CN1513757A - Preparation method of block polymer grafted earbon nano-pipe - Google Patents
Preparation method of block polymer grafted earbon nano-pipe Download PDFInfo
- Publication number
- CN1513757A CN1513757A CNA03141978XA CN03141978A CN1513757A CN 1513757 A CN1513757 A CN 1513757A CN A03141978X A CNA03141978X A CN A03141978XA CN 03141978 A CN03141978 A CN 03141978A CN 1513757 A CN1513757 A CN 1513757A
- Authority
- CN
- China
- Prior art keywords
- carbon nanotube
- acid
- block polymer
- preparation
- acrylamide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 33
- 238000002360 preparation method Methods 0.000 title claims description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 89
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 82
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 82
- 239000003054 catalyst Substances 0.000 claims abstract description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 24
- 150000001412 amines Chemical class 0.000 claims description 22
- 229910052757 nitrogen Inorganic materials 0.000 claims description 22
- 239000002904 solvent Substances 0.000 claims description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- 238000000967 suction filtration Methods 0.000 claims description 18
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 16
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 16
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 238000001291 vacuum drying Methods 0.000 claims description 15
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 13
- 239000000178 monomer Substances 0.000 claims description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 12
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 12
- 238000002525 ultrasonication Methods 0.000 claims description 12
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 10
- 238000007789 sealing Methods 0.000 claims description 10
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 9
- 229910017604 nitric acid Inorganic materials 0.000 claims description 9
- 230000003252 repetitive effect Effects 0.000 claims description 9
- 238000005201 scrubbing Methods 0.000 claims description 9
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- 229910052786 argon Inorganic materials 0.000 claims description 8
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 8
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 7
- 230000000977 initiatory effect Effects 0.000 claims description 7
- 238000005406 washing Methods 0.000 claims description 7
- LPNSCOVIJFIXTJ-UHFFFAOYSA-N 2-methylidenebutanamide Chemical compound CCC(=C)C(N)=O LPNSCOVIJFIXTJ-UHFFFAOYSA-N 0.000 claims description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 6
- 238000001556 precipitation Methods 0.000 claims description 6
- 238000010992 reflux Methods 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- VLCAYQIMSMPEBW-UHFFFAOYSA-N methyl 3-hydroxy-2-methylidenebutanoate Chemical compound COC(=O)C(=C)C(C)O VLCAYQIMSMPEBW-UHFFFAOYSA-N 0.000 claims description 5
- 239000002048 multi walled nanotube Substances 0.000 claims description 5
- 230000001590 oxidative effect Effects 0.000 claims description 5
- -1 polyoxyethylene Polymers 0.000 claims description 5
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 claims description 4
- ZMARGGQEAJXRFP-UHFFFAOYSA-N 1-hydroxypropan-2-yl 2-methylprop-2-enoate Chemical compound OCC(C)OC(=O)C(C)=C ZMARGGQEAJXRFP-UHFFFAOYSA-N 0.000 claims description 4
- GWZMWHWAWHPNHN-UHFFFAOYSA-N 2-hydroxypropyl prop-2-enoate Chemical compound CC(O)COC(=O)C=C GWZMWHWAWHPNHN-UHFFFAOYSA-N 0.000 claims description 4
- NPDACUSDTOMAMK-UHFFFAOYSA-N 4-Chlorotoluene Chemical compound CC1=CC=C(Cl)C=C1 NPDACUSDTOMAMK-UHFFFAOYSA-N 0.000 claims description 4
- 229910021589 Copper(I) bromide Inorganic materials 0.000 claims description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 4
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 claims description 4
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 4
- 125000003368 amide group Chemical group 0.000 claims description 4
- 229910052736 halogen Inorganic materials 0.000 claims description 4
- BSCJIBOZTKGXQP-UHFFFAOYSA-N n-(2-hydroxyethyl)-2-methylprop-2-enamide Chemical compound CC(=C)C(=O)NCCO BSCJIBOZTKGXQP-UHFFFAOYSA-N 0.000 claims description 4
- UUORTJUPDJJXST-UHFFFAOYSA-N n-(2-hydroxyethyl)prop-2-enamide Chemical compound OCCNC(=O)C=C UUORTJUPDJJXST-UHFFFAOYSA-N 0.000 claims description 4
- IMOQUFHFNPWFHR-UHFFFAOYSA-N n-methyl-n-(trihydroxymethyl)prop-2-enamide Chemical compound OC(O)(O)N(C)C(=O)C=C IMOQUFHFNPWFHR-UHFFFAOYSA-N 0.000 claims description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000002244 precipitate Substances 0.000 claims description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 150000005846 sugar alcohols Polymers 0.000 claims description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000012528 membrane Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 3
- 238000000197 pyrolysis Methods 0.000 claims description 3
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 claims description 2
- 229940058015 1,3-butylene glycol Drugs 0.000 claims description 2
- OGFAWKRXZLGJSK-UHFFFAOYSA-N 1-(2,4-dihydroxyphenyl)-2-(4-nitrophenyl)ethanone Chemical compound OC1=CC(O)=CC=C1C(=O)CC1=CC=C([N+]([O-])=O)C=C1 OGFAWKRXZLGJSK-UHFFFAOYSA-N 0.000 claims description 2
- ZRZHXNCATOYMJH-UHFFFAOYSA-N 1-(chloromethyl)-4-ethenylbenzene Chemical compound ClCC1=CC=C(C=C)C=C1 ZRZHXNCATOYMJH-UHFFFAOYSA-N 0.000 claims description 2
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 claims description 2
- UXFQFBNBSPQBJW-UHFFFAOYSA-N 2-amino-2-methylpropane-1,3-diol Chemical compound OCC(N)(C)CO UXFQFBNBSPQBJW-UHFFFAOYSA-N 0.000 claims description 2
- QLIBJPGWWSHWBF-UHFFFAOYSA-N 2-aminoethyl methacrylate Chemical compound CC(=C)C(=O)OCCN QLIBJPGWWSHWBF-UHFFFAOYSA-N 0.000 claims description 2
- DTZKVZKYSZUBAG-UHFFFAOYSA-N 2-chloro-2-methylpropanoyl chloride Chemical compound CC(C)(Cl)C(Cl)=O DTZKVZKYSZUBAG-UHFFFAOYSA-N 0.000 claims description 2
- KVQJVAOMYWTLEO-UHFFFAOYSA-N 2-chlorobutanoyl chloride Chemical compound CCC(Cl)C(Cl)=O KVQJVAOMYWTLEO-UHFFFAOYSA-N 0.000 claims description 2
