[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN1268104A - 氧化剂辅助的自热重整炉与热电联产电厂的改进型热集成的方法 - Google Patents

氧化剂辅助的自热重整炉与热电联产电厂的改进型热集成的方法 Download PDF

Info

Publication number
CN1268104A
CN1268104A CN98808502A CN98808502A CN1268104A CN 1268104 A CN1268104 A CN 1268104A CN 98808502 A CN98808502 A CN 98808502A CN 98808502 A CN98808502 A CN 98808502A CN 1268104 A CN1268104 A CN 1268104A
Authority
CN
China
Prior art keywords
metal oxide
inorganic metal
gas
fluidized bed
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN98808502A
Other languages
English (en)
Inventor
D·O·马勒尔
R·C·肯尼迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Oil Corp
Original Assignee
Mobil Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mobil Oil Corp filed Critical Mobil Oil Corp
Publication of CN1268104A publication Critical patent/CN1268104A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/42Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts using moving solid particles
    • C01B3/44Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts using moving solid particles using the fluidised bed technique
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明涉及一种自热重整单元和热电联产电厂集成的方法,其中重整单元有两个联通的流化床。第一流化床是一含无机金属氧化物和辅助氧化剂气体的重整炉反应器,反应器用于氧化轻碳氢化物,主要由无机金属氧化物提供的氧化剂,其次由辅助氧化剂气体提供,其条件足够产生合成气、氢、一氧化碳和二氧化碳的混合物。第二流化床是一燃烧器-再生器,它从第一流化床接受被还原的无机金属氧化物,而且该床通过燃烧与无机金属氧化物直接接触的燃料气体为加热无机金属氧化物提供热并产生热烟气。在优选的实施方案中,还将蒸汽供入重整炉反应器,并且还可随无机金属氧化物和辅助氧化剂气体一起采用催化剂。辅助氧化剂气体可为氧、富氧空气或空气。热电联产电厂有装备空气压缩机和燃烧器的气体透平,在集成时从电厂气体透平空气压缩机抽取一部分压缩空气,保留剩余的压缩空气,被抽取的压缩空气被送入燃烧器-再生器,燃烧器-再生器的热烟气与剩余的压缩空气混合生成组合气体物流,该组合气体物流供入气体透平热电联产电厂的燃烧器。

