[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN1316669C - 电化学构件用的薄膜及其制备方法 - Google Patents

电化学构件用的薄膜及其制备方法 Download PDF

Info

Publication number
CN1316669C
CN1316669C CNB008151334A CN00815133A CN1316669C CN 1316669 C CN1316669 C CN 1316669C CN B008151334 A CNB008151334 A CN B008151334A CN 00815133 A CN00815133 A CN 00815133A CN 1316669 C CN1316669 C CN 1316669C
Authority
CN
China
Prior art keywords
laminate
pasty masses
film
plasticizer
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB008151334A
Other languages
English (en)
Other versions
CN1387684A (zh
Inventor
彼得·比尔克
法蒂玛·萨拉姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of CN1387684A publication Critical patent/CN1387684A/zh
Application granted granted Critical
Publication of CN1316669C publication Critical patent/CN1316669C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/666Composites in the form of mixed materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Primary Cells (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明涉及一种可用于电化学构件中的膏状物质,它包括含有以下成分的不均匀混合物:(1)含有至少一种有机聚合物、其前体物或预聚物以及增塑剂的基体(A),或由这些成分构成的基体(A);(2)一种可电化学活化的、在基体中和在水中不溶解的固体无机材料(B);而且,所述混合物中不存在溶于增塑剂中的、与(B)不同的导电体。本发明还涉及由此膏状物质制成的层制品(薄膜)和电化学复层品(例如电化学电池)。所述的增塑剂选自如下的物质,其含有如下基团:式中,A1和A2彼此独立地为R1、OR1、SR1或NHR1,同时R1为C1-C6烷基;或者A1和A2与D一起构成5元杂环;D为C=O、S=O、C=NH或C=CH2,另外,当D与A1和A2构成所述的5元杂环时,其也可以为O、S、NH或CH2

Description

电化学构件用的薄膜及其制备方法
本发明涉及具有电化学性能的新型材料,确切地说,本发明尤其是涉及薄膜(Folie)、由其制成的复层品(Schichtverbuende)以及制备这些薄膜所用的膏状物质(pastoese Masse)。本发明适于制备原电池(Batterie)、蓄电池组(Akkumulator)、电色指示元件(elektrochrome Elemente)等,尤其适用于薄膜技术中的可再充电系统,该可再充电系统以后也可用作电池(Zelle),或者作为一般的“系统”。这些系统还包括英语为primary batteries(原电池)、secondarybatteries(蓄电池)、systems(系统)和cells(电池)等构件。
多年前,人们就开始尝试生产薄层状电化学构件(Bauelement),如蓄电池等,其目的是要获得这样的薄膜复层(Folienverbuende),一方面,这样的薄膜复层是柔软的,例如人们可将其卷起来或调整为任何所需的形状;另一方面,这样的薄膜复层通过在一些电化学组件(Bestandteil)如电极和电解液之间具有相对于电化学活性材料所占体积而言是很大的接触面,而具有很好的充放电性能。这一类结构几乎都具有重要的优点。当(a)系统具有特别的要求时或(b)要求特殊的电化学优点时,人们大多采用这类结构。
专利文献中已公开了一系列制备这样的薄膜的方法。US5,009,970公开了制备固体聚合物电解液的方法,该电解液可用于电化学电池中,如可再充电的锂电池。所述的聚合物可以使用聚环氧乙烷(PEO),它可与适当的锂盐在水中混合,并形成双组分的络合物。在被照射之后,聚环氧乙烷发生交联,得到一种水凝胶,然后使其在真空中进行干燥。US5,041,436也同样公开了环氧乙烷聚合物电解液的羟甲基交联变体,该变体中还另外含有增塑剂,所述的增塑剂优选具有离子溶剂化性质,例如其可以为偶极非质子溶剂,如γ-丁内酯。尽管已有报道,与纯锂盐相比,这样的络合物的离子导电性已有显著提高,但对于作为电化学构件的电解液层来说,仍显不够。US5,707,759中公开了一种阳极物质,其也可以用于可再充电的锂电池;该专利中聚合物质是由聚乙烯醇和聚乙烯醇缩丁醛制得。将这些材料溶于溶剂中(水、醇、N-甲基吡咯烷酮),与电化学活性材料(石墨)混合。所形成的膏状物质涂覆于载体上,干燥。
US5,456,000公开了可再充电的电池组电池,其由自涂覆的薄膜所形成的电极单元和电解液单元层叠构成。其正极使用一种薄膜,该薄膜由分散于共聚物基体溶液中的LiMn2O4粉末制成,然后烘干;其负极由分散于共聚物基体溶液中的碳粉的干燥层构成。在各电极层之间设置了电解液/隔膜。为此,在丙酮或THF等中,使聚(偏1,1-二氟乙烯)-六氟丙烯-共聚物与大量的碳酸异丙烯酯、邻苯二甲酸二甲酯或其它的高沸点增塑剂发生反应,这些物质本身也可以作为电解液盐的溶剂。将这些成分形成薄膜。为了活化电池,把其浸泡在相应的电解液中,使得隔膜吸满电解液溶液。高的增塑剂含量使得薄膜的抗老化能力很差;在贮存几个星期后,就会观察到粘度变化,产生脆性,直至崩溃为粉末,这可能是与周围湿气发生作用的结果。因而,在其优选的改进方案中,增塑剂被事先通过高成本的洗涤步骤洗出。此外,电解液的容量也降低了。在由这样的薄膜制备的电池中,洗涤步骤会额外形成应力和接触不良(Dekontaktierung),其机械稳定性受到严重损害。当电池后来进行活化时,还会观察到电化学分解反应。由于薄膜是在脱除增塑剂之前进行层叠,所以层叠作用只能在低于聚合物熔点的温度(约145-150℃)下进行,该温度根据增塑剂的含量一般不许超过80-130℃。另一个缺点是通过孔结构添满液体电解液而与接触网(Kontaktnetze)形成直接接触,其中一般来说,铝在正电侧,而铜在负电侧。这样的结果是在两个金属之间发生电解液的分解,而失去参比作用。
总之,前述现有技术的薄膜具有以下一个或多个缺点:
(1)各个薄膜形成电化学复层品的压力层叠作用或热层叠作用显得不足;
(2)由薄膜叠层制得的元件的电化学稳定性不够;
(3)在溶剂抽提之后产生薄膜的收缩、撕裂或粘连;
(4)所使用的薄膜的老化稳定性不够,特别是在存在化学负荷或机械负荷时,即使这种负荷很小。
(5)所使用的许多增塑剂如邻苯二甲酸二烷基酯等具有毒性,或在水中具有毒性。另外一些增塑剂则无法重复利用,或很难重复利用。
(6)某些薄膜是吸湿的。在这种情况下,在热或压力下进行层叠作用时,汽泡会使叠层接触不良,部分被损坏。特别是用于锂电池和所有系统的薄膜,其自身利用可能的过电压使水发生分解,更不能是吸湿的。
(7)在制备卷曲的电化学活性系统时,所得薄膜的柔韧性和稳定性不够大。
本发明的任务是提供一种性能改善的薄膜,由这些薄膜可以制成薄的复层品状的电化学构件;所述的薄膜应该不具有所列举的现有技术的缺点。另外,本发明还提供了一种膏状物质,由该膏状物质可以制得所述的薄膜。
本发明特别提供了一种具有很高的柔韧性和抗撕裂能力的薄膜,利用由其制得的具有电化学性能的层合的复层品,可以制备同样具有高柔韧性和很好的电子导电性和离子导电性的可再充电的电池(蓄电池)、电色指示元件或类似元件。
本发明的任务可以如此解决:按照本发明的方式准备可用于电化学构件中的膏状物质,该膏状物质为一多相混合物,包括:(A)一种基体,该基体含有至少一种有机聚合物、其前体物(Vorstufe)或预聚物(Praepolymer),或由它们构成;以及(B)一种可电化学活化的、在基体中不溶解的无机固体材料。这种膏状物质可以被加工成具有所需要性能的薄膜,然后所得薄膜又可进一步结合成相应的电化学构件。
术语“可用于电化学构件中”是指,可电化学活化的无机固体材料必须是离子导电的或电子导电的材料,并适合用作电极材料或固体电解液(Festelektrolyt)。
上述混合物中应该不含有溶于增塑剂中的、与(B)不同的导体(不论其为电子导体、离子导体或混合导体)。
本发明将通过附图进行进一步说明,其中图1-3是实施例1制备的三个电池的循环曲线。
这种物质通过使用适当的基体(A)而具有膏状粘稠度。术语“膏状”应该是指,所述物质在制成后,可通过常用的膏剂涂覆方法进行加工,例如进行压延、挤出、浇铸、涂抹、用刮刀涂抹、擦涂或用各种压印方法,把所述物质涂到基板上;优选制成自涂覆的层,但这并非是唯一的选择。根据需要,其粘稠度可以从较稀到很粘稠。
很多种物质可以被用作基体(A)。此处可以采用无溶剂的或含溶剂的体系进行加工。例如,可交联的、液态的或膏状的树脂体系可作为无溶剂的体系。如可使用交联的加聚物或缩合树脂。因此,能够采用例如氨基塑料或酚醛塑料(Novalake,酚醛清漆)的预缩合物,它们在膏状物质形成电化学复层品的层以后被最终交联起来。其它例子是:不饱和的、如通过接枝共聚而可与苯乙烯交联的聚酯、通过有双功能的反应物进行硬化的环氧树脂(如双酚-A-环氧树脂,利用聚酰胺进行冷硬化)、可交联的聚碳酸酯如可通过多元醇交联的聚异氰脲酸酯、或者二元的聚甲基丙烯酸甲酯,它同样可与苯乙烯聚合。膏状物质总是由作为基体(A)的或者采用其作主要成分的、多多少少粘稠的预缩合物或未交联聚合物和增塑剂,与成分(B)一起构成。
另一个可能性就是,采用聚合物或聚合物前体物以及用于该有机聚合物的溶剂或膨胀剂(Quellmittel)。在这里,一般对使用合成或天然聚合物没有限制。不仅含碳主链的聚合物是可行的,而且主链具有杂离子的聚合物如聚酰胺、聚酯、蛋白质或多糖也是可行的。聚合物可以是均聚物或共聚物,共聚物可以是统计结构共聚物、接枝共聚物、嵌段共聚物或高分子共混物,而且这里也没有限制。作为具有纯碳主链的聚合物,例如可以采用合成或天然的橡胶。特别优选含氟的烃类聚合物,如特氟龙(Teflon)、聚(偏1,1-二氟乙烯)(PVDF)或聚氯乙烯,因为在由此类膏状物质构成的薄膜或层制品中,能够获得很好的疏水性。这给由此获得的电化学构件提供了很好的长期稳定性。其它例子是聚苯乙烯或聚氨基甲酸酯。共聚物的例子可以是特氟龙与非晶态含氟聚合物的共聚物以及聚偏1,1-二氟乙烯/六氟代丙烯(目前可以作为Kynarflex买到)。作为在主链中含杂原子的聚合物,可以是二胺二羧酸型的聚酰胺或者氨基酸型聚酰胺、聚碳酸酯、聚缩醛、聚醚和丙烯酸树脂。其它材料包括天然和合成的多糖(均聚糖和杂聚糖)、蛋白多糖,如淀粉、纤维素、甲基纤维素。也可以采用象软骨素硫酸盐、透明质酸、甲壳质、天然或合成的蜡和许多其它物质。此外,上述树脂(预缩合体)可以在溶剂或稀释剂中使用。
用于上述聚合物的溶剂或膨胀剂是本领域普通技术人员所熟知的。
基体(A)中的一种基本组分是所用聚合物中的增塑剂(也叫软化剂)。在这里,增塑剂或软化剂应被理解为是这样的物质,即其分子通过副价键(范德华力)与塑料分子结合。由此它们降低了大分子之间的相互作用力,并由此降低了塑料的软化温度、脆性和硬度。此处还可以包括一系列其它物质,通常是膨胀剂。增塑剂的作用是使由所述膏状物质生产的层制品具有较高的机械韧性。
根据本发明,膏状物质(B)中的可电化学活化的材料不溶于增塑剂中,当然,不言而喻,也不应当溶于聚合物任选使用的溶剂或膨胀剂中。
令人吃惊的是,当增塑剂选自如下物质或其混合物时,可以同时克服上述的所有缺点,而且具有下面所述的特殊的优点,所述的物质含有如下基团:
式中,A1和A2彼此独立地为R1、OR1、SR1或NHR1,或者A1和A2与D一起构成5元杂环;D为C=O、S=O、C=NH或C=CH2,另外当D与A1和A2构成所述的5元杂环时,也可以为O、S、NH或CH2;R1为直链或支链的、有时也可为环状的C1-C6烷基,优选为甲基、乙基、正丙基、异丙基、正丁基或异丁基。
按照上述的标准,优选使用碳酸酯或酯类和其硫的类似物(Analoga)和氨基的类似物。
从上面的通式中可以看出,在本发明特别优选的增塑剂的空间结构中,具有A1-D-A2基团,D或者在A1和A2之间成环,或者D中含有四价的原子,其中包括一个双键和两个单键。因而,A1-D-A2的基本结构是四面体、平面四面体或者平面结构。
在一特别优选的实施方式中,A1和A2选自O、CHR2、NH或S,其中R2是氢、甲基或乙基,而且A1和A2与D一起形成一个5元杂环。尤其优选的是,A1+A2处于环-E1-CHR2-CHR2-E2-中,其中E1和E2为S、O、CHR2或NH,可以相同或不同。下表中列出l一些非常优选的增塑剂,并同时列出了各类化学方法的物质归类。
表1
名称 外形     化学式     归类
二甲亚砜* 四面体     C2H6OS     Xi
碳酸二甲酯碳酸甲乙酯碳酸二乙酯碳酸甲丙酯 四面体,线性部分     C3H6O3C4H8O3C5H10O3C5H10O3 无疑的
碳酸亚乙酯1*亚乙基亚硫酸酯2*N,N′-亚乙基脲3*碳酸异丙烯酯CH3-基团4*二氧戊环 四面体,五角环醚类的     C3H4O3C2H4O3SC3H6N2OC4H6O3C3H6O2     Xi无疑的XnXi无疑的
5*四氢呋喃6*g-丁内酯O-基团 五角环,醚类的     C4H8OC4H6O2     XiXn
*二甲亚砜在结构上与二甲基碳酸酯相似,其中,二甲基碳酸酯中以单键连接在四面体的中心碳原子上的两个氧原子,被连接在该中心碳原子上的S所取代;1*在亚乙基亚硫酸酯中,相对于亚乙基碳酸酯而言,四面体的中心碳原子被硫取代;2*在N,N′-亚乙基脲中,相对于亚乙基碳酸酯而言,通过单键连接在四面体上的两个氧原子被NH-基团所取代;3*在碳酸异丙烯酯中,相对于亚乙基碳酸酯而言,CH2-基团上的一个氢原子被另外一个CH3-基团所取代;4*在二氧戊环中,相对于亚乙基碳酸酯而言,通过双键连接在四面体碳原子上氧原子被H2-基团取代,其性质向醚变化;5*在四氢呋喃中,相对于亚乙基碳酸酯而言,四面体的中心碳原子被氧原子取代,而通过单键连接在该四面体上的氧原子则被CH2-基团取代,四面体消失,但仍保留五元环的结构,其化学性质则变为环醚的性质;6*在γ-丁内酯中,相对于四氢呋喃而言,与环中的氧原子直接相连的CH2-基团中的两个氢原子被一个氧原子所取代。
本发明的增塑剂对于薄膜的粘度、均匀性和柔韧性有直接影响。优选采用不对称的环状结构;对称的环状结构同样给出很好的结果,最坏情况下只是稍微变差。没有封闭的环的话,结果会变差,可能是由于挥发性较高的原因。特别令人惊异的是,很小的增塑剂含量就可以明显改进材料的贮存性能和柔韧性。而且令人惊奇的是,按照本发明定义的许多增塑剂,目前多作为膨胀剂。
由上述的膏状物质、层制品和薄膜制成的电化学构件,其电化学稳定性的改进可以如此实现,通过在成形时(第一次充电循环)电池的电化学电极反应(Seitenreaktion),在两极或只是一极(即正/负电极)处形成一层薄的、离子的或混合的导电固体层,其为增塑剂与锂和/或其它的电极成分的反应产物。特别是要求增塑剂中的硫和氮,其会形成连接在负极上的、具有良好的离子导电性的层。增塑剂中的四面体和/或环状分子结构对于抗氧化(正极)的电化学稳定性特别有利。分子被硫、氮、氢或由它们构成的基团取代时,显示出相反的、直至很高的氧化稳定性。
增塑剂优选不使用太高的含量,其在基体针中的含量可以是0.05-50wt%,优选最高为15wt%,更优选为约12wt%或更低,进一步优选为最高约10wt%,最优选为不超过5wt%,此处所说的含量是以可电化学活化的材料的量为基准。值得推荐的是,在各系统中增塑剂的含量要尽可能的低。当从加工技术来考虑,在膏状物质中采用了相对较多的增塑剂时,那么比较希望的是,随后(在薄膜成形后)将一部分增塑剂予以脱除,例如在最高为10-2毫巴、有时在较高温度下(最高约150℃,优选为65-80℃)进行真空抽提。或者抽提可以在环境压力下通过干燥和加热进行,优选加热至120℃,有时加热至200℃。
本发明的膏状物质可以按照常规方法通过混合所必需的各种成分而制得,优选在基体(A)的有机聚合物或其前体物或预聚物的溶剂存在下进行。一般来说,没有必要采用压力,例如使用挤出机,但有时可以考虑这样作。
本发明令人惊异地发现,当存在增塑剂时,特别是具有优选结构的增塑剂时,所制得的薄膜的性质得以明显改进,而这些增塑剂的用量优选尽可能地维持较低。一种可能性是,对聚合物-增塑剂混合物的未曾预料的性质共同负责的是:如果采用对于薄膜粘度尚能承受的最低的含量,那么薄膜的层合就可令人吃惊地在聚合物的熔点或高一些的温度范围内进行,而不管聚合物-增塑剂混合物一般会显示熔点较低。这样就可得到如此的叠层,其通过聚合物层合而成,其具有特别长的寿命,而且具有良好的接触性能。与此相反,在基体中增塑剂含量较高时,通过增塑剂进行的层合作用不可避免地具有缺点,因为在叠层中增塑剂会随着时间的迁移而发生扩散。
增塑剂含量较低的另一优点是可以降低避免薄膜中水的传输转移(大多数增塑剂是吸湿的),这种传输转移会使水留在和包含在薄膜中。按照本发明方法,在制成的产品中,水的含量非常低,所制得的薄膜在按标准方法干燥后,量轻质优。
本发明的膏状物质适合于制备薄层制品,如薄膜,而这些薄膜又制备薄膜电池和其它相应的电化学构件如电色指示元件等。这些元件的各个层或薄膜可以叫做“带(Tapes)”。此处,各个电化学活性的或可电化学活化的层可以彼此涂覆,紧密接触。
本发明还包括独立的或贴覆在基板上的电化学活性层或活化层(最好是具有上述厚度的),它们由上述的膏状物质制成。所述层最好是柔性的。
通过上述的基体,薄膜可以具有一定的粘度,所述的基体由前述的支撑聚合物和一种或多种前述的增塑剂(n)(软化剂(n))组成,所述的聚合物有时(优选地)溶于溶剂如丙酮中。在制备膏状物质时所使用的溶剂,优选在膏状物质固化成薄膜的过程中或之后,再予以除去(例如通过真空和/或热脱气),而增塑剂至少部分地保留在所形成的薄膜中。保留下来的增塑剂可以起这样的作用,其可以防止薄膜制备过程中粉末状成分的沉积。而且,许多上述的聚合物组成(例如一种优选的组成是由或通过使用聚偏1,1-二氟乙烯/六氟代丙烯(PVDP/HFP,Kynarflex)共聚物的基本成分而得到的)具有很低的结晶度、较高的柔韧性,并脆性很低。然而,在薄膜制备过程中,不一定要阻止可能的去混作用和沉积作用。
为了生产独立层(薄膜或带)或贴覆在基板上的层,可以参照现有技术已知的常见方式,这些方式可以用于相应的基体聚合物材料。重要的技术是所谓的带铸(Tape-Casting)、翻转滚压涂覆、浇铸、喷涂、刷涂或滚压。根据材料的不同,膏状物质的凝固可以通过硬化(对树脂或其它预缩合物来说)、预聚物或线性聚合物的交联、溶剂蒸发或类似的方式方法实现。为了获得独立的薄膜,例如可以在砑光机中将适当的膏状物质制成适当的厚度。此处可以参见标准技术。独立层也可以通过把膏状物质涂覆到基板上,在其凝固后将所形成的层进行剥离而形成。涂覆可以按照常用的膏状物质涂覆方法来进行。例如,此处可以是涂抹(Auftreichen)、刮擦(Aufrakeln)、溅镀(Aufspritzen)、旋涂(Spincoating)等方式。也可以采用压印技术。薄膜层合成复层品可以在合适的温度下进行,例如对于前面所提到的PVDF/HFP系统而言,可以在100-250℃下以适当的方式进行,优选在135-150℃下进行。有时也可以有温度梯度。连续的薄膜可以动态地连续进行层合。此处压力优选为约0.5kg/20cm2
在本发明的一个设计方式中,如以上对膏状物质所述的那样地采用了可交联的树脂(预缩合体),并且在形成层制品后通过紫外线或电子束照射而硬化。硬化当然也可以通过热或化学方式实现(例如将所形成的层制品浸泡在适当的液池中)。有时也可以在膏状物质中加入适当的引发剂或促进剂等,以便实现交联。
按照本发明所制备的用于电化学构件的薄膜具有一系列的优点:(a)原料的贮存性能足够高(还没有结合为复层品的层制品具有很好的贮存性能);(b)可以进行灵活、多变的造形;(c)所得薄膜的贮存空间节省(例如可以堆积和/或卷曲);(d)由于没有低沸点的材料以及使用固体的离子导电体,因而具有较高的耐受温度能力;(e)由于可电化学活化组分的固体聚集状态,所得薄膜无溢出问题,且具有抗腐蚀能力;(f)由于在优选的方式中毫无疑问地采用基本上对健康有利的基体和增塑剂,因而在使用粘合剂之后可以进行提取,通过过滤重新获得原料并重新利用;(g)与薄膜表面上的颗粒大小、形状、密度及官能团无关,可以加工各种不同的电极材料和电解液材料。这也适用于金属粉末,一定比表面的金属粉末(例如薄片状如镍薄片等)也可以用作电子导电能力改性剂。
在本发明一个特定的实施方式中,由本发明的膏状物质制得的薄膜接着用溶解的第二电解液浸渍。这可以如此进行,即在薄膜或层合的薄膜复层品上涂覆电解液溶液,或者将薄膜或薄膜复层品浸于相应的溶液中。在如下的薄膜/薄膜复层品中可以以特别优选的方式进行,即其中过量的增塑剂事先按前述予以除去的薄膜/薄膜复层品,或者原来在其中只使用了很少增塑剂的薄膜/薄膜复层品。在薄膜或薄膜复层品装料之后,可以按有利的方式进行干燥,例如在70-90℃下干燥数个小时。在此“转化”过程中,聚合物、增塑剂和电解液的反应产物形成了一层很薄的、柔软的离子导电层。此处,所述的电解液由于前述方法而固化;尽管使用了溶解的电解液,这样所得的带或电池(也即薄膜或薄膜复层品)具有特别高的防溢出能力。例如,锂盐可以作为很好的电解液。此处特别优选使用LiClO4、LiNO3、LiBF4、LiPF6、LiSO3CF3或LiC(SO2CF3)3或其混合物。溶剂可以采用增塑剂,其在前面作为本发明基体(A)的组分,优选那些如前面所述的具有A1-D-A2基团的物质或其混合物。所选的增塑剂或所选的增塑剂混合物在加工温度下应该是液体的。
本发明薄膜的厚度无特殊限制;本领域的技术人员可以根据相应的用途选择厚度。例如厚度可为约10微米至约1-2毫米,强烈优选为约50微米至1-2毫米,有时厚度可更大(例如厚至约10毫米,为了减小构件的尺寸,也可以形成这种厚薄膜,例如用于医药用途的电池和蓄电池,如听力医疗器件的电池)。在所谓的“厚膜技术”中,制备电化学构件所用的薄膜,其厚度优选为约50微米至500微米更优选为约100-200微米。当然,本发明也可以制备相应的薄层构件(这一概念是指薄膜厚度优选为100纳米至几个微米)。但是这种应用受到限制,因为相应的构件在许多情况下不能满足一般的电容要求。不过,可以想到将其用于如备份芯片。
本发明还涉及具有电化学性能的复层品,尤其是如蓄电池和其它电池或电色构件,它们是由适当地排列上述层制品而形成的或者包括这些层制品。
为了生产复层品,通过膏状物质涂覆方法逐层地涂上膏状物质。此处,可以对每一层进行交联处理,或者使其脱除溶剂,或通过其它方式使其制成层状;但还可以在结束所有层的涂覆后,通过交联或者蒸发溶剂或膨胀剂等措施,使各基体凝固。如果这些电化学活化层是用与彩色印刷法类似的压印方法涂上去的,则后一种情况是有利的。此类例子如挠性印刷(Flexodruck)技术,借助这样的技术,可以连续快速地(几米/秒)给基板印刷上所需的电化学活化层。
或者,每一个层或膜分别达到其最终凝固状态。它可以是独立的膜,要形成构件的相应成分分别地例如作为卷曲的薄膜进行存放,随后通过层压技术相连。为此可采用传统的层压技术。例如,挤出复层技术,其中第二层通过压辊与底层复合;砑光复层技术,其利用两个或三个辊缝,其中除了膏状物质外,还加入载流子轨;叠轧法(最好用被加热的辊进行压力复合)。技术人员可以毫无问题地找到这样的相应技术,即通过选择用于各膏状物质的基体,获得这样的技术。
如上所述,本发明的膏状物质和由此形成的薄膜或层制品适用于许多电化学构件。本领域技术人员可以为此选择这样的固体材料(B),将其用于典型的电化学构件即没有添加塑料的电化学构件。
特别是对锂系统(其具备实际上最高的体积能量密度以及电压能量密度),由于必须提供大的接触面积,以补偿因使用水体系而是离子导电能量降低了三个数量级的问题,因而人们必须依赖薄膜。对于较高的上百万件数如3-Markt,必须使用卷状薄膜的连续制备方法,因为否则的话必需的行程时间(Taktzeit)就不够。
例如,以下列举了一系列此类的锂系统:
-下分接电极:   Al、Cu、Pt、Au、C
-阳极:         锂钴氧化物、锂镍氧化物和锂锰氧化物所有可
                能的组合、多元化合物,有时可被镁、铝或氟
                取代
-电解液         Li1.3Al0.3Ti1.7(PO4)3、LiTaO3·SrTiO3
                LiTi2(PO4)3·Li2O、Li4TsiO4·Li3PO4
-阴极           炭(优选的改进)、TiO2、TiS2WO2、MoO2钛酸
                锂、锂合金金属、氧化物、碘化物、硫化物
                或氮化物、锂合金的半导体或此类不均匀混
                合物
-上分接电极     Al、Cu、Mo、W、Ti、V、Cr、Ni
其应用实例包括锂电池、锂聚合物电池、锂塑料电池、锂固体电池或锂离子电池。
但本发明显然不局限于锂技术的蓄电池;如上所述,它可以用于制备所有的“常规”技术体系,即所有的不使用有机聚合物基体的体系。
下面将描述一特定的膏状物质的方案,其可用于特定的构件或构件上的组分。只要在此所用的可电化学活化的组分不是现有技术的,就应该明白,这些材料也可以以“Bulk-Form”用于相应的电化学构件中的,即没有聚合物基体。
通过选择合适的电化学活性的材料,就可以制备电化学构件,如蓄电池,其具有这样的充放电特性曲线,借助于此有可能控制蓄电池的充放电状态。用前述两种电极材料或其它相应电极材料的混合物,可以作为正极或负极的可电化学活化的固体材料(B),这些材料具有不同的氧化/还原步骤。两种材料中的一种可以用碳来代替。这会产生特性的充放电曲线,从而有可能对由这样物质制成的蓄电池的充放电状态进行有利的检测。其曲线具有两个不同的平台。如果接近放电状态的平台,那么使用者就会知道,他需要马上进行充电了;相反也是如此。
如果在用作负极的膏状物质中有碳和一种可与锂形成合金的元素,这会使得这样制得的电极(具有合金电极和嵌入电极(Interkalationelektrode)的性能)具有特别高的容量,而且电化学稳定性得以改善。另外,与纯粹的嵌入电极相比,占用空间较小。
如果本发明的膏状物质用于电极中,那么还可另外加入导电能力改进剂。此处可以采用石墨或无定形炭(炭黑)或二者的混合物,也可以采用金属粉或氮化物;特别有利的是,采用以可电化学活化的成分计,约2.5-约35wt%的的无定形炭。如果膏状物质用于正极,那么炭的润滑作用是一种有利的性质,其可以改善由膏状物质制得的层制品的机械韧性。如果膏状物质用于负极,那么还会改善电化学稳定性和电子导电能力,如同前面所述。
本发明的膏状物质也可以用于其它电极,作为嵌入电极。此处的一个实例是金属粉与碱金属盐或碱土金属盐作为可电化学活化的固体物质(B)。这样所得的膏状物质可以用于制备分解电极(Zersetzungselectrode),其没有对于嵌入电极来说典型的体积膨张,从而可以获得更好的耐老化性能。此处的实例之一是采用铜加硫酸锂。
令人惊异的是,本发明膏状物质中加入由Li4SiO4·Li3PO4组成的相化合物(Phasengemisch),会增加所制备的电极或固体电解液的可塑性,而这与所计划的电化学应用目的无关。此处的前提是,相混合物要研磨得特别细。这种特别小的颗粒粒径有助于改进其内聚胶黏作用。
与固体材料(B)是电极材料还是电解液材料无关,其可以由一种锂离子导体和一种或多种其它的离子导体(Li、Cu、Ag、Mg、F、Cl、H)组成。这样的电极或电解液层制品具有特别有利的电化学性能,如容量、能量密度、机械稳定性和电化学稳定性。
由上述成分制成的本发明膏状物质,能够通过传统方式方法混合起来,优选通过猛烈搅拌或组分捏合。优选在加入组分(B)之前,有机聚合物或其前体物与增塑剂在溶剂或膨胀剂中预溶解或预膨胀。
在基体(A)中埋入固体材料(B)可以避免高温下可电化学活化的材料粉末的粘结(Sintern);这种粘结在“超规的”电化学构件中是常见的,它使得原料不再具有糊状的粘稠度。
使用本发明的膏状物质制备电化学构件时不受限制。在这里,下述设计方案只应被视为是例子或优选设计方式。
因此,可以按照厚膜技术生产充电式电化学电池,即其中电化学活化层的厚度约为10微米至1-2毫米,最好约为100-200微米。如果电化学电池基于锂技术,那么可采用上述的物质作为电极或电解液层的固体材料。此处至少设置三层,即起阳极作用的一层、起固体电解液作用的一层和起阴极作用的一层。
事实表明,根据本发明,如果遵守某些临界条件,则在蓄电池中获得了很有利的电流密度。众所周知,电流密度可以通过电解液电阻来调整。如果它选得太高,则电极可能因长期极化而受到破坏;如果太低,则所得蓄电池的功率只够几个使用区使用。上述临界条件最好是1mA/cm2。例如,当电解液电导率如为10-4S/cm,则电解液层厚度约为100微米时特别有利。这样,1mA/cm2的电流密度在其电阻上产生的压降约0.1伏,可忽略不计。当电解液电导率如为10-5S/cm,则电解液层的厚度降为约10微米。因此,值得推荐的标准是,层厚度d与电导率sion和离子电阻(W)相对于表面A的关系满足以下公式:
200W<d/(sion*A)
上述三层电池(或任何其它一种由阳极/电解液/阴极构成的电化学构件)还可以设置分接电极,其由用适当材料(用于锂技术中分接电极的材料如上所述)制成的膜构成。
在本发明的一个特定设计方案中,在下分接电极和与其相邻的电极以及在上分接电极和与之相邻的电极之间,加入另一个薄塑料层(中间带),它同样可以利用本发明的膏状物质而制成。该薄塑料层应该含有导电的金属元素或其合金,这些金属元素或合金适用于把各电极材料中的电子转移给分接电极。如果所述的塑料层位于阳极和其所属的分接电极之间的话,这样的元素是金、铂、铑、碳或这些元素的合金;如果所述的塑料层位于阴极和其所属的分接电极之间的话,这样的元素可以列举出镍、铁、铬、钛、钼、钨、钒、锰、铌、钽、钴或碳。为了形成并浓缩这些膏状物质(膏状物质用于形成这些层),对电极和电解液的以上描述同样也是适用的。
例如,本发明的电化学构件能够被密封在以塑料为基底的外壳中,优选涂有塑料的铝箔。塑料外壳与金属外壳相比,有利地减轻了重量,对能量密度也有利。
电化学复层品(电化学构件)可以被加到两个或多个由涂有蜡或石蜡的塑料构成的薄膜之间。这样的材料起到了密封作用并且还因为其固有性能而将机械压力传给复层品,由此一来,通过压力作用可有利地改善复层品中的接触。
如果电化学构件如上所述地或通过其它方式被密封起来,则人们可以对其内部施加预定的水分压/氧气分压,这产生了高的电化学稳定性。例如这可以通过将电化学构件密封在一个适当调节和选择参数的环境中来实现。
在本发明的另一实施方案中,选择这样的层作为电解液层:其由两层组成不同的膜层压制得,而且其与所用的电极相适应,且接触良好。这对于正极和电解液1之间以及负极和电解液2之间的界面稳定性起有利的作用。这一方案的具体实例是采用碘化锂作为第一层的电解液材料,而用Li1.3Al0.3Ti1.7(PO4)3作为第二层的电解液材料。
具有电色性质的原电池的实例是具有下列顺序的层结构:
导体1/Y/MeX-醇化物/WO3/导体2
在这一顺序中,金属Me如可以选择锂、钠、钾、铷和铯,其阴离子X如可以选择卤化物如氯化物、溴化物和碘化物。导体1如可以选自铟-锌-氧化物(ITO)、锌-铝-氧化物(ZnxAlyOz)和银。导体2如可以选自铟-锌-氧化物(ITO)和锌-铝-氧化物(ZnxAlyOz)。
本发明的电化学构件的层系列能够以任意形式排布。例如,柔性的复层品可以被卷起来,由此获得了特别有利的、结构紧凑的蓄电池几何形状。在蓄电池安装体积小的情况下,存在很大的电池活性面。
不独立的复层品能够被涂覆到固体底座如壁上,以便集中储能(独立的复层品当然能够同样被涂覆或粘上去)。在这里,能够利用较大的面积,而且蓄电池不需要自己的空间。这样设计方式的一个特定例子就是把蓄电池的复层品整合到太阳能电池的基板中。由此一来,太阳能电池的基板具有了自给自足的供能器件。蓄电池的系列层也能被涂覆到坚固或柔性的底板上,以便用到整体式储能器的电组装中。
以下,结合例子来详细描述本发明。
实施例1
为了生产电池薄膜(负极),将7g细粉状的Li4Ti5O12、1.0g乙炔黑(电池标准)、0.5g碳酸亚乙酯和1.25g聚偏1,1-二氟乙烯-六氟丙烯共聚物在约50g的丙酮中,或者使用磁力搅拌器,或者使用溶解器,搅拌至少4小时。上述混合物首先加热到100℃,在达到该温度后,再冷却到50℃,然后保持在该温度下。在搅拌的后期,进行浇注或刮刀增厚,以便用带铸(Tape-Casting)设备制得薄膜。如此选择刮刀缝,使得干燥后薄膜的厚度达到约150-200微米。所得薄膜在真空干燥箱中于70℃和1毫巴的低压下过夜干燥。
实施例2
如前述制备负极的方法,由9g细粉状的Li4Ti5O12(锂辉石)、0.9g碳酸亚乙酯和3.0g聚偏1,1-二氟乙烯-六氟丙烯共聚物在约30g的丙酮中进行加工,制备电池薄膜(电解液),其厚度为70-100微米。
实施例3
如前述制备负极的方法,由8g细粉状的LiCoO2(锂辉石)、1.2g乙炔黑(电池标准)、0.8g碳酸亚乙酯和2.0g聚偏1,1-二氟乙烯-六氟丙烯共聚物在约30g的丙酮中进行加工,制备电池薄膜(正极)。
在制备所有的薄膜时,原料的纯度都不应低于99%。
经适当的修剪后,下面表2中的各个薄膜可以层合制成完整的单个电池。
表2
     步骤 薄膜   温度 在6×3cm2的力   保持时间
  1a   在铜网上层合 负极Li4Ti5O12   150℃ 15kN   20秒
  1b   在镍网上层合 正极LiCoO2   150℃ 10kN   10秒
  2   层合电解液在负极上 电解液LiAlSi2O6(锂辉石)+负极   130℃ 4kN   60秒
  3   步骤2的对称层合,正极在步骤2的叠层上 正极+步骤2的叠层   130℃ 4kN   60秒
以热进料为基础,总共使用四个层合步骤比较有利,步骤1a和1b的顺序可以互换;与步骤1a和1b相比,步骤2和3的层合时间延长,因为电解液的导热能力比电极差得多。在步骤1a和1b中,电极被层合到网上,该网用炭黑加聚合物的混合物进行预处理。这样可以保持柔韧性。
层合的质量非常高,既没有观察到气泡,也没有观察到接触不良。
制好的电池部分熔接到非对称的、带有塑料衬层的60微米厚的铝箔上,此处所述的网被引到两个接触火焰上。随后,所述电池用第二固体电解液活化,然后进行密封熔接;该固体电解液加入到一可吸收的溶液中(0.66摩尔/升LiBF4,于碳酸亚乙酯和碳酸二甲酯的混合物中,二者的重量比为2∶1)。
如果将钛酸锂Li4Ti5O12用于负极,由于该白色或灰白色的粉末首先是一种离子的绝缘体和电子的绝缘体,因而会带来巨大的挑战。在钛酸锂颗粒表面上的结合以及充放电循环中电池的结合能力,只有在最优化的不均匀薄膜中才是可能的,该薄膜通过乙炔黑而具有电子导电能力,通过第二电解液而具有离子导电能力。
附图1-3三个电池的充放电循环曲线,这三个电池是根据前面所述的方法制得的。作为层厚度、薄膜质量和层合方法的函数,其重复性是非常高的。
一个非常根本的结果是充电因子(Ladefaktor)实际上达到了1。该因子是指充入电荷和放出电荷之间的比例。1表明电池没有自放电。作为比较,Ni-Cd或Ni-MeH电池为1.6。同样令人吃惊从这些曲线中可以发现,这些电池具有非常稳定的充放电循环,也即在每一后续的充电或放电中,其绝对的输入电荷和放出电荷的损失不存在,或者及其小。本实验没有给出充放电循环的最大次数,因为在几百次循环后电池仍没有显示出性能降低的迹象,而几百次循环的测量时间很轻易就会超过1年。

Claims (30)

1.一种可用于电极层和电解质层的膏状物质,它包括含有以下成分的不均匀混合物:
(1)含有至少一种有机聚合物、其前体物或预聚物以及增塑剂的基体A,或由这些成分构成的基体A;
(2)一种离子导电的或电子导电的、在基体中和在水中不溶解的固体无机材料B;
而且,溶于增塑剂中的、与固体无机材料B不同的导电体不存在于所述混合物中,其特征在于,以离子导电的或电子导电的材料B计,增塑剂的含量最高为5wt%。
2.如权利要求1所述的膏状物质,其特征在于,所述的增塑剂选自如下的物质,其含有如下基团:
Figure C008151330002C1
式中,A1和A2彼此独立地为R1、OR1、SR1或NHR1,同时R1为C1-C6烷基;或者A1和A2与D一起构成5元杂环;D为C=O、S=O、C=NH或C=CH2,另外,当D与A1和A2构成所述的5元杂环时,D也可以为O、S、NH或CH2
3.如权利要求2所述的膏状物质,其特征在于,A1和A2彼此独立地为O、CHR2、NH或S,R2为氢、甲基或乙基,而且A1和A2与D一起构成5元杂环。
4.如权利要求3所述的膏状物质,其特征在于,A1和A2一起为-E1-CHR2-CHR2-E2-,其中E1和E2可以相同或不同,并表示为S、O、NH或CHR2
5.如权利要求2-4之一所述的膏状物质,其特征在于,所述的增塑剂选自二甲基亚砜、碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸甲丙酯、碳酸亚乙酯、亚乙基亚硫酸酯、碳酸异丙烯酯、二氧戊环、四氢呋喃、γ-丁内酯或其混合物。
6.如权利要求1所述的膏状物质,其特征在于,基体A中的有机聚合物选自天然聚合物和合成聚合物以及其混合物。
7.如权利要求6所述的膏状物质,其特征在于,所述的有机聚合物为卤化的、特别为氟化的聚合物,更优选为聚偏1,1-二氟乙烯-六氟丙烯共聚物。
8.如权利要求6所述的膏状物质,其特征在于,所述基体A中还包括用于有机聚合物、其前体物或预聚物的溶剂或膨胀剂。
9.如权利要求1所述的膏状物质,其特征在于,所述的离子导电的或电子导电的材料B选自可以作为正极电极材料的物质、可以作为负极电极材料的物质、可以作为固体电解液的物质、可以作为电色活性的电极材料、在两个相邻的电化学构件之间可以作为离子的或电子的中间导体的物质或材料。
10.如权利要求1所述的膏状物质,其特征在于,B是电极材料,而且所述膏状物质还含有导电能力改进剂,以固体物质B计其含量优选为2.5-35wt%;所述导电能力改进剂优选选自炭黑和/或石墨、金属元素和氮化物。
11.一种独立的或贴覆在基板上的层制品,它包括含有以下成分的不均匀混合物:
(1)一种如权利要求1-8之一所述的、含至少一种有机聚合物和一种增塑剂的基体A,或由这些成分构成的基体A;
(2)一种如权利要求1或10所述的、离子导电的或电子导电的、在基体中不溶解的无机固体材料B;以及任选的
(3)如权利要求10所述的导电能力改进剂C。
12.如权利要求11所述的独立的或贴覆在基板上的层制品,其特征在于,所述的层制品是柔性的薄膜。
13.如权利要求11或12所述的独立的或贴覆在基板上的层制品,其特征在于,它还含有一种电解液,该电解液以溶解的形式进入到所述的层制品中。
14.一种具有电化学性能的复层品,它包括:
(1)一种如权利要求11-13之一所述的层制品,其中,离子导电的或电子导电的无机材料B选自于一种适用于正极的材料;和/或
(2)一种如权利要求11-13之一所述的层制品,其中,离子导电的或电子导电的无机材料B选自于一种具有固体电解液性能的材料;和/或
(3)一种如权利要求11-13之一所述的层制品,其中,离子导电的或电子导电的无机材料B选自于一种适用于负极的材料。
15.一种如权利要求14所述的具有电化学性能的复层品,其特征在于,在具有正极材料的层制品上还有起下分接电极作用的层制品,在具有负极材料的层制品上还有起上分接电极作用的层制品。
16.如权利要求15所述的具有电化学性能的复层品,其特征在于,在起下分接电极作用的层与具有正极材料的层之间,和/或在起上分接电极作用的层与具有负极材料的层之间,还存在一个薄塑料层,该薄塑料层含有导电元素、金属元素或由这些元素构成的合金,所述元素或合金适用于将电子从各电极材料中输送到各分接电极中。
17.一种厚膜技术中可再充电的电化学电池,其包含一种如权利要求14-16之一所述的、具有电化学性能的复层品。
18.一种如权利要求17所述的可再充电的电化学电池,其特征在于,用于正极的离子导电的或电子导电的材料选自于锂钴氧化物、锂镍氧化物、锂锰氧化物、其混合物或多元化合物和/或被镁、铝或氟所取代;和/或用于电解液的离子导电的或电子导电的材料选自于天然的锂盐和矿物质,优选锂辉石、β-锂霞石和透锂长石,以及合成的锂盐,优选那些含有另外的主族或副族元素阳离子的盐;和/或用于负极的离子导电的或电子导电的材料选自于碳变体、二氧化钛、二硫化钛、二氧化钨、二氧化钼、钛酸锂、含锂合金的金属、半导体材料、氧化物、碘化物、硫化物、氮化物或其它不均匀的混合物。
19.如权利要求17所述的可再充电的电化学电池,其特征在于,它具有如权利要求14所述的层制品(1)、层制品(2)和层制品(3),而且至少层制品(2)还含有电解液,该电解液是以溶解的形式进入到所述层制品中的。
20.如权利要求17所述的可再充电的电化学电池,其特征在于,其所含的层制品或薄膜,相对于锂而言,具有0-3伏特至0-5伏特、优选0-4.5伏特的稳定窗。
21.一种制备如权利要求12所述的柔性薄膜的方法,其特征在于,将如权利要求1-10之一制得的膏状物质以薄层状涂覆于基底上,然后将所得到的层制品进行干燥。
22.如权利要求21所述的方法,其特征在于,所述干燥是在最高为10-2毫巴的低压下进行,温度为环境温度至150℃,优选为65-80℃。
23.如权利要求21所述的方法,其特征在于,所述的干燥是在环境温度至最高200℃下进行,优选在至约120℃的范围下进行。
24.一种制备如权利要求13所述的独立的层制品的方法,其特征在于:
(1)将如权利要求1-10所述的膏状物质制成薄层状,并将所得的层制品进行干燥;
(2)使干燥后的层制品与溶解的固体电解液接触,使其穿透所述的层制品,薄膜在约70-90℃的范围内进行干燥。
25.一种制备如权利要求14所述的复层品的方法,其特征在于,将制备层制品所需的膏状物质分别制成单个的独立的层制品,随后将这些层制品进行层合作用。
26.如权利要求25所述的方法,其特征在于,所述的层合作用是在所使用有机聚合物的熔点或软化点上、下5℃的范围内进行的。
27.如权利要求25所述的方法,其特征在于,所述的层合作用是在100-250℃的温度范围内进行的,优选在135-150℃的范围内进行。
28.如权利要求25所述的方法,其特征在于,所述的层合作用是在最低压力为0.5kg/20cm2的压力下进行的。
29.如权利要求25-28之一所述的方法,其特征在于,层合后的复层品随后与溶解的固体电解液接触,使其穿透所述的复层品,然后在约70-90℃的温度范围内干燥所述的复层品。
CNB008151334A 1999-10-29 2000-10-18 电化学构件用的薄膜及其制备方法 Expired - Lifetime CN1316669C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19952335A DE19952335B4 (de) 1999-10-29 1999-10-29 In elektrochemischen Bauelementen verwendbare pastöse Masse, damit gebildete Schichten, Folien, Schichtverbünde und wiederaufladbare elektrochemische Zellen sowie Verfahren zur Herstellung der Schichten, Folien und Schichtverbünde
DE19952335.5 1999-10-29

Publications (2)

Publication Number Publication Date
CN1387684A CN1387684A (zh) 2002-12-25
CN1316669C true CN1316669C (zh) 2007-05-16

Family

ID=7927415

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008151334A Expired - Lifetime CN1316669C (zh) 1999-10-29 2000-10-18 电化学构件用的薄膜及其制备方法

Country Status (14)

Country Link
US (2) US7524580B1 (zh)
EP (1) EP1230708B1 (zh)
JP (1) JP5197905B2 (zh)
KR (1) KR100794058B1 (zh)
CN (1) CN1316669C (zh)
AT (1) ATE376261T1 (zh)
AU (1) AU1385501A (zh)
BR (1) BR0015072B1 (zh)
CA (1) CA2389153C (zh)
DE (2) DE19952335B4 (zh)
DK (1) DK1230708T3 (zh)
ES (1) ES2295065T3 (zh)
TW (1) TWI291256B (zh)
WO (1) WO2001033656A1 (zh)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19957285A1 (de) * 1999-11-29 2001-06-21 Fraunhofer Ges Forschung Folien für elektrochemische Bauelemente sowie Verfahren zu deren Herstellung
US20020122973A1 (en) * 2001-03-02 2002-09-05 Delphi Technologies, Inc. Method of preparation of lithium battery
DE10134057B4 (de) * 2001-07-13 2006-01-26 Dilo Trading Ag Verfahren zur Herstellung einer Lithium-Polymer-Batterie
DE10251241B4 (de) * 2002-11-04 2006-11-02 Dilo Trading Ag Verfahren zur Herstellung von Lithium-Polymer-Batterien
US7557433B2 (en) 2004-10-25 2009-07-07 Mccain Joseph H Microelectronic device with integrated energy source
EP1732846A2 (en) 2004-03-17 2006-12-20 California Institute Of Technology Methods for purifying carbon materials
CN101048898B (zh) 2004-10-29 2012-02-01 麦德托尼克公司 锂离子电池及医疗装置
US8980453B2 (en) 2008-04-30 2015-03-17 Medtronic, Inc. Formation process for lithium-ion batteries
US7563541B2 (en) 2004-10-29 2009-07-21 Medtronic, Inc. Lithium-ion battery
US20080044728A1 (en) * 2004-10-29 2008-02-21 Medtronic, Inc. Lithium-ion battery
US8105714B2 (en) 2004-10-29 2012-01-31 Medtronic, Inc. Lithium-ion battery
US7682745B2 (en) * 2004-10-29 2010-03-23 Medtronic, Inc. Medical device having lithium-ion battery
US9065145B2 (en) * 2004-10-29 2015-06-23 Medtronic, Inc. Lithium-ion battery
US7807299B2 (en) 2004-10-29 2010-10-05 Medtronic, Inc. Lithium-ion battery
US9077022B2 (en) 2004-10-29 2015-07-07 Medtronic, Inc. Lithium-ion battery
US7641992B2 (en) * 2004-10-29 2010-01-05 Medtronic, Inc. Medical device having lithium-ion battery
US7582387B2 (en) * 2004-10-29 2009-09-01 Medtronic, Inc. Lithium-ion battery
US7662509B2 (en) * 2004-10-29 2010-02-16 Medtronic, Inc. Lithium-ion battery
US7927742B2 (en) 2004-10-29 2011-04-19 Medtronic, Inc. Negative-limited lithium-ion battery
US8377586B2 (en) 2005-10-05 2013-02-19 California Institute Of Technology Fluoride ion electrochemical cell
US7794880B2 (en) 2005-11-16 2010-09-14 California Institute Of Technology Fluorination of multi-layered carbon nanomaterials
US8232007B2 (en) 2005-10-05 2012-07-31 California Institute Of Technology Electrochemistry of carbon subfluorides
US8658309B2 (en) 2006-08-11 2014-02-25 California Institute Of Technology Dissociating agents, formulations and methods providing enhanced solubility of fluorides
CA2727264A1 (en) * 2008-04-28 2009-11-05 Philippe Saint Ger Ag Device for power generation
EP2287945A1 (de) 2009-07-23 2011-02-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Leistungs- und energiedichteoptimierte Flächenelektroden für elektrochemische Energiespeicher
US20100279155A1 (en) * 2009-04-30 2010-11-04 Medtronic, Inc. Lithium-ion battery with electrolyte additive
TW201121680A (en) * 2009-12-18 2011-07-01 Metal Ind Res & Dev Ct Electrochemical machining device and machining method and electrode unit thereof.
KR20120036589A (ko) * 2010-10-08 2012-04-18 삼성전자주식회사 리튬 이온 전도체, 이의 제조방법 및 이를 포함하는 리튬 공기 전지
US11355744B2 (en) 2010-10-28 2022-06-07 Electrovaya Inc. Lithium ion battery electrode with uniformly dispersed electrode binder and conductive additive
NO333181B1 (no) 2010-10-28 2013-03-25 Miljobil Grenland As Fremgangsmate for fremstilling av slurry til produksjon av batterifilm
DE112012001678A5 (de) 2011-04-14 2014-01-30 Karlsruher Institut für Technologie Über Verbesserungen an Elektrolyt-Batterien
DE102011079012A1 (de) * 2011-07-12 2013-01-17 Ledon Oled Lighting Gmbh & Co. Kg Leuchtmodul mit steuerbarer Lichtlenkung
US9287580B2 (en) 2011-07-27 2016-03-15 Medtronic, Inc. Battery with auxiliary electrode
DE102011054119A1 (de) * 2011-09-30 2013-04-04 Westfälische Wilhelms Universität Münster Elektrochemische Zelle
US20130149560A1 (en) 2011-12-09 2013-06-13 Medtronic, Inc. Auxiliary electrode for lithium-ion battery
CN104321914B (zh) 2012-03-01 2019-08-13 约翰逊Ip控股有限责任公司 高容量固态复合正极、固态复合隔膜、固态可充电锂电池及其制造方法
US9475899B2 (en) 2012-12-05 2016-10-25 Solvay Specialty Polymers Solid composite fluoropolymer layer
EP3018111A1 (en) * 2014-11-07 2016-05-11 Plansee SE Metal oxide thin film, method for depositing metal oxide thin film and device comprising metal oxide thin film
WO2017112804A1 (en) 2015-12-21 2017-06-29 Johnson Ip Holding, Llc Solid-state batteries, separators, electrodes, and methods of fabrication
US10218044B2 (en) 2016-01-22 2019-02-26 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
JP7133301B2 (ja) * 2017-10-10 2022-09-08 日産自動車株式会社 非水電解質二次電池用電極
JP7145600B2 (ja) * 2017-10-10 2022-10-03 日産自動車株式会社 非水電解質二次電池用電極
CN110600808B (zh) * 2019-09-20 2022-04-12 哈尔滨工业大学 一种氟化碳改善固态电解质界面锂枝晶的方法
CN111725559B (zh) * 2020-07-06 2021-06-22 电子科技大学 固态电解质及其制备方法和锂二次固态电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529707A (en) * 1994-11-17 1996-06-25 Kejha; Joseph B. Lightweight composite polymeric electrolytes for electrochemical devices
US5972055A (en) * 1996-07-15 1999-10-26 Valence Technology, Inc. Binary solvent method for battery

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8716559D0 (en) 1987-07-14 1987-08-19 Secr Defence Ion conductors
GB8717799D0 (en) 1987-07-28 1987-09-03 Atomic Energy Authority Uk Polymer electrolytes
US4990413A (en) * 1989-01-18 1991-02-05 Mhb Joint Venture Composite solid electrolytes and electrochemical devices employing the same
US5416000A (en) * 1989-03-16 1995-05-16 Chemtrak, Inc. Analyte immunoassay in self-contained apparatus
US5460904A (en) * 1993-08-23 1995-10-24 Bell Communications Research, Inc. Electrolyte activatable lithium-ion rechargeable battery cell
US5418089A (en) 1993-12-06 1995-05-23 Valence Technology, Inc. Curable cathode paste containing a conductive polymer to replace carbon as the conductive material and electrolytic cells produced therefrom
US5620811A (en) * 1995-05-30 1997-04-15 Motorola, Inc. Lithium polymer electrochemical cells
FR2738396B1 (fr) 1995-09-05 1997-09-26 Accumulateurs Fixes Anode de generateur electrochimique rechargeable au lithium et son procede de fabrication
JP3281819B2 (ja) * 1996-09-30 2002-05-13 三洋電機株式会社 非水電解質二次電池
US5720780A (en) * 1996-11-04 1998-02-24 Valence Technology, Inc. Film forming method for lithium ion rechargeable batteries
JPH10188962A (ja) * 1996-12-27 1998-07-21 Fuji Film Selltec Kk シート状極板の製造方法と非水電解質電池
DE19713072A1 (de) * 1997-03-27 1998-10-01 Basf Ag Verfahren zur Herstellung von Formkörpern für Lithiumionenbatterien
DE19713046A1 (de) * 1997-03-27 1998-10-01 Emtec Magnetics Gmbh Verfahren zur Herstellung von Formkörpern für Lithiumionenbatterien
US6342320B2 (en) * 1997-04-23 2002-01-29 Valence Technology, Inc. Electrochemically stable plasticizer
KR100220449B1 (ko) * 1997-08-16 1999-09-15 손욱 리튬 이온 고분자 이차전지 제조방법
KR19990025888A (ko) * 1997-09-19 1999-04-06 손욱 리튬 계열 이차 전지용 극판의 제조 방법
CA2305218A1 (en) * 1997-10-09 1999-04-22 Basf Aktiengesellschaft Composite suitable for use in electrochemical cells
JP3260319B2 (ja) * 1998-04-08 2002-02-25 ティーディーケイ株式会社 シート型電極・電解質構造体の製造方法
DE19819752A1 (de) 1998-05-04 1999-11-11 Basf Ag Für elektrochemische Zellen geeignete Zusammensetzungen
DE19839217C2 (de) * 1998-08-28 2001-02-08 Fraunhofer Ges Forschung Pastöse Massen, Schichten und Schichtverbände, Zellen und Verfahren zur Herstellung
DE19848039A1 (de) 1998-10-17 2000-04-20 Bosch Gmbh Robert Anordnung zur Kontaktierung eines einen elektrischen Anschluß aufweisenden Bauteils mit einer elektrischen Schaltung
DE19964159B4 (de) * 1998-10-20 2005-08-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen selbsttragender oder auf einem Substrat aufliegender, in elektrochemischen Bauelementen verwendbarer Schichten und Zwischenprodukte hierfür
DE19855889A1 (de) * 1998-12-03 2000-06-08 Basf Ag Für elektrochemische Zellen geeignete Membran
DE19948548B4 (de) * 1999-04-19 2006-04-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Pastöse Massen mit nanokristallinen Materialien für elektrochemische Bauelemente und daraus hergestellte Schichten und elektrochemische Bauelemente
JP2001023618A (ja) * 1999-07-09 2001-01-26 Matsushita Electric Ind Co Ltd 電池用ペーストの製造方法、電池電極の製造方法およびゲル電解質シートの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529707A (en) * 1994-11-17 1996-06-25 Kejha; Joseph B. Lightweight composite polymeric electrolytes for electrochemical devices
US5972055A (en) * 1996-07-15 1999-10-26 Valence Technology, Inc. Binary solvent method for battery

Also Published As

Publication number Publication date
AU1385501A (en) 2001-05-14
EP1230708B1 (de) 2007-10-17
EP1230708A1 (de) 2002-08-14
DK1230708T3 (da) 2007-12-27
BR0015072B1 (pt) 2010-11-30
US20090263715A1 (en) 2009-10-22
DE50014722D1 (de) 2007-11-29
DE19952335A1 (de) 2001-05-17
BR0015072A (pt) 2002-06-18
KR20020077341A (ko) 2002-10-11
CA2389153A1 (en) 2001-05-10
CN1387684A (zh) 2002-12-25
JP2003513429A (ja) 2003-04-08
ES2295065T3 (es) 2008-04-16
KR100794058B1 (ko) 2008-01-10
WO2001033656A1 (de) 2001-05-10
JP5197905B2 (ja) 2013-05-15
CA2389153C (en) 2012-06-12
US7524580B1 (en) 2009-04-28
DE19952335B4 (de) 2007-03-29
TWI291256B (en) 2007-12-11
ATE376261T1 (de) 2007-11-15
US8076025B2 (en) 2011-12-13

Similar Documents

Publication Publication Date Title
CN1316669C (zh) 电化学构件用的薄膜及其制备方法
CN100364166C (zh) 用于电化学件的膏状物质和由此制成的层制品及电化学件
CN1251347C (zh) 固体聚合物电解质
US7871544B2 (en) Films for electrochemical structural elements and method for producing such films
CN1330020C (zh) 用于制备电化学构件的含纳米晶材料的膏状物质和由此制成的层制品及电化学构件
US20030180610A1 (en) Electrochemically activable layer or film
JP2003003078A (ja) イオン導電性組成物、ゲル電解質、及び非水電解質電池並びに電気二重層キャパシタ
JPH05506540A (ja) イオン伝導性ポリマー材料
CN1324501A (zh) 含无机液态导体的膏状物质和由此制成的层制品及电化学构件
JPH07509343A (ja) 固体の二次電気化学的電池の累積容量を改良するための組成物および方法
JPH01105461A (ja) 固体電池およびその製造方法
JPS61218059A (ja) 電池
JPS63108673A (ja) 電池
JPS617568A (ja) 高性能電池
JPS62176056A (ja) 電極活物質

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20070516