- JEQDSBVHLKBEIZ-UHFFFAOYSA-N 2-chloropropanoyl chloride Chemical compound CC(Cl)C(Cl)=O JEQDSBVHLKBEIZ-UHFFFAOYSA-N 0.000 claims description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 2
- 229910021591 Copper(I) chloride Inorganic materials 0.000 claims description 2
- 229910021575 Iron(II) bromide Inorganic materials 0.000 claims description 2
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 claims description 2
- PHSPJQZRQAJPPF-UHFFFAOYSA-N N-alpha-Methylhistamine Chemical compound CNCCC1=CN=CN1 PHSPJQZRQAJPPF-UHFFFAOYSA-N 0.000 claims description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 2
- GTTSNKDQDACYLV-UHFFFAOYSA-N Trihydroxybutane Chemical compound CCCC(O)(O)O GTTSNKDQDACYLV-UHFFFAOYSA-N 0.000 claims description 2
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052794 bromium Inorganic materials 0.000 claims description 2
- BMRWNKZVCUKKSR-UHFFFAOYSA-N butane-1,2-diol Chemical compound CCC(O)CO BMRWNKZVCUKKSR-UHFFFAOYSA-N 0.000 claims description 2
- 235000019437 butane-1,3-diol Nutrition 0.000 claims description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 claims description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 2
- QAWBXZYPFCFQLA-UHFFFAOYSA-N butanoyl bromide Chemical class CCCC(Br)=O QAWBXZYPFCFQLA-UHFFFAOYSA-N 0.000 claims description 2
- 239000004567 concrete Substances 0.000 claims description 2
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 claims description 2
- NKNDPYCGAZPOFS-UHFFFAOYSA-M copper(i) bromide Chemical compound Br[Cu] NKNDPYCGAZPOFS-UHFFFAOYSA-M 0.000 claims description 2
- 229940045803 cuprous chloride Drugs 0.000 claims description 2
- HCPOCMMGKBZWSJ-UHFFFAOYSA-N ethyl 3-hydrazinyl-3-oxopropanoate Chemical compound CCOC(=O)CC(=O)NN HCPOCMMGKBZWSJ-UHFFFAOYSA-N 0.000 claims description 2
- 229940046149 ferrous bromide Drugs 0.000 claims description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 2
- 229910000765 intermetallic Inorganic materials 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 2
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 claims description 2
- GYCHYNMREWYSKH-UHFFFAOYSA-L iron(ii) bromide Chemical compound [Fe+2].[Br-].[Br-] GYCHYNMREWYSKH-UHFFFAOYSA-L 0.000 claims description 2
- NMHMDUCCVHOJQI-UHFFFAOYSA-N lithium molybdate Chemical compound [Li+].[Li+].[O-][Mo]([O-])(=O)=O NMHMDUCCVHOJQI-UHFFFAOYSA-N 0.000 claims description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 claims description 2
- 239000012046 mixed solvent Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- QRWZCJXEAOZAAW-UHFFFAOYSA-N n,n,2-trimethylprop-2-enamide Chemical compound CN(C)C(=O)C(C)=C QRWZCJXEAOZAAW-UHFFFAOYSA-N 0.000 claims description 2
- OVHHHVAVHBHXAK-UHFFFAOYSA-N n,n-diethylprop-2-enamide Chemical compound CCN(CC)C(=O)C=C OVHHHVAVHBHXAK-UHFFFAOYSA-N 0.000 claims description 2
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 claims description 2
- RFZRLVGQBIINKQ-UHFFFAOYSA-N n-(2-aminoethyl)-2-methylprop-2-enamide Chemical compound CC(=C)C(=O)NCCN RFZRLVGQBIINKQ-UHFFFAOYSA-N 0.000 claims description 2
- HXJGFDIZSMWOGY-UHFFFAOYSA-N n-(2-azaniumylethyl)prop-2-enimidate Chemical compound NCCNC(=O)C=C HXJGFDIZSMWOGY-UHFFFAOYSA-N 0.000 claims description 2
- 235000006408 oxalic acid Nutrition 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 claims description 2
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 claims description 2
- 239000012286 potassium permanganate Substances 0.000 claims description 2
- RIBFXMJCUYXJDZ-UHFFFAOYSA-N propanoyl bromide Chemical class CCC(Br)=O RIBFXMJCUYXJDZ-UHFFFAOYSA-N 0.000 claims description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 2
- 239000012429 reaction media Substances 0.000 claims description 2
- AGGKEGLBGGJEBZ-UHFFFAOYSA-N tetramethylenedisulfotetramine Chemical compound C1N(S2(=O)=O)CN3S(=O)(=O)N1CN2C3 AGGKEGLBGGJEBZ-UHFFFAOYSA-N 0.000 claims description 2
- HFRXJVQOXRXOPP-UHFFFAOYSA-N thionyl bromide Chemical compound BrS(Br)=O HFRXJVQOXRXOPP-UHFFFAOYSA-N 0.000 claims description 2
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 claims description 2
- 230000000379 polymerizing effect Effects 0.000 abstract 2
- 239000003446 ligand Substances 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 239000011859 microparticle Substances 0.000 abstract 1
- 229920000768 polyamine Polymers 0.000 abstract 1
- 229920005862 polyol Polymers 0.000 abstract 1
- 150000003077 polyols Chemical class 0.000 abstract 1
- 238000001179 sorption measurement Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 17
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 7
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 7
- 239000004926 polymethyl methacrylate Substances 0.000 description 7
- 238000013019 agitation Methods 0.000 description 6
- 238000010560 atom transfer radical polymerization reaction Methods 0.000 description 6
- 125000000524 functional group Chemical group 0.000 description 5
- 239000002114 nanocomposite Substances 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 2
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229960002442 glucosamine Drugs 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- UKODFQOELJFMII-UHFFFAOYSA-N pentamethyldiethylenetriamine Chemical compound CN(C)CCN(C)CCN(C)C UKODFQOELJFMII-UHFFFAOYSA-N 0.000 description 2
- 229920000962 poly(amidoamine) Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000002109 single walled nanotube Substances 0.000 description 2
- ICNCZFQYZKPYMS-UHFFFAOYSA-N 2-methylpropanoyl bromide Chemical class CC(C)C(Br)=O ICNCZFQYZKPYMS-UHFFFAOYSA-N 0.000 description 1
- 102100026735 Coagulation factor VIII Human genes 0.000 description 1
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000007233 catalytic pyrolysis Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Graft Or Block Polymers (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
A process for preparing the block polymer grafted carbon nanotubes includes acidifying and acylating the carbon nanotubes, reacting with polyol or polyamine, reacting on alpha-haloacylhalogen, atom transfer free-radical polymerizing reacting under existance of catalyst and ligand, and further atom transfer free-radical polymerizing reacting. Its advnatages are high solubility and good adsorption to difference microparticles.
Description
Technical field: the present invention relates to a kind of preparation method of carbon nanotube of surface modification, particularly the preparation method of block polymer grafted carbon nanotube.
Background technology: the preparation method of carbon nanotube (Cabon Nanotube is called for short CNT) mainly contains catalyse pyrolysis, arc-over, template and laser evaporation etc.Prepared carbon nanotube be divided into Single Walled Carbon Nanotube (single-wall nanotube, SWNT) and multi-walled carbon nano-tubes (Multi-wall Nanotube, MWNT).Carbon nanotube/high molecule nano composite material obtains exploitation owing to having excellent performance.The preparation of carbon nanotube/high molecule nano composite material is divided into dual mode, a kind of be with the CNT (carbon nano-tube) mechanical dispersion in high molecular polymer, be called " blend "; Another kind of mode is after functional group is gone up in carbon nano tube surface processing connection, to carry out in-situ polymerization, thereby obtain connecting carbon nanotube/high molecule nano composite material by covalent linkage.A kind of mode in back can be improved the affinity and the solubility property of carbon nanotube greatly, thereby prepares high performance nano composite material.
The acid treatment that people such as Richard E.Smalley scrutinized carbon nanotube in 1998, obtained the products distribution situation under the different treatment condition, this has laid good basis (Science, 1998,280 (22): 1253-1255) for further studying later on.Afterwards, people's success such as Masahito Sano is grafted to the tenth generation branch-shape polymer PAMAM (poly (amidoamine)) carbon nano tube surface (Angew.Chem.2001,113 (24): 4797-4799).Glucosamine (glucosamine) also successfully is grafted to carbon nano tube surface, has obtained water-soluble good carbon nanotube (Pompeo, F.; Resasco, D.E., Nano Letters, vol 0 no 0 A-E).People such as Ya-PingSun have done a lot of work in this respect, have successively realized PPEI-EI (poly (propionylethylenmine-co-ethylenmine), M
W≈ 200 000, EI molar fraction ≈ 15%) (J.Am.Chem.Soc.2000,122 (24), 5878-5880; J.Phys.Chem.B 2000,104 (30), 7071-7076; Nano Lett., 2001,1 (8), 423-427) and grafting (Nano Lett., 2001,1 (8), the 439-441 of some dendrimers; Chem.Mater.2001,13 (9): 2864-2869; J.Phys.Chem.B 2002,106 (6), 1294-1298), and studied the non-linear optical property of products therefrom.
On the other hand, Sawamoto and Matyjaszewski have almost simultaneously found that independently transition metal-catalyzed " activity " controllable free-radical polymerisation of a kind of usefulness is atom transfer radical polymerization (ATRP).This method becomes the research focus of polymer chemistry in the world soon, and is described as " the recent studies on method of 21 century ".This method is to the control of target product with keep and be better than traditional polymerization greatly aspect the lower molecular weight distributing index, also avoided in the traditional method the harsh requirement to the polymerization environment.Simultaneously, because the popularity of initiator, especially, can in product, introduce functional group easily, also can synthesize multiple block polymer with the participation of the initiator of functional group.Adopt the ATRP method, people such as Walt are grafted to gold surface with polymethylmethacrylate, have prepared core-shell type golden nanometer particle (Mandal, T.K.; Fleming, M.S.; Walt D.R.Nano Letters, Vol.2,3-7 (2002)).
Summary of the invention: the objective of the invention is to utilize atom transfer radical polymerization method by molecular designing, preparation block polymer grafted carbon nanotube satisfies the needs in different application field.
Content of the present invention is to be raw material with the carbon nanotube, has synthesized a series of block polymer grafted carbon nanotubes.Carbon nano tube surface of the present invention has number of polymers, polymkeric substance has different functional groups, the length of polymer molecular chain can be controlled effectively by changing initiation center and monomeric proportioning, the carbon nano tube surface graft(ing) degree can be controlled by the acidification degree to carbon nanotube, functional group's kind can be controlled by the monomer that adding contains different functional groups, can prepare the novel high polymer grafted carbon nanotube with multiple function thus.
The concrete preparation method of block polymer grafted carbon nanotube of the present invention is as follows:
Step (a): in flask, add 1~10g exsiccant carbon nanometer tube material and 5~50mL acid with strong oxidizing property, with 0~100kHz ultrasonication, 0~100hr post-heating to 20~200 ℃, reaction 0.5~100hr down stirs and refluxes, with the filter membrane suction filtration, repetitive scrubbing repeatedly to neutral, obtains the acidifying carbon nanotube behind 0~180 ℃ of vacuum-drying 10~30hr;
Step (b): in flask, add step (a) gained acidifying carbon nanotube 1~10g and acylating agent 1~100g, behind 0~100kHz ultrasonication, 10~1000min, be heated to 20~200 ℃, reaction 0.5~100hr down stirs and refluxes, suction filtration and repetitive scrubbing obtain acylated carbon nano-tube;
Step (c): in flask, add step (b) gained acidylate carbon nanotube 1~10g and polyalcohols or polynary amine 1~50g, sealing, take out inflated with nitrogen repeatedly three times, behind 0~100kHz ultrasonication, 10~1000min, react 1~20hr down at 20~200 ℃, suction filtration is behind the repetitive scrubbing, 0~180 ℃ of vacuum-drying obtains the carbon nanotube that the surface has hydroxyl or amido;
Step (d): in flask, add carbon nanotube 1~10g and alpha-halogen carboxylic acid halides 1~50g that step (c) gained surface has hydroxyl or amido, sealing, take out inflated with nitrogen repeatedly three times, behind 0~100kHz ultrasonication, 10~1000min, react 1~20hr down at 20~200 ℃, suction filtration is behind the repetitive scrubbing, 0~180 ℃ of vacuum-drying obtains the carbon nanotube that the surface has initiating group;
Step (e): in flask, add 0~5g catalyzer, 0~5g part, the surface that adds step (d) gained again has the carbon nanotube 0~10g of initiating group, solvent 0~50mL, sealing back inflated with nitrogen or argon gas 1~100min add and contain double bond monomer 0~80mL, continue to fill Ar or N
21~100min reacts 0~1000hr down at 0~150 ℃, and after viscosity was significantly increased, stopped reaction precipitated in methyl alcohol, and the gained precipitation heavily is dissolved in solvent, suction filtration, and washing, 0~180 ℃ of vacuum-drying obtains the macromolecular grafted carbon nanotube of single hop;
Step (f): in flask, add 0~5g catalyzer, 0~5g part, add the macromolecular grafted carbon nanotube 0~10g of single hop that step (e) obtains again, solvent 0~50mL fills Ar or N after the sealing
21~100min adds another kind and contains double bond monomer 0~80mL, continues to fill Ar or N
21~100min reacts 0~1000hr down at 0~150 ℃, and after viscosity was significantly increased, stopped reaction precipitated in methyl alcohol, and the gained precipitation heavily is dissolved in solvent, suction filtration, and washing, 0~180 ℃ of vacuum-drying obtains block polymer grafted carbon nanotube.
Used carbon nanotube is the single wall or the multi-walled carbon nano-tubes of catalyse pyrolysis, arc-over, template and laser evaporation methods such as (CVD) preparation in the inventive method step (a).
The used acid with strong oxidizing property of the inventive method step (a) comprises 0~70% nitric acid, 0~100% sulfuric acid, 1/100~100/1 ratio, 0~100% nitric acid/sulfuric acid mixing acid, contains 0~50g potassium permanganate/L, 0~100% sulfuric acid (hydrochloric acid, nitric acid) solution, contains 0~50g H
2O
2/ L 0~100% sulfuric acid (hydrochloric acid, nitric acid) solution etc. has the mixed acid solution of strong oxidizing property.
Used acylating agent comprises phosphorus trichloride, phosphorus pentachloride, thionyl chloride, phosphorus tribromide, phosphorus pentabromide, thionyl bromide in the inventive method step (b).
Polyalcohols or polynary amine substance used in the inventive method step (c) comprise ethylene glycol (amine), glycerol (amine), 1,2-propylene glycol (amine), 1, ammediol (amine), 1,4-butyleneglycol (amine), 1,2-butyleneglycol (amine), 1,3 butylene glycol (amine), trihydroxybutane (amine), polyoxyethylene glycol (amine) wait all to contain two and a plurality of hydroxyl and amino organism.
Do not use solvent among the inventive method step (c), (d) or with dimethyl sulfoxide (DMSO), N, dinethylformamide, N,N-dimethylacetamide, N-N-methyl-2-2-pyrrolidone N-, chloroform, tetrahydrofuran (THF), ethyl acetate, acetone, acetonitrile, butanone, triethylamine, pyridine, dimethylamino pyridine are that solvent or the mixed solvent that contains these solvents are reaction medium.
Used alpha-halogen carboxylic acid halides comprises alpha-brominated butyryl bromide, alpha-brominated isobutyl acylbromide, alpha-brominated propionyl bromide, alpha-chloro butyryl chloride, alpha-chloro isobutyryl chloride, alpha-chloro propionyl chloride in the inventive method step (d).
The inventive method step (e), (f) containing double bond monomer in is the monomer of free redical polymerization reaction, comprise Hydroxyethyl acrylate, hydroxyethyl methylacrylate, Propylene glycol monoacrylate, Rocryl 410, the vinylformic acid hydroxy butyl ester, the methacrylic acid hydroxy butyl ester, methyl acrylate, methyl methacrylate, vinylformic acid ammonia ethyl ester, aminoethyl methacrylate, N, N-dimethacrylate ammonia ethyl ester, N, N-dimethyl-aminoethyl methacrylate, vinylbenzene, p-chloromethyl styrene, between 1-chloro-4-methyl-benzene, acrylamide, N, the N-DMAA, Methacrylamide, N, N-dimethyl-Methacrylamide, the N-N-isopropylacrylamide, N-isopropyl-methyl acrylamide, N, N-diethyl acrylamide, N, N-diethyl-4-methyl-acrylamide, N, N-dihydroxy ethyl acrylamide, N-hydroxyethyl acrylamide, the N-hydroxyethyl methacrylamide, N-(trishydroxymethyl) methyl acrylamide, N-aminoethyl acrylamide, N-aminoethyl-Methacrylamide, N-(2-dimethylamino) ethyl acrylamide, Hydroxyethyl acrylate, hydroxyethyl methylacrylate, Propylene glycol monoacrylate, Rocryl 410, the vinylformic acid hydroxy butyl ester, the methacrylic acid hydroxy butyl ester, N, N-dihydroxy ethyl acrylamide, N-hydroxyethyl acrylamide, the N-hydroxyethyl methacrylamide, N-(trishydroxymethyl) methyl acrylamide.
Catalyst system therefor is the metallic compound that contains Cu (I), Fe (I), Mo (V), Re (V), Ru (II), Ni (I), Pb (II) such as cuprous chloride, cuprous bromide, iron protochloride, ferrous bromide, lithium molybdate, ReO in the inventive method step (e), (f)
2I (PPh
3)
2, RuCl
2, Ni (NCN) Br, Pd (OAc)
2Deng; Used part is 2-dipyridyl, Tetramethyl Ethylene Diamine, pentamethyl--diethyl triamine, hexamethyl-triethyl tetramine, oxalic acid, propanedioic acid, Succinic Acid, phthalic acid, triphenylphosphine, tri-n-butyl phosphine etc.; Solvent for use is dimethyl sulfoxide (DMSO), N, dinethylformamide, N,N-dimethylacetamide, N-N-methyl-2-2-pyrrolidone N-, chloroform, methylene dichloride, ethylene dichloride, tetrahydrofuran (THF), ethyl acetate, acetone, butanone, acetonitrile, propyl alcohol, ethanol, methyl alcohol or contain the mixture of these solvents.
Block polymer grafted carbon nanotube pattern is through the high power sem analysis, and internal structure is by high power TEM test, and in addition, block polymer grafted carbon nanotube also adopts nucleus magnetic resonance, infrared spectra, heat analysis etc. to characterize.
Block polymer grafted carbon nanotube prepared in accordance with the present invention, the polymer molecular chain that has the different affinities of two sections or multistage, have fabulous solvability, can in solution, adsorb, suitable biological medicine carrier, the special type function material done micropartical of different nature; Utilize different segmental character, can expand the application of carbon nanotube greatly in Jie's sight field; Meanwhile this carbon nanotube also has good assimilation effect to microwave, be easy to add in plastics, rubber, coating and the fiber, also film forming separately, the suitable body of doing the high-strength special type material or additive, high performance membrane material, high tensile strength fibrous material, absorption microwave filamentary material, prospect has a very wide range of applications.
Description of drawings:
The SEM contrast effect figure of Fig. 1: carbon nanotube single hop grafting PMMA (A) and block graft PMMA-PHEMA (B)
Fig. 2: carbon nanotube grafting PMMA-PHEMA's
1H NMR figure
Embodiment: the following examples are to further specify of the present invention, rather than limit the scope of the invention.
Embodiment 1: the multi-walled carbon nano-tubes with the catalytic pyrolysis method preparation is an initial raw material; acidified; after the acidylate; connect ethylene glycol; again with alpha-brominated isobutyryl bromine reaction; with ATRP method grafting polymethylmethacrylate (PMMA), and then continue to connect poly hydroxy ethyl acrylate (PHEMA), obtain block polymer PMMA-PHEMA grafted carbon nanotube with the ATRP method.
Step (a): in the single neck round-bottomed flask of the 100mL that the magnetic agitation rotor is housed, add 2g exsiccant carbon nanometer tube material and 20mL60% concentrated nitric acid, with 40kHz ultrasonication 30min post-heating to 120 ℃, reaction 24hr down stirs and refluxes, with φ 0.22 μ m tetrafluoroethylene millipore filtration suction filtration, repeatedly to neutral, obtain acidifying carbon nanotube behind 80 ℃ of vacuum-drying 24hr with the deionized water repetitive scrubbing;
Step (b): in the single neck round-bottomed flask of the 100mL that the magnetic agitation rotor is housed, add step (a) gained acidifying carbon nanotube 1.5g and thionyl chloride 8g, behind 40kHz ultrasonication 30min, be heated to 60 ℃, reaction 24hr down stirs and refluxes, suction filtration and repetitive scrubbing are removed thionyl chloride, obtain acylated carbon nano-tube;
Step (c): in the single neck round-bottomed flask of the 100mL that the magnetic agitation rotor is housed, add step (b) gained acidylate carbon nanotube 1.3g and ethylene glycol 25g, seal with the turned welt soft rubber ball, take out inflated with nitrogen repeatedly three times, behind 40kHz ultrasonication 30min, react 24hr down at 100 ℃, suction filtration is removed unreacted reactant and byproduct of reaction, with behind the deionized water wash, 80 ℃ of vacuum-dryings obtain the carbon nanotube that the surface has hydroxyl repeatedly;
Step (d): in the single neck round-bottomed flask of the 100mL that the magnetic agitation rotor is housed, adding step (c) gained surface has the carbon nanotube 1.1g and the alpha-brominated isobutyl acylbromide 1g of hydroxyl, seal with the turned welt soft rubber ball, take out inflated with nitrogen repeatedly three times, behind 40kHz ultrasonication 30min, at 20 times reaction 1~20hr, suction filtration is removed unreacted reactant and byproduct of reaction, with behind the deionized water wash, 80 ℃ of vacuum-dryings obtain the carbon nanotube that the surface has initiating group repeatedly;
Step (e): in the single neck round-bottomed flask of the 50mL that the magnetic agitation rotor is housed, add 0.6g CuBr, 0.7g part PMDETA (pentamethyl--diethyl triamine), the surface that adds step (d) gained again has the carbon nanotube 1g of initiating group, and solvent DMF 10mL fills N after the sealing
210min adds methyl methacrylate MMA monomer 10mL, continues to fill N
210min reacts 20hr down at 60 ℃, after viscosity is significantly increased, and stopped reaction, in methyl alcohol, precipitate, the gained precipitation heavily is dissolved in chloroform, suction filtration, washing, remove unreacted monomer and catalyzer etc., 80 ℃ of vacuum-dryings obtain single hop PMMA grafted carbon nanotube, obtain material 3g;
Step (f): in the single neck round-bottomed flask of the 50mL that the magnetic agitation rotor is housed, add 0.4g CuBr, 0.48g part PMDETA, add the macromolecular grafted carbon nanotube 2g of single hop that step (e) obtains again, solvent DMF 10mL fills N after the sealing
210min adds hydroxyethyl methylacrylate HEMA monomer 10mL, continues to fill N
210min reacts 10hr down at 50 ℃, after viscosity is significantly increased, and stopped reaction, in methyl alcohol, precipitate, the gained precipitation heavily is dissolved in DMF, suction filtration, washing, remove unreacted monomer and catalyzer etc., 80 ℃ of vacuum-dryings obtain block PMMA-PHEMA grafted carbon nanotube.
The sem analysis result is as shown in Figure 1: left figure A is that carbon nanotube is at the later appearance of grafting PMMA, the skim polymkeric substance of surface coverage as can be seen, the mean diameter of carbon nanotube reaches more than the 30nm, (average 20~24nm) slightly increase, and the shape of carbon nanotube can distinguish than material carbon nanotube diameter.B is the exterior appearance of block PMMA-PHEMA in the grafting, and outward appearance changes to some extent as can be seen, and mean diameter reaches 40nm.This has proved the successful grafting of block polymer.
1H NMR result as shown in Figure 2, d is the characteristic peak of PMMA, b, c, e are the characteristic peak of PHEMA.
Claims (10)
1. the preparation method of block polymer grafted carbon nanotube is characterized in that concrete preparation method is as follows:
Step (a): in flask, add 1~10g exsiccant carbon nanometer tube material and 5~50mL acid with strong oxidizing property, with 0~100kHz ultrasonication, 0~100hr post-heating to 20~200 ℃, reaction 0.5~100hr down stirs and refluxes, with the filter membrane suction filtration, repetitive scrubbing repeatedly to neutral, obtains the acidifying carbon nanotube behind 0~180 ℃ of vacuum-drying 10~30hr;
Step (b): in flask, add step (a) gained acidifying carbon nanotube 1~10g and acylating agent 1~100g, behind 0~100kHz ultrasonication, 10~1000min, be heated to 20~200 ℃, reaction 0.5~100hr down stirs and refluxes, suction filtration and repetitive scrubbing are removed acylating agent, obtain acylated carbon nano-tube;
Step (c): in flask, add step (b) gained acidylate carbon nanotube 1~10g and polyalcohols or polynary amine 1~50g, sealing, take out inflated with nitrogen repeatedly three times, behind 0~100kHz ultrasonication, 10~1000min, react 1~20hr down at 20~200 ℃, suction filtration is behind the repetitive scrubbing, 0~180 ℃ of vacuum-drying obtains the carbon nanotube that the surface has hydroxyl or amido;
Step (d): in flask, add carbon nanotube 1~10g and alpha-halogen carboxylic acid halides 1~50g that step (c) gained surface has hydroxyl or amido, sealing, take out inflated with nitrogen repeatedly three times, behind 0~100kHz ultrasonication, 10~1000min, react 1~20hr down at 20~200 ℃, suction filtration is after the washing, 0~180 ℃ of vacuum-drying obtains the carbon nanotube that the surface has initiating group;
Step (e): add 0~5g catalyzer, 0~5g part in flask, the surface that adds step (d) gained again has the carbon nanotube 0~10g of initiating group, and solvent 0~50mL fills Ar or N after the sealing
21~100min, add and contain double bond monomer 0~80mL, continue inflated with nitrogen or argon gas 1~100min, react 0~1000hr down at 0~150 ℃, after viscosity is significantly increased, stopped reaction precipitates in methyl alcohol, and the gained precipitation heavily is dissolved in solvent, suction filtration, washing, 0~180 ℃ of vacuum-drying obtains the macromolecular grafted carbon nanotube of single hop;
Step (f): add 0~5g catalyzer, 0~5g part in flask, add the macromolecular grafted carbon nanotube 0~10g of single hop that step (e) obtains again, solvent 0~50mL fills Ar or N after the sealing
21~100min, add another kind and contain double bond monomer 0~80mL, continue inflated with nitrogen or argon gas 1~100min, react 0~1000hr down at 0~150 ℃, after viscosity is significantly increased, stopped reaction precipitates in methyl alcohol, and the gained precipitation heavily is dissolved in solvent, suction filtration, washing, 0~180 ℃ of vacuum-drying obtains block polymer grafted carbon nanotube.
2. the preparation method of block polymer grafted carbon nanotube according to claim 1 is characterized in that carbon nanotube used in the step (a) is the single wall or the multi-walled carbon nano-tubes of catalyse pyrolysis, arc-over, template and the preparation of laser evaporation method.
3. the preparation method of block polymer grafted carbon nanotube according to claim 1 is characterized in that the used acid with strong oxidizing property of step (a) comprises 0~70% nitric acid, 0~100% sulfuric acid, 1/100~100/1 ratio, 0~100% nitric acid/sulfuric acid mixing acid, contains 0~50g potassium permanganate/L, 0~100% sulfuric acid (hydrochloric acid, nitric acid) solution, contains 0~50g H
2O
2/ L 0~100% sulfuric acid (hydrochloric acid, nitric acid) solution.
4. the preparation method of block polymer grafted carbon nanotube according to claim 1 is characterized in that used acylating agent comprises phosphorus trichloride, phosphorus pentachloride, thionyl chloride, phosphorus tribromide, phosphorus pentabromide, thionyl bromide in the step (b).
5. the preparation method of block polymer grafted carbon nanotube according to claim 1, it is characterized in that polyalcohols used in the step (c) or polynary amine substance comprise ethylene glycol (amine), glycerol (amine), 1,2-propylene glycol (amine), 1, ammediol (amine), 1,4-butyleneglycol (amine), 1,2-butyleneglycol (amine), 1,3 butylene glycol (amine), trihydroxybutane (amine), polyoxyethylene glycol (amine).
6. the preparation method of block polymer grafted carbon nanotube according to claim 1, it is characterized in that not using among step (c), (d) solvent or with dimethyl sulfoxide (DMSO), N, dinethylformamide, N,N-dimethylacetamide, N-N-methyl-2-2-pyrrolidone N-, chloroform, tetrahydrofuran (THF), ethyl acetate, acetone, acetonitrile, butanone, triethylamine, pyridine, dimethylamino pyridine are that solvent or the mixed solvent that contains these solvents are reaction medium.
7. the preparation method of block polymer grafted carbon nanotube according to claim 1 is characterized in that used alpha-halogen carboxylic acid halides comprises alpha-brominated butyryl bromide, alpha-brominated isobutyl acylbromide, alpha-brominated propionyl bromide, alpha-chloro butyryl chloride, alpha-chloro isobutyryl chloride, alpha-chloro propionyl chloride in the step (d).
8. the preparation method of block polymer grafted carbon nanotube according to claim 1, it is characterized in that step (e), (f) contain double bond monomer in for carrying out the monomer of Raolical polymerizable, comprise Hydroxyethyl acrylate, hydroxyethyl methylacrylate, Propylene glycol monoacrylate, Rocryl 410, the vinylformic acid hydroxy butyl ester, the methacrylic acid hydroxy butyl ester, methyl acrylate, methyl methacrylate, vinylformic acid ammonia ethyl ester, aminoethyl methacrylate, N, N-dimethacrylate ammonia ethyl ester, N, N-dimethyl-aminoethyl methacrylate, vinylbenzene, p-chloromethyl styrene, between 1-chloro-4-methyl-benzene, acrylamide, N, the N-DMAA, Methacrylamide, N, N-dimethyl-Methacrylamide, the N-N-isopropylacrylamide, N-isopropyl-methyl acrylamide, N, N-diethyl acrylamide, N, N-diethyl-4-methyl-acrylamide, N, N-dihydroxy ethyl acrylamide, N-hydroxyethyl acrylamide, the N-hydroxyethyl methacrylamide, N-(trishydroxymethyl) methyl acrylamide, N-aminoethyl acrylamide, N-aminoethyl-Methacrylamide, N-(2-dimethylamino) ethyl acrylamide, Hydroxyethyl acrylate, hydroxyethyl methylacrylate, Propylene glycol monoacrylate, Rocryl 410, the vinylformic acid hydroxy butyl ester, the methacrylic acid hydroxy butyl ester, N, N-dihydroxy ethyl acrylamide, N-hydroxyethyl acrylamide, the N-hydroxyethyl methacrylamide, N-(trishydroxymethyl) methyl acrylamide.
9. the preparation method of block polymer grafted carbon nanotube according to claim 1 is characterized in that catalyst system therefor in the step (e), (f) is the metallic compound that contains Cu (I), Fe (I), Mo (V), Re (V), Ru (II), Ni (I), Pb (II) such as cuprous chloride, cuprous bromide, iron protochloride, ferrous bromide, lithium molybdate, ReO
2I (PPh
3)
2, RuCl
2, Ni (NCN) Br, Pd (OAc)
2Used part is 2-dipyridyl, Tetramethyl Ethylene Diamine, pentamethyl--diethyl triamine, hexamethyl-triethyl tetramine, oxalic acid, propanedioic acid, Succinic Acid, phthalic acid, triphenylphosphine, tri-n-butyl phosphine; Solvent for use is dimethyl sulfoxide (DMSO), N, dinethylformamide, N,N-dimethylacetamide, N-N-methyl-2-2-pyrrolidone N-, chloroform, methylene dichloride, ethylene dichloride, tetrahydrofuran (THF), ethyl acetate, acetone, butanone, acetonitrile, propyl alcohol, ethanol, methyl alcohol or contain the mixture of these solvents.
10. block polymer grafted carbon nanotube is characterized in that the block polymer grafted carbon nanotube that adopts the described preparation method of claim 1-9 to obtain.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 03141978 CN1209382C (en) | 2003-07-31 | 2003-07-31 | Preparation method of block polymer grafted earbon nano-pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 03141978 CN1209382C (en) | 2003-07-31 | 2003-07-31 | Preparation method of block polymer grafted earbon nano-pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1513757A true CN1513757A (en) | 2004-07-21 |
CN1209382C CN1209382C (en) | 2005-07-06 |
Family
ID=34240349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 03141978 Expired - Fee Related CN1209382C (en) | 2003-07-31 | 2003-07-31 | Preparation method of block polymer grafted earbon nano-pipe |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1209382C (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100355826C (en) * | 2005-12-15 | 2007-12-19 | 上海交通大学 | Preparation process for improving bonding capacity of carbon nanotube with rubber molecule |
CN100410289C (en) * | 2006-03-14 | 2008-08-13 | 同济大学 | Process for in-situ synthesis of amphiphilic polymer modified carbon nanotube |
CN100427667C (en) * | 2006-11-02 | 2008-10-22 | 上海交通大学 | Polymer grafted carbon nomo fibre and its preparing method |
CN101104668B (en) * | 2006-07-12 | 2010-12-01 | 同济大学 | Method for preparing functional carbon nano-tube and application thereof |
CN102442660A (en) * | 2011-10-14 | 2012-05-09 | 苏州大学 | Surface modified carbon nanotube and preparation method thereof |
CN102557011A (en) * | 2012-03-09 | 2012-07-11 | 桂林理工大学 | Method for performing functionalization treatment to surface of multi-walled carbon nanotube by utilizing hydrogen peroxide |
CN104558629A (en) * | 2013-10-17 | 2015-04-29 | 中国石油化工股份有限公司 | Method for graft modification of carbon nanotube through microwave radiation |
CN108034040A (en) * | 2017-12-23 | 2018-05-15 | 广东互典缓冲材料技术有限公司 | A kind of tear-resistant padded coaming and its preparation method and application |
CN108192137A (en) * | 2016-12-08 | 2018-06-22 | 中国石油天然气股份有限公司 | Preparation method of high-dispersion carbon nano tube used as rubber filler |
CN108565386A (en) * | 2018-04-08 | 2018-09-21 | 珠海鹏辉能源有限公司 | Lithium-sulfur cell diaphragm and preparation method thereof, lithium-sulfur cell and preparation method thereof |
CN110697689A (en) * | 2013-02-20 | 2020-01-17 | 特斯拉纳米涂料有限公司 | Functionalized graphite material |
CN111500001A (en) * | 2020-06-12 | 2020-08-07 | 南京工业大学 | Preparation method and application of carbon nanotube nano composite material |
CN113024747A (en) * | 2021-03-30 | 2021-06-25 | 西南石油大学 | Hyperbranched polymer based on carbon nano tube and preparation method thereof |
CN113753879A (en) * | 2020-06-05 | 2021-12-07 | 重庆科技学院 | Temperature-sensitive polymer modified carbon nanotube composite material and preparation method thereof |
-
2003
- 2003-07-31 CN CN 03141978 patent/CN1209382C/en not_active Expired - Fee Related
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100355826C (en) * | 2005-12-15 | 2007-12-19 | 上海交通大学 | Preparation process for improving bonding capacity of carbon nanotube with rubber molecule |
CN100410289C (en) * | 2006-03-14 | 2008-08-13 | 同济大学 | Process for in-situ synthesis of amphiphilic polymer modified carbon nanotube |
CN101104668B (en) * | 2006-07-12 | 2010-12-01 | 同济大学 | Method for preparing functional carbon nano-tube and application thereof |
CN100427667C (en) * | 2006-11-02 | 2008-10-22 | 上海交通大学 | Polymer grafted carbon nomo fibre and its preparing method |
CN102442660A (en) * | 2011-10-14 | 2012-05-09 | 苏州大学 | Surface modified carbon nanotube and preparation method thereof |
CN102442660B (en) * | 2011-10-14 | 2013-08-28 | 苏州大学 | Surface modified carbon nanotube and preparation method thereof |
CN102557011A (en) * | 2012-03-09 | 2012-07-11 | 桂林理工大学 | Method for performing functionalization treatment to surface of multi-walled carbon nanotube by utilizing hydrogen peroxide |
CN110697689A (en) * | 2013-02-20 | 2020-01-17 | 特斯拉纳米涂料有限公司 | Functionalized graphite material |
CN104558629A (en) * | 2013-10-17 | 2015-04-29 | 中国石油化工股份有限公司 | Method for graft modification of carbon nanotube through microwave radiation |
CN108192137A (en) * | 2016-12-08 | 2018-06-22 | 中国石油天然气股份有限公司 | Preparation method of high-dispersion carbon nano tube used as rubber filler |
CN108034040A (en) * | 2017-12-23 | 2018-05-15 | 广东互典缓冲材料技术有限公司 | A kind of tear-resistant padded coaming and its preparation method and application |
CN108034040B (en) * | 2017-12-23 | 2020-09-04 | 广东互典缓冲材料技术有限公司 | Tear-resistant buffer material and preparation method and application thereof |
CN108565386A (en) * | 2018-04-08 | 2018-09-21 | 珠海鹏辉能源有限公司 | Lithium-sulfur cell diaphragm and preparation method thereof, lithium-sulfur cell and preparation method thereof |
CN113753879A (en) * | 2020-06-05 | 2021-12-07 | 重庆科技学院 | Temperature-sensitive polymer modified carbon nanotube composite material and preparation method thereof |
CN111500001A (en) * | 2020-06-12 | 2020-08-07 | 南京工业大学 | Preparation method and application of carbon nanotube nano composite material |
CN111500001B (en) * | 2020-06-12 | 2022-04-12 | 南京工业大学 | Preparation method and application of carbon nanotube nano composite material |
CN113024747A (en) * | 2021-03-30 | 2021-06-25 | 西南石油大学 | Hyperbranched polymer based on carbon nano tube and preparation method thereof |
CN113024747B (en) * | 2021-03-30 | 2022-04-19 | 西南石油大学 | Hyperbranched polymer based on carbon nano tube and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN1209382C (en) | 2005-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1246356C (en) | Prepn process of in-situ polymerized polymer grafted carbon nanotube | |
CN1209382C (en) | Preparation method of block polymer grafted earbon nano-pipe | |
CN1207186C (en) | Super-branched polymer grafted carbon nanotube and its prepn process | |
Pan et al. | Growth of multi-amine terminated poly (amidoamine) dendrimers on the surface of carbon nanotubes | |
CN100410289C (en) | Process for in-situ synthesis of amphiphilic polymer modified carbon nanotube | |
Song et al. | Graphene/tri-block copolymer composites prepared via RAFT polymerizations for dual controlled drug delivery via pH stimulation and biodegradation | |
CN101058418A (en) | Poly(glycidyl methacrylate), carbon nano-tube modified by derivative of the same and preparation method thereof | |
CN104495779A (en) | Simple and efficient method for preparing three-dimensional carbon nanotubes/graphene hybrid material | |
CN101559942B (en) | Method for synthesizing a functional carbon nano-tube by layer-by-layer click chemical method | |
CN100586844C (en) | Hydrophilicity carbon nanometer-tube and preparation method thereof | |
CN1246218C (en) | Carbon nanometer tube with initiating group on surface and its preparation method | |
CN1243061C (en) | Inner hydrophilic external oleophibic type nuclear shell carbon nano pipe and its preparation method | |
CN101602835A (en) | A kind of preparation method of carbon mano-tube composite of polymer graft | |
US7879940B2 (en) | Polymerization initated at sidewalls of carbon nanotubes | |
CN1218978C (en) | Polysulfonated styrene grafted water soluble carbon nano pipe and its preparation method | |
CN1256282C (en) | Preparing method for polymer grafting and modifying titanium dioxide nanometer tube | |
CN111269368B (en) | Method for preparing surface microphase separation nanoparticles by RAFT polymerization induced self-assembly | |
Choi et al. | Graft polymerization of styrene from single-walled carbon nanotube using atom transfer radical polymerization | |
Yoon et al. | Surface initiated‐atom transfer radical polymerization of a sugar methacrylate on gold nanoparticles | |
CN1234746C (en) | Multi-carboxyl polymer grafted water-soluble carbon nanometer tube and preparation method thereof | |
CN101224884A (en) | Preparation method of benzene sulfochloride substituted carbon nano-tube and grafting modification method initiated thereby | |
CN1218979C (en) | Ultrabranching poly parachloro methyl benzene etthylene grafted carbon nano pipe and its preparation method | |
CN1257944C (en) | Core-shell type lipophilic-hydrophilic carbon nanometer tube and its preparation method | |
CN1232590C (en) | Poly (methyl) tert-butyl acrylic ester grafted carbon nanometer tube and its preparation method | |
CN1284728C (en) | Temperatur esensitire type water soluble carbon nano pipe and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |