2014-03-12 | 瑞能系统股份公司 | 风力发电站与风力发电站的运行方法 |
CN102822509B (zh) * | 2010-02-25 | 2016-01-20 | 维斯塔斯风力系统集团公司 | 用于控制无功功率源的方法和控制装置 |
CN102822508A (zh) * | 2010-02-25 | 2012-12-12 | 维斯塔斯风力系统集团公司 | 采用微分极控制算法的风力涡轮机控制器 |
CN102822509A (zh) * | 2010-02-25 | 2012-12-12 | 维斯塔斯风力系统集团公司 | 用于控制无功功率源的方法和控制装置 |
CN102822508B (zh) * | 2010-02-25 | 2015-07-15 | 维斯塔斯风力系统集团公司 | 采用微分极控制算法的风力涡轮机控制器 |
CN103004050A (zh) * | 2010-06-03 | 2013-03-27 | 维斯塔斯风力系统集团公司 | 用于控制风力发电厂中的中央电容器的方法和控制装置 |
CN103004050B (zh) * | 2010-06-03 | 2016-01-20 | 维斯塔斯风力系统集团公司 | 用于控制风力发电厂中的中央电容器的方法和控制装置 |
US9035498B2 (en) | 2010-06-16 | 2015-05-19 | Siemens Aktiengesellschaft | Electric power control system and electric power facility comprising the electric power control system |
CN102290810B (zh) * | 2010-06-16 | 2015-10-28 | 西门子公司 | 电力控制系统和包括该电力控制系统的电力设施 |
CN102290810A (zh) * | 2010-06-16 | 2011-12-21 | 西门子公司 | 电力控制系统和包括该电力控制系统的电力设施 |
CN103168403B (zh) * | 2010-06-30 | 2016-04-06 | 维斯塔斯风力系统有限公司 | 控制风力发电厂变压器 |
CN103168403A (zh) * | 2010-06-30 | 2013-06-19 | 维斯塔斯风力系统有限公司 | 控制风力发电厂变压器 |
CN102354989A (zh) * | 2011-10-22 | 2012-02-15 | 东北电力大学 | 含恒速异步风电机组风电场暂态电压控制方法 |
CN102611118B (zh) * | 2012-03-14 | 2014-04-16 | 清华大学 | 一种引入预测信息的风电场综合无功电压控制方法 |
CN102611118A (zh) * | 2012-03-14 | 2012-07-25 | 清华大学 | 一种引入预测信息的风电场综合无功电压控制方法 |
CN103792852A (zh) * | 2012-10-18 | 2014-05-14 | 雷勃美国股份有限公司 | 用于仿真并行电力产生系统中的无功功率的电压调节器和方法 |
CN103248056B (zh) * | 2013-05-25 | 2015-07-08 | 国家电网公司 | 一种风电场集中并网地区的无功电压紧急控制方法 |
CN103248056A (zh) * | 2013-05-25 | 2013-08-14 | 南京南瑞集团公司 | 一种风电场集中并网地区的无功电压紧急控制方法 |
CN105308312B (zh) * | 2013-06-03 | 2020-03-17 | 维斯塔斯风力系统集团公司 | 风力发电厂控制器 |
CN105308312A (zh) * | 2013-06-03 | 2016-02-03 | 维斯塔斯风力系统集团公司 | 风力发电厂控制器 |
CN107949968A (zh) * | 2015-09-03 | 2018-04-20 | 乌本产权有限公司 | 用于馈入电功率的方法 |
CN110268592A (zh) * | 2016-12-09 | 2019-09-20 | 维斯塔斯风力系统集团公司 | 风力发电厂中无功供电的改进 |
CN110249493B (zh) * | 2017-02-03 | 2023-12-19 | 利莱森玛电机公司 | 用于调节并联交流发电机以分配无功负载的方法 |
CN110249493A (zh) * | 2017-02-03 | 2019-09-17 | 利莱森玛电机公司 | 用于调节并联交流发电机以分配无功负载的方法 |
CN111492551A (zh) * | 2017-12-20 | 2020-08-04 | 维斯塔斯风力系统集团公司 | 可再生能源发电厂的自适应有功功率控制 |
CN111492551B (zh) * | 2017-12-20 | 2023-07-04 | 维斯塔斯风力系统集团公司 | 可再生能源发电厂的自适应有功功率控制 |
Also Published As
Publication number | Publication date |
---|---|
EP1508951B1 (en) | 2016-08-10 |
AU2004203836B2 (en) | 2010-12-16 |
CN100375364C (zh) | 2008-03-12 |
EP1508951A1 (en) | 2005-02-23 |
ES2593005T3 (es) | 2016-12-05 |
DK1508951T3 (en) | 2016-10-03 |
US6924565B2 (en) | 2005-08-02 |
US20050040655A1 (en) | 2005-02-24 |
BRPI0403608A (pt) | 2005-06-14 |
BRPI0403608B1 (pt) | 2016-11-08 |
AU2004203836A1 (en) | 2005-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1630157A (zh) | 用于风轮机发电机的连续无功功率支持 | |
US7808126B2 (en) | Wind farm and method for controlling the same | |
US7095597B1 (en) | Distributed static var compensation (DSVC) system for wind and water turbine applications | |
AU2007362452A1 (en) | Wind-power generation system and operation control method therefor | |
CN107863783A (zh) | 双馈风力发电机虚拟同步控制方法 | |
Raghavendran et al. | Development and performance analysis of intelligent fault ride through control scheme in the dynamic behaviour of grid connected DFIG based wind systems | |
CN102377189A (zh) | 风电场无功补偿优化配置及运行方法 | |
CN107681684B (zh) | 中压风力发电系统及其发电方法 | |
Zammit et al. | MPPT with current control for a PMSG small wind turbine in a grid-connected DC microgrid | |
US10910841B2 (en) | Method and system for power grid voltage regulation by distributed energy resources | |
CN105356490A (zh) | 一种直流并联型风电场有功协调控制方法 | |
CN106877383B (zh) | 一种变速风电机组低电压穿越能力仿真模型调整方法 | |
CN112751371A (zh) | 一种基于二阶锥算法的含风电集群近区电网无功优化方法 | |
Zou | Induction generator in wind power systems | |
Baala et al. | DFIG-based wind turbine control using high-gain observer | |
Zammit et al. | Optimal power control for a PMSG small wind turbine in a grid-connected DC microgrid | |
Dekali et al. | Grid side inverter control for a grid connected synchronous generator based wind turbine experimental emulator | |
Asadollah et al. | Decentralized reactive power and voltage control of wind farms with type-4 generators | |
US20110095609A1 (en) | Systems and methods for regulating power in renewable energy sources | |
CN104319778A (zh) | 一种调节电网电压的方法 | |
CN114389309B (zh) | 一种基于功率圆约束的配网风机变流器低电压穿越外环控制方法 | |
Zobaa et al. | A comprehensive overview on reactive power compensation technologies for wind power applications | |
CN111797565B (zh) | 电压调节器参数对调相机性能影响分析及参数优化的方法 | |
Cherkaoui et al. | Voltage regulation in the electrical network using reactive power control strategy of WPP based DFIG wind turbine | |
Bharadwaj et al. | Performance Analysis of Wind Energy Conversion System Based on a Permanent Magnet Synchronous Generator (PMSG) Fed by a Matrix Converter using Optimal Singular Adaptive Observer Control Approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240103 Address after: Barcelona, Spain Patentee after: Ge renewable energy Spain Ltd. Address before: New York, United States Patentee before: General Electric Co. |
|
TR01 | Transfer of patent right | ||
CX01 | Expiry of patent term |
Granted publication date: 20080312 |
|
CX01 | Expiry of patent term |