Description

氧化剂辅助的自热重整炉 与热电联产电厂的改进型热集成的方法
本发明总的涉及一种在重整单元中重整碳氢化物的方法,更具体而言,涉及在集成自热重整炉和热电联产电厂(cogeneration powerplant)中用补充空气、富氧空气或氧使甲烷和轻碳氢化物重整的一种改进型方法,其结果是在改善热效率的前提下制造合成气、合成气副产品和电力。
用于重整轻碳氢化物以制造各种合成气和合成气产品的方法在专业技术领域内是熟知的。重整炉中利用蒸汽或氧重整轻碳氢化物是常用的方法。
(1)式所示的蒸汽重整轻碳氢化物以制造氢和一氧化碳是一种应用甚广的工业方法。
                 (1)
ΔH=49.3KCAL/mol由于有过量蒸汽的存在,部分一氧化碳与蒸汽会同时反应,可用下面水气转移反应(2)表示:
                  (2)在精制工业中,蒸汽重整是大多数氢生产企业的主要部分。氢生产厂的约90%的氢是在蒸汽重整炉反应器中直接以蒸汽重整生产的。其余10%是通过水-气转移方法生产的,该方法要用重整炉中生产的CO。蒸汽重整同时也是从天然气生产甲醇(3),以及在费-托(Fischer-Tropsch)法(4)中的一个组成部分:
CO+2H2→CH3OH                    (3)
CO+2H2→1/n(CH2)n+H2O            (4)为响应日益增高的环境要求,对氢和甲醇的需求可望增加,从而要求增加重整能力。因此,各种导致效率提高从而使动力费用降低的改进型集成方法是适时的和具有吸引力的选择。
蒸汽重整通常是在多管固定床反应器中进行的,该反应器是在炉外加热。在多管固定床反应器中的传统的蒸汽重整的缺点在美国专利No.5,624,964已有叙述。
一种克服用于蒸汽重整方法的多管固定床反应器一些缺点的方法,例如省去昂贵传热面积的方法是采用两个联通的流化床,其中任一个可为上流或下流固定床、稳态流化床或循环流化床。在这种设计方案中重整催化剂通过燃料气在燃烧器-再生器中的一个流化床中燃烧直接加热,然后热的催化剂输送到重整反应器的另一个流化床中进行蒸汽重整反应。这样,进行燃烧的床中获得的热可输送到重整炉区,同时提供重整反应(1)所需的显热和吸热反应热。将重整催化剂循环到燃烧区同样可通过烧掉重整反应期间生成的所有焦炭使催化剂再生。由于不断的再生避免了焦炭的积累问题,因此,可对待永久的催化剂钝化、低的蒸汽/碳比,从而进一步节省动力。
这种设计的一个主要困难在于,蒸汽重整通常在压力(150-400磅/英寸2表压(psig))下进行,因此,燃烧所需的空气以及由此催化剂加热应受到压缩,以便保持催化剂循环回路的压力平衡。这种压缩所需的能量费用甚高,在某种程度上抵消了改进传统的非接触传热所带来的好处。消耗在把外部气体压入燃烧器-再生器的部分能量可通过使流出燃烧器-再生器的热压缩气体在分离出固体物之后膨胀入透平以发电来加以回收。常规透平不能在高温(>1400°F)和夹带颗粒物的条件下运行,因为透平的叶片会受到过度磨损,这成为该方法的第二个主要困难。过滤热气是一种选择,但只存在尾气首先冷却到市售催化剂过滤器能够承受的温度下才能进行。通过某些外在介质进行冷却会使热效率进一步降低。在这样低的温度下净得能量很小,只稍高于压缩所需的能量,而压缩却需要很大的投资并使热效率损失。
这些困难在美国专利No.5,624,964中已被克服,它采用了将蒸汽重整过程与热电联产电厂集成的措施,前者由两个包含催化剂的联通流化床组成,其中流化床工艺单元是与组合式循环电厂集成在一起的。在美国专利No.5,624,924中,该集成部分包括从气体透平电厂的压缩机的压缩空气流中导出一股压缩空气,这股“借用”的压缩空气与燃料气体一道送入蒸汽重整单元的燃烧器-再生器中。在美国专利No.5,624,964中,用于借用空气的小的增压压缩机可用以抵消燃烧器中的压力降,该“借用”的压缩空气和某些额外的热然后返回到电厂,其措施是将来自燃烧器-再生器的热的压缩废气与正在被输送到电厂燃烧器的电厂压缩空气流混合。热烟气和剩余的压缩空气流混合会使废气的温度降到足以用过滤去除催化剂细粒,而不致引起任何热动力学损失。同时,按美国专利5624964的集成方法,会增加流到电厂燃烧器中的空气流的温度和压力,以便易于燃烧。
虽然,美国专利5,624,964的集成方法具有很多优点,诸如a)蒸汽重整过程的燃烧器-再生器段勿需大的空气压缩机而增大效率,b)与非集成气体透平相比,热燃烧气体与过量冷空气混合容许在不损失热动力学效率的条件下过滤颗粒而使能量得到热学上的有效利用,c)由于催化剂连续再生,减小了送到重整炉的过量蒸汽而减少了将单程焦炭产生保持很低的必要性,和d)通过从流化床再生器引入热的压缩气体而减少组合式循环电厂的压缩和燃烧费用,增加热力重整碳氢化物的工厂和过程的效率和降低其费用总是受到欢迎的。
生产氢和一氧化碳的轻碳氢化物的氧重整,其基本反应如(5)所示,是众所周知的。
               (5)
ΔH=-8.5KCAL/mol
这个过程产生蒸汽态的水,它与一氧化碳按上述的(2)式起反应,氧重整同样是上述(3)式中的甲醇生产和上述(4)式中的费-托法的构成整体的必要部分。
按照传统,氧自热重整反应是以纯氧作基本氧源与甲烷或其它碳氢化物以及蒸汽一道供入反应器而进行的。但不幸的是,在现有技术的自热重整过程中,如应用纯氧作基本氧源则需要采用投资较大的低温装置用于空气分离。事实上,曾经估计自热重整炉的50%的费用与空气分离的花费有关。相反,如果在传统的自热重整中采用空气作基本氧源,则将在合成气中引入大量氮稀释剂,这是一个明显的缺点,因为氮稀释剂影响合成气体产品和副产品、增大了工厂设备的尺寸、对热功率产生不良影响、和显著减少合成气体产品和副产品的分离效率。
Lewis等人在“工业和工程化学”,41卷第6期,1227-1237页(1949)中公开了利用金属氧化物与甲烷反应生产成气的概念。在这项研究中,Lewis等人研究了用氧化铜辅助甲烷的自热重整,并将固体粉末从贮管打入气流,气流将粉末载入反应器。金属氧化物与甲烷作用生产合成气的总反应的例子示于下式(6):
           (6)其中x为整数,它使金属氧化物的电荷呈中性。
虽然Lewis等人指出能量分两个阶段释放:(1)碳氢化物被金属氧化物氧化和(2)金属氧化物再氧化,并且金属氧化物可被空气再氧化,Lewis等人的工艺和设备是有缺点的,因为他们对工艺利用不够,并且未利用热的经济价值,包括燃烧器-再生器中的热的压缩废气。
与其它的缺点一起,现有技术方法利用多种无机金属氧化物作唯一的氧化剂,其重整反应器的操作温度在1650°F或更高,这是有效的重整反应的温度,但现有技术方法不能在1750°F或更高的温度下运行,此温度是许多典型的燃烧器-再生器的温度,因为无机金属氧化物在这样的温度下不稳定或发生分解。为了保证合理的氧化物循环速率下的热平衡过程,燃烧器-再生器的操作温度应比重整炉至少高100-150°F。出于相稳定性原因,燃烧器温度例如1750°F会排除多种具有潜在还原作用的、能够经受氧化还原循环并能传送大量氧的无机金属氧化物。
上述缺点已通过降低温度要求得到克服,这样,能够承受氧化还原循环并具有较低热稳定性的无机金属氧化物可用于具有两个联通流化床的自热重整炉中。具有两个联通流化床的自热重整炉与热电联产电厂集成还能取得附带的优点,即当流化床自热重整炉单元与组合型循环电厂集成,在集成中能承受氧化还原循环的无机金属氧化物在重整炉中用作氧化碳氢化物(和合成气)。直接将辅助氧化剂,即氧、空气或富氧空气引入重整炉反应器中,重整反应的热要求会得到平衡,即降低由燃烧器-再生器提供的热功能要求,从而降低燃烧器-再生器的操作温度。此外,采用热集成,合成气、合成气产品,如费-托法产品、甲醇和其它供氧物、电力、和蒸汽的产率都优于非集成方法或上述集成蒸汽重整方法。
本发明的方法采用一种能承受氧化还原循环的无机金属氧化物在重整炉反应器中氧化碳氢化物和部分合成气,而且在重整炉中添加从合适源来的氧,空气或富氧空气以辅助氧化。在合成气反应器中,即自热重整炉反应器中,无机金属氧化物经还原,从而使碳氢化物和合成气氧化,同时添加的辅助性氧、空气或富氧空气直接加入参加自热重整反应。然后被还原的无机氧化物在燃烧器-再生器中用空气转变为其氧化状态。
这里定义和使用的自热重整炉、或自热重整炉单元具有两个联通的流化床,致使无机金属氧化物(氧化还原的“氧”载体)从自热重整反应器的第一个流化床以还原的氧化态流出,其温度为T1,然后与重整气产品分离,并进入燃烧器-再生器的第二个流化床,其操作温度为T2,并且T2大于T1。本发明的自热重整炉在操作中不需要外部热源,但作为一种选择,可从外源导入热,例如蒸汽(在过程中如采用辅助蒸汽时)、加热的碳氢化物原料物流、加热的辅助氧化剂,诸如加热的氧、富氧空气、或空气等等外源。在燃烧器-再生器中焦炭被烧掉,无机金属氧化物和氧化-还原的无机金属氧化物材料转变为较高的氧化态。根据本发明,从燃烧器-再生器流出时的温度为T2的氧化-还原材料再进入自热重整炉反应器,用在燃烧器-再生器聚积的热将进入重整炉的原料加热并为合成气反应提供热。
如美国专利No.5,624,964所述,集成部分包括从气体透平电厂的压缩机的压缩空气流中导出一股压缩空气。该“借用”的压缩空气与燃料气一道送入自热重整炉反应器的燃烧段,即燃烧器-再生器。还可采用用于借用空气的小的槽压压缩机来抵消燃烧器-再生器中的压力降。该“借用”的压缩空气和某些额外热然后返回电厂,其措施是通过将来自燃烧器-再生器的热压缩废气与正在被输送到电厂燃烧器的电厂压缩空气流混合。热烟气和剩余的压缩空气流混合使废气的温度降低到足以用过滤去除无机金属氧化物微粒和其它微粒,而不发生热动力学损失。同时,会增加送到电厂燃烧器的空气流的温度和压力,以便于燃烧。
总的说来,本发明提出了一种氧化剂辅助自热重整炉和热电联产电厂热集成的方法,其中热电厂具有装备空气压缩机和燃烧器的气体透平机。自热重整炉具有两个联通的流化床:第一流化床包括含有能承受氧化-还原反应循环的无机金属氧化物的重整炉反应器,而且该带辅助氧化剂气源的重整炉反应器用于氧化碳氢化物,其条件足以生产含合成气氢、一氧化碳、或二氧化碳或其混合物的混合物;第二流化床包括接受从第一流化床来的用过的无机金属氧化物的燃烧器-再生器,而且该燃烧器-再生器通过燃烧直接与无机金属氧化物接触的燃料气以提供热量加热无机金属氧化物,同时产生热烟气。除了燃烧无机金属氧化物的焦炭和加热无机金属氧化物外,无机金属氧化物的再氧化也通过其放热反应释出热量。
无机金属氧化物在第一流化床和第二流化床之间循环,其间无机金属氧化物在重整炉反应器的第一流化床中氧化碳氢化物和合成气,被还原的无机金属氧化物在燃烧器-再生器的第二流化床中再生并加热,再生的热无机金属氧化物返回到第一流化床。部分压缩空气从电厂气体透平空气压缩机的压缩空气流中导出,导出的压缩空气引入燃烧器-再生器;燃烧器-再生器的热烟气与剩余的电厂压缩空气流混合产生重组气流,这股重组气流被送入气体透平热电联产电厂的燃烧器。在本发明的方法中,辅助氧化剂气体送入第一流化床。辅助氧化剂气体宜连续送入;但是在本发明的某些情况下,辅助氧化剂气体可间断送入。此外,无机金属氧化物宜连续循环;但是,在本发明的某些情况下,无机金属氧化物的循环是间歇的。
在某些情况下,本发明方法还包括含有催化剂的重整炉反应器,催化剂和无机金属氧化物一道循环,其中在第一流化床中催化剂被耗用,无机金属氧化物被还原,在第二流化床中用过的催化剂被再生,被还原的金属氧化物被氧化,同时辅助氧化剂气体供入第一流化床。在本发明的其它一些情况下,该方法还包括向重整炉反应器供应蒸汽,即该方法为蒸汽-辅助自热反应,其中蒸汽添加到自热重整炉反应器。在本发明的一种情况中,辅助氧化剂气体与辅助蒸汽一道送入第一流化床。
除了上述的优点之外,总的说来,本发明的方法具有美国专利No.5,624,964和现有技术的集成蒸汽重整炉单元的优点。此外,由于本发明的自热过程不采用富氧空气或空气作自热过程即重整反应的基本氧源,它不像将富氧空气或空气直接送入重整炉反应器作重整反应的基本氧源那样。会将大量氮稀释剂引入合成气产品中。这对合成气的后续处理是一个明显的优点,因为氮稀释剂会影响设备尺寸,热效率和分离效率。此外,将辅助氧化剂气体引入第一流化床以对重整反应提供辅助氧化剂,对燃烧器-再生器的温度要求可降低,以致可以应用具有较低热稳定性,即低于1750°F的无机金属氧化物,亦可减少循环和流化所需的无机金属氧化物的量。这就可能使磨损问题最小化,可能采用较不稀有的结构材料以及可尽量减小设备中陶瓷衬里的使用。
与集成蒸汽重整炉相比,本发明方法的一个优点在于,在恒定的T2温度下总的无机金属氧化物的循环速率可以减小,将辅助氧化剂气体引入第一流化床有助于氧化物的循环速率。这是由于对循环材料的热要求降低,因为采用辅助氧化剂气体的自热重整与蒸汽重整不同,前者无能量需求。在恒定的循环速率下,燃烧器-再生器的操作温度(T2)可由采用辅助氧化剂气体而降低。本发明的一种情况是,在某些场合下,可容许自热重整炉单元甚至在无机金属氧化物从重整炉反应器到燃烧器-再生器的循环为间断循环或周期性循环时仍能有效操作。
本发明的一种蒸汽辅助情况下的方法的另一优点在于,能够通过改变供入自热重整炉的蒸汽、无机金属氧化物和辅助氧化剂的量来适应H2-[2CO+3CO2]和CO2/CO的分子比。H2/[2CO+3CO2]分子比宜为1,CO2/CO的分子比宜尽量低,优选低于0.5。如果要将合成气过程与后续的生产甲醇或费-托法产品的操作进行集成时,这种在单个反应器中的灵活性是独特的并且是一个明显的优点。
本发明的其它一些特点和优点将在以下的叙述中显示出来,部分特点或优点可从叙述中显示,或者从本发明的实施中显示。本发明的目的和其它优点将从书面叙述、权利要求以及附图中特别指出的方法、设备和系统来实现。
应该明白,上面的一般叙述和下面的详细叙述都是示例性和解释性的,其目的在于所要求保护的发明作进一步的解释。
附图有助于进一步理解本发明,是本说明书的一个组成部分,它是本发明的一个实施方案,并与说明书一起来解释本发明的原理。
附图是本发明的原理流程图。
在本发明的方法中,氧化剂辅助自热重整炉单元和气体透平热电联产电厂集成。该氧化剂辅助自热重整炉拥有两个联通的流化床,具重整作用的无机金属氧化物连续或间断地流出第一流化床,即重整炉反应器,其温度为T1,经过与重整炉气体产品分离后进入第二流化床,即燃烧器-再生器,其温度为T2,T2>T1,这时辅助氧化剂气体引入第一流化床。
本文所用的辅助氧化剂气体为空气、富氧空气或氢。富氧空气是指去除了25%-90%氮的空气。本发明的方法所用的辅助氧化剂的量不是关键性的,只要引入自热重整炉反应器的空气、富氧空气或氧量能起到足够“调整”作用。借助“调整”加入的辅助氧化剂气体的量是平衡重整反应热要求所需的量,该量易由本领域的专业人员根据对合成气质量的监测所确定,该质量由H2-[2CO+3CO2]和/或CO2/CO来确定。一般说来,根据本发明的方法,引入的辅助氧(空气、富氧空气或氧)的量足以保证轻碳氢化物重整反应所需总氧化剂的50%(摩尔)以下,优选为轻碳氢化物重整反应总所需氧化剂的25%(摩尔)以下,更优选为轻碳氢化物重整反应所需总氧化剂的15%(摩尔)以下。一般说来,当该是足以提供轻碳氢化物重整反应所需总氧化剂的>3%(摩尔)到<50%(摩尔)之间时,则该方法可获得改善。为达到特定碳氢化物所需的基于氧化剂总量的特定氧量而所需要的特定的辅助氧化剂气体的量可随辅助氧化剂气体中的氧量(即随着是否是空气、富氧空气或氧(纯氧))而变化,本专业技术人员可容易根据常规化学式量计算和监测重整炉反应器产品的含量来确定这些量。
辅助氧化剂气体宜连续引入重整炉反应器,但是,它亦可间断地引入,只要能保持重整炉反应器中所需辅助氧化剂气体的量。辅助氧化剂气体可直接通过至少一种进入重整炉反应器的原料物流送入重整炉反应器。
空气、富氧空气或氧源不是至关重要的,它可由本专业技术人员从专业领域内的普通和/或常规气源供应。辅助氧化剂气体进入重整炉反应器时的压力不是至关重要的,但是,通常辅助氧化剂气体进入重整炉反应器的压力为20psig-1000psig,优选150psig-600psig,更优选150psig-450psig。
本文所用的氧化剂基本来源系指源于无机金属氧化物的氧化剂,它至少是碳氢化物重整反应所需总氧化剂的50%(摩尔),优选大于75%(摩尔),更优选大于85%(摩尔)。
自热重整炉单元利用无机金属氧化物重整碳氢化物,该氧化物能承受还原-氧化循环,在重整炉反应器中为送入重整炉反应器的碳氢化物以及在重整炉反应器中生成的部分合成气提供基本氧化剂源。附加的氧化剂气体亦可送入重整炉反应器以补助源于无机金属氧化物的基本氧化剂源。以本发明的方法重整的碳氢化物通常系指轻碳氢化物或者轻链烷烃,优选包括但不限于例如甲烷、乙烷、液体石油气(LPG)、石脑油、典型的直馏石脑油或裂解石脑油如轻石脑油、全程石脑油或甚至重石脑油、炼油厂废气、伴生气等等。在无机金属氧化物连续再生和辅助氧化剂气体连续供入重整炉反应器的那些实施方案中的本发明方法的优点在于,较重的进料,例如石脑油等可易于在重整炉反应器中被氧化,即重整,这样就可排除向重整炉反应器供给蒸汽的必要性或者减少供入重整炉反应器的蒸汽量。本发明自热方法制得的产品流通常由氢、一氧化碳、二氧化碳、蒸汽,及未反应的碳氢化物组成,其蒸汽为反应水所产生的蒸汽(如果无多余的蒸汽通入重整炉反应器),或者在蒸汽辅助的实施方案中添加的蒸汽。
在本发明的某些优选情况下,根据本发明,无机金属氧化物应能承受还原-氧化循环,即金属氧化物先还原,再氧化的循环,或者反之,该氧化物只与辅助氧化剂气体联用无需其它添加剂的辅助。在本发明的多数优选实施方案中,无机金属氧化物与本专业领域内熟知的常规载体材料一起使用。
本发明优选采用的无机金属氧化物可为二价或三价的金属氧化物或其混合物。二价金属氧化物包括但不限于例如氧化铬、氧化钴、氧化镍、氧化钛、氧化铜、氧化锰、氧化铁或它们的混合物等等。三价金属氧化物包括但不限于例如氧化镨-铯、SrCO0.5FeOx、或它们的混合物等,其中x为整数,它使金属氧化物电荷呈中性。本发明亦采用二价和三价金属氧化物的混合物。载体材料包括但不限于例如α-氧化铝、高岭土、氧化锆、氧化镁、氧化铈(IV)、氧化硅或它们的混合物等。
由无机金属氧化物产生的并与碳氢化物和合成气反应,即在自热重整炉反应器中氧化碳氢化物和合成气的氧的形态即氧化剂的形态尚未确切知道。但是,作为反应(氧化)的结果,无机金属氧化物由于氧化碳氢化物和合成气而被还原,无机金属氧化物的还原形态,这是称为耗用过的无机金属氧化物被循环到燃烧器-再生器进行再氧化。
本发明的方法中,无机金属氧化物与碳氢化物之比不是至关重要的,只要有足够的源于无机金属氧化物的氧化剂和辅助氧化剂气体能提供使碳氢化物重整的氧,即按上述描写足以与碳氢化物作用生产合成气、合成气副产品等等。但是,在某些实施方案中,无机金属氧化物与碳氢化物比在自热重整炉反应器中为5-280%(重量),优选10-140%(重量),更优选15-100%(重量)。这些重量值是基于无机金属氧化物循环速率(吨/分)和碳氢化物供料速率(吨/分)计算的。
本发明的方法可在不补充蒸汽条件下操作。但是,蒸汽重整的活性总存在于本发明的方法中,因为甚至在无补充蒸汽供给的条件下,蒸汽会在自热反应器中从碳氢化物氧化生成的反应水中产生。但是,在某些优选的实施方案中,希望向重整炉供给补充蒸汽,以便在本发明方法中在氧化重整活性(来自无机金属氧化物和辅助氧化剂气体)的同时增大蒸汽重整活性。根据本发明的方法,增大或附加的蒸汽重整活性被定义为蒸汽辅助方法。
无机金属氧化物可以对或不对催化剂蒸汽和CO2重整反应起作用。如果本发明的方法采用的给定的无机金属氧化物对蒸汽重整反应不起作用,则可添加对此起作用的第二个催化组分,例如镍催化剂。这种第二组分可置于与无机金属氧化物的相同的载体颗粒上或单独的载体颗粒上。本发明的方法中亦可与无机金属氧化物一道采用其它的常规催化剂材料,它包括但不限于例如钯、铂、钙、铱、铑、钴或它们的混合物。本专业领域内已知的各种金属组合皆可用作随无机金属氧化物一起用的催化剂材料,它包括,但不限于例如镍/钴、镍/铂等。这样,如果无机金属氧化物不对蒸汽重整或CO2重整反应提供催化活性,或者如果无机金属氧化物对这些反应有足够的催化活性,则可采用常规的蒸汽重整催化剂以补充,如果有的话,由无机金属氧化物所提供的催化活性。
用于自热重整炉单元的无机金属氧化物和/或催化剂,包括在相同的载体材料上的无机金属氧化物和催化剂,有或无载体材料,其颗粒尺寸都不是至关重要的,只要这些颗粒能从重整炉反应器循环到燃烧器-再生器,以及只要颗粒能在相应的床中流化。用于本发明的流化床中的颗粒的尺寸通常在10-150微米,优选大多数颗粒在40-120微米。无机金属氧化物和/或催化剂颗粒,包括任何载体材料皆优选耐磨的。
无机金属氧化物颗粒或无机金属氧化物颗粒加催化剂颗粒以其相重的还原(耗用)或氧化(再生)形态从重整炉反应器到燃烧器-再生器和/或从燃烧器-再生器到重整炉反应器的循环可以是连续的或间断的。一般优选连续循环;但是如果在重整炉反应器中能保持足够的氧量或氧的形态以与碳氢化物反应而不致损害合成气的连续生产的话,颗粒的间断循环也可采用。
由于本发明的方法中循环流化床的一个目的是便于传热,所以燃烧器-再生器的一个作用是将流化的金属氧化物的温度加热到高于重整炉反应器的颗粒的温度,从而提供部分反应热。因此,在本发明的一个实施方案中,可将单独的仅起传热作用的颗粒添加到流化床中。这类传热颗粒的颗粒尺寸和这类传热颗粒的操作特性和参数与上述的无机金属氧化物和催化剂的相似。这类传热颗粒的例子包括但不限于例如α氧化铝、高岭土、氧化铈(Ce2O3)、La2O3、ZrO2等。
参照附图,传热颗粒在燃烧器-再生器5中加热,并经导管6进入重整炉反应器2,在其中传热颗粒的热传给重整炉反应器内的流化床,为碳氢化物重整反应提供辅助热。这样,热从传热颗粒传出,耗尽热的传热颗粒经导管4返回到燃烧器-再生器加热。
本文拟采用的流化床工艺的类型包括稳态流化床、固定流化床和循环流化床,所有这些设备都可以上流和下流模式加以利用。固定流化床是这样一种流化床,其中气体速率高于最小流化所要求的速度,但低于达到气流输送所要求的速度。床表面虽然可能是高度非规则的,但是相当确定的。固定流化床的例子包括旋涡和湍流流化床。循环流化床是这样一种流化床工艺,其中无机金属氧化物和任何其它颗粒连续地从床去除(以上流方向或以下流方向),然后再引入床中以便补充固体的供应。高速(例如>50英尺/秒)下反应器中的固体密度较小,例如低于2磅/英尺3,并向上流动,这种类型的流化床称为上升流化床。低速下,虽然无机金属氧化物仍受气流夹带,但在反应器中形成较密实的床,这种类型的床经常称为稳态流化床。这几类反应器之间的分界线并不清楚,对于本发明之目的,弄清一点就足够了,即这里涉及的无机金属氧化物(或金属无机氧化物和催化剂)的颗粒在燃烧器-再生器和反应区之间,即从燃烧器-再生器到重整炉反应器,再从重整炉反应器到燃烧器-再生器呈易流动的形式。
在本发明中,无机金属氧化物流出燃烧器-再生器,在温度T2下进入自热重整炉反应器,再说一次,其间在燃烧器-再生器中积蓄的热被用来为重整反应提供热。由于重整反应通常在升压下进行,则燃烧器-再生器要求所供燃烧空气的压力等于重整炉的操作压力加上一定量的附加压力,该附加压力是为克服联通床回路中的压力降所必需的。进入燃烧器-再生器的压缩空气由与之集成的气体透平热电联产电厂提供的。
在热电联产电厂中,燃烧气在中等压力(例如200-400psig)下燃烧的能量产生热的压缩气体,该气体然后膨胀和冷却相应产生电力和蒸汽。大大过量于电厂燃烧器中燃烧燃料的化学式量所要求的空气量(150-200%)最初压缩至所需的气体透平入口压力(例如200-400psig)。大过量的空气是需要的以在电厂燃烧器中起热阱的作用,其目的是缓和燃烧放热,并将燃烧器的温度保持在以相关硬件设备所设定的限值之内。由于压缩空气处于过量,从热电联产电厂气体透平压缩机流出的压缩空气被借用一部分用于燃烧器-再生器。原先用于控制电厂燃烧器温度的稀释剂空气被从燃烧器-再生器来热压缩废气代替,这些废气返回到组合式循环电厂并与剩余的空气流混合作电厂燃烧器的气流。这种集成可降低与流化床自热重整过程相关的操作和基建费用。
燃烧器-再生器的热废气中夹带的固体物可能由于磨损而损害电厂气体透平叶轮。因此,燃烧器-再生器的热废气需进行过滤去除夹带的颗粒物。为这种目的的市售过程器的温度耐受性是有限的,例如为1450°F,但从燃烧器-再生器流出的热废气的温度通常高于这个限值。热废气可与较冷的电厂气体透平压缩机空气流的剩余部分混合而得到足够的冷却。热废气和较冷的电厂压缩空气流的混合物平衡至可接受的温度,这样混合气流可通过过滤器,然后送入电厂燃烧器。
采用集成的流化床自热重整炉与传统的利用蒸汽的多管反应器相比还具有另外一些优点。常规蒸汽重整要求大过量的蒸汽,这种大过量蒸汽是在固定床蒸汽重整操作中抑制焦炭生成,增长循环寿命所需要的。在流化床中保持单程低产焦炭的必要性被降低,因为无机金属氧化物可在燃烧器-再生器中得到再生(和再氧化),优选是连续再生。
本文拟采用的自热重整过程是需要高于20psig的压力。压力范围宜和20psig-1000psig;优选150-600psig;更优选150-450psig,自热重整炉反应器的温度范围宜为1350°F-2000°F;更优选1600°F-1850°F。出于热动力学的考虑,本发明的重整炉反应器宜在高于1600°F的温度下运行,其目的是在高的碳氢化物转化率下运行以获得最佳的H2-[2CO+3CO2],其值大于或等于1。
重整原料通常是轻链烷烃,优选甲烷或乙烷;但是其它能在重整炉反应器中经受重整的常规碳氢化物,诸如上面讨论过的碳氢化物可以一股或多股物流供入重整炉反应器。产品物流由氢、一氧化碳和二氧化碳以及蒸汽和未反应的碳氢化物组成。
电厂单元与自热重整工艺单元的集成的例子示于附图。
在本发明的方法的一种优选实施方案中,无机金属氧化物为氧化铜,载体为氧化铝,该氧化物提供重整反应所需氧化剂的85%(摩尔)-95%(摩尔),喷入重整炉反应器的氧提供重整反应所需氧化剂的5%(摩尔)-15%(摩尔)。在本发明的另一优选实施方案中,向重整炉反应器喷入蒸汽,提供碳氢化物,例如甲烷的蒸汽辅助重整,同时载在氧化铝上的氧化铜颗粒和载在相同氧化铝上的镍催化剂在重整炉反应器中流化,并将辅助氧化剂气体送入重整炉反应器。如果在本发明的方法中采用了无机金属氧化物、辅助氧化剂气体和催化剂的组合,则通常供入的催化剂量不是至关重要的,只要能足以重整碳氢化物以产生合成气。在某些实施方案中,无机金属氧化物对催化剂的比为50∶50,优选为50重量份无机金属氧化物对40重量份/催化剂;更优选为7.5重量份无机金属氧化物对25重量份催化剂。
参看附图中的流程,区段A表示自热重整工艺单元。压缩的自热重整气体进料物流含有甲烷,在蒸汽辅助自热重整实施方案中还可含蒸汽,蒸汽/碳(S/C)比例如为0∶1-4∶1,优选0∶1-1.5∶1,更优选0∶1-1∶1,该进料物流经管线1送入重整炉反应器2,本例中该反应器为固定流化床。本例中辅助氧化剂为氧,来自气源D,即辅助氧化剂站D,在压力为20psig-1000psig下经管线1(未示出)或经另一线单独管线1a送入重整炉反应器2,以提供上面讨论过的“调整”氧化剂量,例如小于总氧化剂的50%(摩尔),优选小于总氧化剂的25%(摩尔),更优选小于总氧化剂的15%(摩尔),但大于重整反应总氧化剂需求的3%(摩尔)。管线1a中进料的温度可为环境温度或可以经加热。管线1的进料的温度可为环境温度或可以经加热。管线1的进料入口温度可在300°F-1400°F之间变化,优选500°F-1000°F,更优选600°F-800°F。重整炉反应器包括固体、颗粒状的无机金属氧化物(未示出)流化的床,该床的温度为足够进行自热重整,本例中温度为1650°F,这个温度可在1350°F-2000°F的范围内,优选1600°F-1850°F。受压的进料物流在300psig压力下引入重整炉反应器2。重整流化床可在20psig-1000psig,更优选在150psig-450psig的压力下操作。
加热或不加热的无机金属氧化物颗粒的配料和催化剂颗粒的配料或两者可按要求用常规技术从现有的供料管线同碳氢化物气体、蒸汽、空气等一道加入到自热重整炉单元,在本例中这条管线为管线1,或者将用在单独的供料管线(未示出)中的碳氢化物气体、空气或蒸汽推动的颗粒经一个或多个部件或导管进入自热重整单元。颗粒配料可连续加入,如果需要或者按要求亦可间歇加入,例如在无机金属氧化物和/或催化剂颗粒耗尽的情况下按需加入。颗粒可经供料管进入重整单元的任一部份,例如经供料管线(未示出)进入重整炉反应器2的第一流化床,经供料管线(未示出)进入燃烧器-再生器的5的第二流化床,经供料管线(未示出),到用于将用过的无机金属氧化物从第一流化床输送到第二流化床的输送管线(导管4),或者经供料管线(未示出)到用于将再生的无机金属氧化物从第二流化床循环到第一流化床的输送管线(导管6)。供入重整单元的无机金属氧化物或催化剂的配料可以是还原态的或氧化态的无机金属氧化物,而且它可在环境温度下或在加热状态下供入自热重整炉单元。
气体产品流出物含H2、CO、CO2、H2O和CH4它经管线3流出重整炉反应器2,其温度为1350°F-2000°F,更优选1600°F-1850°F,其压力为20psig-1000psig,优选150psig-600psig,更优选150psig-450psig。
用过的无机金属氧化物(以及用过的催化剂,如果有的话)从重整炉反应器2经导管4进入燃烧器-再生器5重新加热,燃烧器-再生器通常在高于重整炉反应器的温度下操作,其热差由轻碳氢化物,例如燃料气体以及可能沉积在无机金属氧化物(以及催化剂,如果存在的话)上的焦炭的燃烧以及自热重整工序中无机金属氧化物的再氧化提供。在本例中,甲烷被选作燃烧器-再生器的燃料,氧化铜被选作无机金属氧化物,氧气被选作辅助氧化剂气体。燃烧器-再生器对重整炉反应器的温差在本例中为150°F,但可优选20°F-1000°F;更优选50°F-400°F;最优选150°F-200°F,温度与设备的限制有关。对于重整炉反应器中给定的热需求,温度和循环速率按下列关联:
Q=μCpΔT
Q=应传入重整炉反应器的热(Btu/min)
μ=固体流量(Btu/min)
Cp=热容量(Btu/lbm·°F)
ΔT=温差(°F)
在燃烧器-再生器5中,燃料物流包含与空气混含的燃料,本例中包含甲烷和按化学式量过量20%的空气,在300psig或在100-1000psig的压力下和在260°F或200°F-900°F的温度下经管线7和16送入燃烧器-再生器,燃料和焦炭在燃烧器-再生器中燃烧产生热。无机金属氧化物(以及再生的催化剂,如果存在的话)经导管6流出燃烧器-再生器5,并在重整炉反应器和燃烧器-再生器之间的压差推动下重新输送到重整炉反应器,P燃烧器>P重整;ΔP~3-100磅/英寸2(psi.)。
从重整炉反应器2经管道3流出的气体产品流出的气体产品流出物还可转到另一些下游部件,例如转化反应器42(可选择的)、蒸汽发生器44、和废热锅炉或进料预热器45,后经摆动式压力吸收器(PSA)47(可选择的)以分离氢产品。这些其它下游部件将在下面进一步讨论。
在附图的C区中,蒸汽重整过程与气体透平热电联产电厂集成在一起。热电联产电厂单元示于附图的B区。
再参考附图,在B区的电厂单元中,空气经管线10输入气体透平压缩机11。被压缩的空气流,在150psig压下和252°F下经管线12流出主压缩机。如附图所示,C区中在管线12中的部分压缩空气流从联接点13分入管线14,其目的是借用空气和压力用于与自热重整工艺单元集成。分出的部分空气的压力为50-1000psig,优选150-400psig,温度为300°F-900°F,优选400°F-700°F。在管线14中的被分出的压缩空气输送到增压压缩机15,增压压缩机15是可任选的,并且被分出的压缩空气在经管线16流出增压压缩机之前在这种情况下升压至300psig和温度为307°F。管线16中的空气送入用于燃烧器-再生器5的气体燃料物流7中。这样,用于自热重整工艺单元的空气和压力从电厂获得。因此,自热重整工艺单元勿需装备单独的主压缩机。但还可采用小的增压压缩机。
同时,管线12中的剩余压缩空气在联结点13之后经管线17达交叉点18,在这里管线19中的热烟气的温度为1800°F,或在1500°F-2200°F的范围内,优选1650°F-1850°F,压力为300psig,或在150-450psig范围内,本例中热烟气含CO2、H2O、O2、N2、也含从燃烧器-再生器带出的无机金属氧化物(以及催化剂,如果存在的话)微粒,该热烟气与17中的压缩空气在交叉点18处混合组成混合的组合气流20。从燃烧器-再生器来的在管线19中的热烟气含有微粒,这些微粒可能是由流化床无机金属氧化物(以及催化剂和/或传热颗粒,如果它们存在的话)的磨损产生的。磨损通常是流化床中颗粒的机械性颗粒粉碎和破碎引起的。管线17中的压缩空气在本例中混合之前的温度为252°F,压力为150psig。混合发生在交叉点18,它将混合的组合气体物流的温度调到1200°F,或到700°F-1600°F范围内,优选1000°F-1400°F。这样,燃烧器-再生器的热烟气和电厂压缩空气的混合物的温度足以降低到能容许它通过常规市售的过滤器以去除循环固体物,例如无机金属氧化物微粒以及催化剂微粒(如果有催化剂存在)和传热微粒(如果有传热颗粒存在)。常规可买到的过滤器只限于在低于1400°F的温度下使用。在17和19无附加加热或冷却的情况下,最大混合温度的设定值规定电厂(即所发电力)和自热重整炉(即所产生的氢)的相对规模。
气流在交叉点18混合之后,混合气流经管线20输入过滤器21。混合气流经过滤器去除无机金属氧化物微粒后排出,该混合气流在150psig的压力和1190°F的温度下经管线22输入电厂燃烧器23。在混合气进入燃烧器之前,用于燃烧的燃料,例如甲烷在250°F和150psig下经管线22a引入管线22与混合气流相混合。在管线22b中的相混合的燃料的温度为1168°F和压力为150psig,并含有例如CH4、CO2、O2、N2、H2O、并最好含有例如150-200%的过量空气,该燃料在燃烧器23中于温度2000°F,或在1700°F-2800°F,优选2000°F-2300°F的条件下燃烧,生成含例如CO2、O2、N2和H2O的燃烧烟气,其温度为2000°F,压力为150psig,该燃烧烟气经管线24从燃烧器输入透平25。气体透平的入口温度可在1700°F-2800°F范围内,优选2000°F-2400°F。压力减小驱动透平的叶轮。压力能转换为速度能并用于产生电力,该电力经电线62送出。分出部分电力经电线27驱动气体透平压缩机11。电线27中的剩余电力可用在另外地方,例如供应炼油厂。
经管线28离开透平25的热气、在本例中是CO2、O2、N2和H2O,其温度为1350°F和压力为10psig,该热气用在蒸汽发生器29中生产蒸汽。从蒸汽发生器29流出的气体(例如CO2、O2、N2和H2O,温度为500°F和压力为10psig)经管线30输入废热锅炉31。从废热锅炉流出的气体经管线32输入分离鼓,该鼓分离出的水进入管线35,分离出的CO2、O2和N2经管线34输送至烟囱。
在一种还可有的实施方案中,在A区的自热重整工艺单元中,气体产品流出物经管线3流出重整炉反应器之后,流出物还可循环到转化反应器42。可将水引入管线3以生产蒸汽,从而将流出物冷却到过滤能接受的水平。流出物冷却至700°F以便进行高温气体转化反应。重整炉反应器流出物亦能借助流经蒸汽发生器41以产生蒸汽能而被冷却,在管线41a中的流出物温度降至700°F。如果不装备初始预过滤器冷却机构,则蒸汽发生器41和过滤器42的位置可以调换。
转化反应器42中的高温气体的转化在入口温度为700°F和压力为300psig下以绝热方式进行。大约75%的一氧化碳在转化反应器中发生转化,如由平衡限制条件所确定,转化反应器流出物43含有例如H2、甲烷、CO2、CO和水,其温度为812°F,压力为300psig。管线43中的转化反应器流出物可用于在蒸汽发生器44中生产蒸汽,从而将管线44a中的转化反应器流出物冷却至500°F。管线44a中的流出物再生废热锅炉45中冷却至100°F,水在分离鼓46在摆动式吸收器(PSA)47进行压力处理来纯化氢气之前水在分离鼓46中被分离。氢产品经管线48收集。
在一个优选实施方案中,去掉了转化反应器,从含例如甲烷的PSA设备来的CO、CO2和甲烷副产品直接送入燃烧器-再生器作附加燃料(未示出)。在另一实施方案中,在氢单向的设计中保留了转化反应器,并与优选的实施方案相似,来自PSA的副产品,例如来自PSA47的CO、CO2和甲烷在100°F下送至燃烧器-再生器,接着压缩至燃烧器-再生器的操作压力(未示出)。在这两个方案中,如果自热重整炉工艺单元以蒸汽辅助模式操作,为便于降低蒸汽进入重整炉的速率,从而降低动力的费用,在进入转化反应器42之前可将蒸汽添加到重整炉流出物3中。在这种方式下蒸汽具有双重作用,即冷却反应器流出物和补充重整炉流出物中的自热重整炉反应器蒸汽,以使转化反应器中的转化率最大化,从而进一步减小动力的费用。
在附图所示的热集成设计中,氢的选择性不如常规氢工厂那么重要,因为氢是电力的共生产品,其来自组合型循环电厂、蒸汽发生器和废热锅炉。
正是与电力、蒸汽和氢的生产相关的总效率的改进和基本投资的节省确定了这样工厂的独特性,这里在重整炉反应中采用无机金属氧化物和辅助氧化剂气体相结合来氧化碳氢化物和合成气。
另一实施方案包括与甲醇工厂的后续集成(未示)。重整炉合成气输送到甲醇单元并反应以生产甲醇。生产甲醇的反应需要用合成气体进料。反应通常采用锌-铬氧化物催化剂,温度为300°F-700°F,压力为500-5000psig。合成气转化工厂,例如甲醇工厂或费-托法工厂所需的部分电力可由气体透平的热电联产电厂产生的电力供给。
虽然这里描述了目前被认为是本发明的优选实施方案,但本专业技术人员会认知在不偏离本发明的精神下可作出改变和修改,并要对本发明范围内的改变和修改提出权利要求。

Claims (20)

1.一种用于氧化剂辅助的自热重整炉与热电联产电厂的热集成方法,其中:
该热电联产电厂包括装备有空气压缩机和燃烧器的气体透平;
该自热重整炉包括两个联通的流化床;第一流化床包括含能承受还原-氧化反应循环的无机金属氧化物的重整炉反应器,带辅助氧化剂气体源的该重整炉反应器在足以生成一种含有合成气氢、一氧化碳或二氧化碳或它们混合物的混合物的条件下氧化碳氢化物,第二流化床包括燃烧器-再生器,它接受来自第一流化床来的被还原的无机金属氧化物,而且该床通过,燃烧与无机金属氧化物直接接触的燃料气体为加热无机金属氧化物提供热,同时也生成热烟气,其中无机金属氧化物在该第一流化床和该第二流化床之间循环,无机金属氧化物在该重整炉反应器的第一流化床中氧化碳氢化物并生成被还原的无机金属氧化物,被还原的无机金属氧化物在该燃烧器-再生器的第二流化床中被再生、再氧化和加热,再生的经氧化和加热的无机金属氧化物返回到该第一流化床;
其中从电厂气体透平空气压缩机的压缩空气流中取出一股压缩空气,取出的压缩空气引入燃烧器-再生器,来自燃烧器-再生器的热烟气与电厂压缩空气流的剩余部分混合产生组合气体物流,该组合气体物流送入气体透平热电厂的燃烧器;
该方法包括将辅助氧化剂气体引入该第一流化床。
2.权利要求1的方法,其中辅助氧化剂气体为空气、富氧空气或氧。
3.权利要求1的方法,其中辅助氧化剂气体的引入量小于提供用于轻碳氢化物反应的总氧化剂量的50%(摩尔)。
4.权利要求1的方法,其中辅助氧化剂气体的引入量小于提供用于轻碳氢化物反应的总氧化剂量的25%(摩尔)。
5.权利要求1的方法,其中辅助氧化剂气体的引入量小于提供用于轻碳氢化物反应的总氧化剂量的15%(摩尔)。
6.权利要求1的方法,其中辅助氧化剂气体从进入重整炉反应器的辅助氧化剂气体管线送入该第一流化床。
7.权利要求1的方法,还包括含催化剂的重整炉反应器,而且该方法包括循环催化剂和无机金属氧化物,其中催化剂在该第一流化床中耗用,在该第二流化床中再生。
8.权利要求1或7的方法,还包括向重整炉反应器送入蒸汽。
9.权利要求1的方法,还包括含传热颗粒的重整炉反应器和燃烧器-再生器,而且该方法包括循环传热颗粒,该传热颗粒在该燃烧器-再生器中被加热并流入重整炉反应器,在反应器中将热从颗粒传给流化床,耗用掉热的传热颗粒返回该燃烧器-再生器以重新加热。
10.权利要求1的方法,其中辅助氧化剂气体的压力为20psig-1000psig。
11.权利要求1的方法,其中已集成的自热重整炉和热电联产电厂进一步与合成气转化工厂集成,这样在重整炉中产生的合成气发生反应,合成气转化厂所需要的部分电力由气体透平热电联产电厂产生的电力供给。
12.一种用于在氧化剂辅助自热重整炉中重整碳氢化物气体的方法,其中:
该自热重整炉包括两个联通的流化床;第一流化床包括含能承受还原-氧化反应循环的无机金属氧化物的重整炉反应器,带有辅助氧化剂气源的该重整炉反应器在足以生成一种含有合成气氢、一氧化碳或二氧化碳或其混合物的混合物的条件下氧化碳氢化物,第二流化床包括燃烧器-再生器,它接受从第一流化床的被还原的无机金属氧化物,而且该床使通过燃烧与无机金属氧化物直接接触的燃料气为加热无机金属氧化物提供热,同时产生热烟气,其中无机金属氧化物在该第一流化床和该第二流化床之间循环,无机金属氧化物在该重整炉反应器中的第一流化床中氧化碳氢化物并生成被还原的无机金属氧化物,被还原的无机金属氧化物在该燃烧器-再生器的该第二流化床中被再生、再氧化和加热,再生的经氧化和加热的无机金属氧化物返回到该第一流化床;
该方法包括将辅助氧化剂气体引入该第一流化床。
13.权利要求12的方法,其中辅助氧化剂气体为空气、富氧空气和氧。
14.权利要求12的方法,其中辅助氧化剂气体的引入量小于提供用于轻碳氢化物反应的总氧化剂量的50%(摩尔)。
15.权利要求12的方法,其中辅助氧化剂气体的引入量小于提供用于轻碳氢化物反应的总氧化剂量的25%(摩尔)。
16.权利要求12的方法,其中辅助氧化剂气体的引入量小于提供用于轻碳氢化物反应的总氧化剂的15%(摩尔)。
17.权利要求1的方法还包括含催化剂的重整炉反应器,而且该方法包括循环催化剂和无机金属氧化物,其中催化剂在该第一流化床中耗用,在该第二流化床中再生。
18.权利要求12或17的方法还包括将蒸汽供入重整炉反应器。
19.权利要求12的方法还包括含传热颗粒的重整炉反应器和燃烧器-再生器,而且该方法包括循环传热颗粒,该传热颗粒在该燃烧器-再生器中被加热并流入重整炉反应器,在反应器中将热从颗粒传至流化床,耗用掉热的传热颗粒返回该燃烧器-再生器以重新加热。
20.权利要求12的方法,其中辅助氧化剂气体的压力为20psig-1000psig。
CN98808502A 1997-08-28 1998-08-20 氧化剂辅助的自热重整炉与热电联产电厂的改进型热集成的方法 Pending CN1268104A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/919,661 1997-08-28
US08/919,661 US5799482A (en) 1997-08-28 1997-08-28 Process for improved heat integration of an oxidant-supplemented autothermal reformer and cogeneration power plant

Publications (1)

Publication Number Publication Date
CN1268104A true CN1268104A (zh) 2000-09-27

Family

ID=25442435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98808502A Pending CN1268104A (zh) 1997-08-28 1998-08-20 氧化剂辅助的自热重整炉与热电联产电厂的改进型热集成的方法

Country Status (7)

Country Link
US (1) US5799482A (zh)
EP (1) EP1017653A4 (zh)
JP (1) JP2001514155A (zh)
KR (1) KR20010030568A (zh)
CN (1) CN1268104A (zh)
WO (1) WO1999011591A1 (zh)
ZA (1) ZA987695B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091642A1 (zh) * 2009-02-16 2010-08-19 北京联力源科技有限公司 化学链燃烧方法以及系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025403A (en) * 1997-07-07 2000-02-15 Mobil Oil Corporation Process for heat integration of an autothermal reformer and cogeneration power plant
NL1009510C2 (nl) * 1998-06-29 2000-01-04 U Cat B V Methaan-stoom reforming.
NL1011627C2 (nl) * 1999-03-22 2000-09-27 Plug Power Inc Werkwijze voor het selectief oxideren van koolwaterstoffen.
US6143203A (en) * 1999-04-13 2000-11-07 The Boc Group, Inc. Hydrocarbon partial oxidation process
US6464955B2 (en) * 1999-05-13 2002-10-15 The Boc Group, Inc. Production of hydrogen and carbon monoxide
NO310863B1 (no) * 1999-11-19 2001-09-10 Norske Stats Oljeselskap Kogenerering av metanol og elektrisk kraft
US20090114881A1 (en) * 2007-11-05 2009-05-07 Vanden Bussche Kurt M Process for Conversion of Natural Gas to Syngas Using a Solid Oxidizing Agent
US8241523B2 (en) 2009-01-21 2012-08-14 Rentech, Inc. System and method for dual fluidized bed gasification
FR2956656B1 (fr) 2010-02-23 2012-12-21 Total Sa Procede de production de gaz de synthese
RU2533731C2 (ru) * 2012-08-29 2014-11-20 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Способ получения синтез-газа
US11339337B1 (en) * 2021-08-19 2022-05-24 Aries Clean Technologies Llc Elimination of poly- and perfluoro alkyl substances (PFAS) in a wastewater biosolids gasification process using a thermal oxidizer and hydrated lime injection

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3986349A (en) * 1975-09-15 1976-10-19 Chevron Research Company Method of power generation via coal gasification and liquid hydrocarbon synthesis
US5048284A (en) * 1986-05-27 1991-09-17 Imperial Chemical Industries Plc Method of operating gas turbines with reformed fuel
US5360777A (en) * 1993-05-11 1994-11-01 Exxon Research And Engineering Company High performance alumina heat transfer solids for high temperature fluidized bed synthesis gas reactions
US5624964A (en) * 1995-06-06 1997-04-29 Mobil Oil Corporation Integration of steam reforming unit and cogeneration power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091642A1 (zh) * 2009-02-16 2010-08-19 北京联力源科技有限公司 化学链燃烧方法以及系统

Also Published As

Publication number Publication date
JP2001514155A (ja) 2001-09-11
ZA987695B (en) 2000-02-25
WO1999011591A1 (en) 1999-03-11
EP1017653A1 (en) 2000-07-12
EP1017653A4 (en) 2000-11-29
US5799482A (en) 1998-09-01
KR20010030568A (ko) 2001-04-16

Similar Documents

Publication Publication Date Title
US6025403A (en) Process for heat integration of an autothermal reformer and cogeneration power plant
US5624964A (en) Integration of steam reforming unit and cogeneration power plant
CA2660293C (en) Hydrogen production method and facility
JP6479677B2 (ja) 水素、一酸化炭素及び炭素含有生成物の並行製造
AU2006229865B2 (en) Process and apparatus for thermally integrated hydrogen generation system
CN102985355B (zh) 使合成气和合成气衍生产物的产率最大化的气化系统和工艺
US8241374B2 (en) Fluidized bed system for single step reforming for the production of hydrogen
TWI732818B (zh) 用於產生氨合成氣之方法,從此種氣體產生氨之方法,及經配置以執行此等方法的設備
US20040170559A1 (en) Hydrogen manufacture using pressure swing reforming
US7989511B2 (en) Process and apparatus for synthesis gas and hydrocarbon production
CA2289643C (en) Production of methanol
AU2010209592A1 (en) Integrated oxidation, reduction, and gasification method for producing a synthetic gas and energy in a chemical loop
CN1268104A (zh) 氧化剂辅助的自热重整炉与热电联产电厂的改进型热集成的方法
AU2016291779A1 (en) Syngas production via cyclic reduction and oxidation of metal oxides
US7951350B1 (en) Fuel-gas reforming systems and methods
WO2009064591A2 (en) Selective oxidation agent of hydrocarbons to synthesis gas based on separate particles of o-carrier and hydrocarbon activator
US20220169502A1 (en) Production of synthesis gas and of methanol
MXPA00000086A (en) Process for heat integration of an autothermal reformer and cogeneration power plant
WO2000000427A2 (en) Methane-steam reforming
WO2009136909A1 (en) Fuel-gas reforming systems and methods
CA2224553C (en) Integration of steam reforming unit and cogeneration power plant
MXPA97010482A (en) Integration of the vapor reformation unit and the ener cogeneration plant
KR20240017021A (ko) Co2 시프트를 위한 열교환 반응기
WO2023217804A1 (en) Process and plant for producing synthesis gas

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication