[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN113995851B - 一种具有抗癌活性的仿生化siRNA纳米复合物的制备方法 - Google Patents

一种具有抗癌活性的仿生化siRNA纳米复合物的制备方法 Download PDF

Info

Publication number
CN113995851B
CN113995851B CN202111225901.7A CN202111225901A CN113995851B CN 113995851 B CN113995851 B CN 113995851B CN 202111225901 A CN202111225901 A CN 202111225901A CN 113995851 B CN113995851 B CN 113995851B
Authority
CN
China
Prior art keywords
sirna
endoplasmic reticulum
pei
plga
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111225901.7A
Other languages
English (en)
Other versions
CN113995851A (zh
Inventor
邱崇
夏斐
郭秋岩
史巧莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Traditional Chinese Medicine CATCM
Original Assignee
China Academy of Traditional Chinese Medicine CATCM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Traditional Chinese Medicine CATCM filed Critical China Academy of Traditional Chinese Medicine CATCM
Priority to CN202111225901.7A priority Critical patent/CN113995851B/zh
Publication of CN113995851A publication Critical patent/CN113995851A/zh
Application granted granted Critical
Publication of CN113995851B publication Critical patent/CN113995851B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6901Conjugates being cells, cell fragments, viruses, ghosts, red blood cells or viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • A61K47/6937Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol the polymer being PLGA, PLA or polyglycolic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5063Compounds of unknown constitution, e.g. material from plants or animals
    • A61K9/5068Cell membranes or bacterial membranes enclosing drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biotechnology (AREA)
  • Dermatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明为一种具有抗癌活性的仿生化siRNA纳米复合物的制备方法,包括以下步骤:(1)一步酰胺化法制备PLGA‑PEI聚合物;(2)氯化钙沉淀法提取肿瘤细胞的内质网膜;(3)薄膜分散法和超声辅助制备PLGA‑PEI阳离子纳米粒;(4)负载siRNA药物,并外修饰内质网膜得到EPP/siRNA纳米复合物。本发明所述的具有抗癌活性的仿生化siRNA纳米复合物的制备方法凭借内质网膜中调节细胞囊泡转运的活性蛋白赋予纳米复合物独特的跨细胞转胞吞作用的能力,实现跨血管内皮细胞增强肿瘤部位蓄积、跨肿瘤细胞增强肿瘤组织深层渗透的目的,发挥更强的基因沉默及抗肿瘤效应。

Description

一种具有抗癌活性的仿生化siRNA纳米复合物的制备方法
技术领域
本发明属于纳米药物载体材料技术领域,具体涉及一种具有抗癌活性的仿生化siRNA纳米复合物的制备方法。
背景技术
siRNA可以特异性裂解目标mRNA,下调与疾病基因相关的蛋白表达水平,在肿瘤的治疗中表现出了强大的基因沉默潜力。然而其独特的成药缺陷主要包括易被核酶降解、膜渗透性差、体内半衰期短和溶酶体降解破坏等,直接使用游离siRNA根本无法实现体内外的基因沉默效应,严重制约了其临床应用。
现有科研工作者研究开发了各种类型的载体递送系统用于解决siRNA 的应用问题,尤其是以阳离子材料为主的非病毒基因载体,如脂质类(如 DOTAP、DlinDMA等)、高分子聚合物(如聚乳酸-羟基乙酸共聚物-聚乙烯亚胺PLGA-PEI、聚酰胺-胺PAMAM、聚甲基丙烯酸N,N-二甲氨基乙酯 PDMAEMA等)载体。在体外实验中,大多数阳离子载体可以有效包载siRNA并通过与细胞膜的静电作用促进细胞摄取,发挥显著的基因沉默效应,但体内效果却相差甚远,所以很多临床试验都以失败告终。本发明人调研文献,发现导致体内外效应差异的主要原因是纳米载体难以在肿瘤组织有效蓄积、渗透和滞留,极难深入肿瘤内部细胞,纳米载体到达并蓄积在肿瘤部位的效率不足1%!
因此,结合上述调研及技术背景,获得一种在肿瘤组织有效蓄积、渗透和滞留的siRNA纳米药物是癌症治疗领域中技术人员亟需解决的关键技术问题之一。
发明内容
本发明的目的是针对现有技术的不足,提供一种仿生化、可生物降解、可提高效应的siRNA纳米复合物制备方法,即内质网膜修饰的 PLGA-PEI/siRNA纳米复合物的制备方法,该纳米复合物可提高肿瘤组织有效蓄积、渗透和滞留,增强抗癌活性。
为了达到以上的目的,本发明提供以下技术方案:
影响siRNA纳米药物在肿瘤部位蓄积、渗透和滞留的最重要因素是微血管屏障,即siRNA纳米药物想要发挥基因沉默效应,就必须跨过血管内皮细胞,进入肿瘤细胞等。现有技术水平中,多以靶向分子修饰(如透明质酸、抗体等)、穿膜肽修饰和超声辅助等手段为主,设计开发纳米药物用于siRNA等核酸药物乃至其他化疗药物在肿瘤部位的渗透和蓄积。
本发明人调研文献研究发现,纳米药物以跨细胞的转胞吞作用跨越微血管屏障可能是纳米粒在肿瘤部位蓄积的主要机制。纳米粒因其入胞途径及纳米粒特性的区别,往往具有不同的胞内转运行为,主要包括内吞体-溶酶体途径、内吞体-高尔基体途径,高尔基体-内质网往返途径、高尔基体- 胞外途径等。其中最主要的是内吞体-溶酶体途径,溶酶体对siRNA的破坏是导致绝大多数siRNA纳米载体效应较差的一个重要原因。为了规避溶酶体降解破坏而实现转胞吞作用的跨细胞转运,纳米载体就必须选择一条更安全的转运途径:经过内吞之后,先转运至高尔基体,之后高尔基体以“出芽”的形式生成新囊泡,分别转运至胞外或内质网。这个过程受到多种信号因子的调控:1)从内吞体至高尔基体的转运,主要包括酸-水解酶受体、跨膜酶和SNAREs(可溶性N-乙基马来酰亚胺敏感性融合蛋白附着蛋白受体)等;2)从高尔基体至内质网的转运,主要受一种启动信号为KDEL (Lys-Asp-Glu-Leu四肽)的内质网驻留蛋白的介导,招募形成COPI囊泡,将蛋白等物质逆向转运至内质网;3)从内质网到高尔基体的转运,主要受 Erv14蛋白等与内质网中的跨膜结构域结合,并通过COPII囊泡有效地转运至高尔基体;4)从高尔基体至胞外的转运,主要受Rab小G蛋白和SNAREs 等调节,由高尔基体出芽生成囊泡转运至胞外。而内质网作为胞内最大的细胞器生物膜系统,内质网膜上分布大量包括SNAREs、内质网驻留蛋白、 Rab小G蛋白等囊泡转运相关蛋白,也就是说内质网膜上包含了纳米粒实现跨细胞转胞吞作用的关键蛋白。
基于上述研究调研及技术,本发明人提取了肿瘤细胞内质网膜(ER membrane,EM),并在静电作用力和超声辅助作用下修饰PLGA-PEI/siRNA 复合物(PP/siRNA),构建了内质网膜修饰的新型仿生化EPP/siRNA纳米复合物。该纳米复合物能借助内质网膜上胞内转运蛋白的调节功能,以非降解性的“内吞体-高尔基体-内质网-高尔基体-胞外”途径转运,完成跨内皮细胞转运进入肿瘤组织,实现在肿瘤部位的蓄积;进而被再次内吞,依次循环,多次跨肿瘤细胞转胞吞作用,实现肿瘤部位深层渗透,发挥更高效的基因沉默效应。
本发明所提供的具体技术方案如下:
一种具有抗癌活性的仿生化siRNA纳米复合物,其原料组成按质量份计为:
PLGA50k-PEI25k 2.5~5mg/mL,占比92.04%
siRNA 0.016~0.032mg/mL,占比0.59%
内质网膜 0.2~0.4mg/mL,占比7.37%
该纳米复合物的制备方法如下:
(1)合成PLGA50k-PEI25k聚合物:取3g PLGA(50kD)溶于30mL DMSO中,加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)(两者质量比例为5:1),完全溶解后继续搅拌两小时,之后滴入0.6g PEI(25kD),室温反应48h,透析(Mw=65kD)三天,离心,取上清冻干,得到PLGA50k-PEI25k样品,并采用核磁共振技术(1H NMR)对材料进行表征。
(2)提取肿瘤细胞的内质网膜(EM):准备1×108人乳腺癌MCF-7 细胞,加入2.5mL加有酶抑制剂的匀浆分离液(10mM HEPES,0.25M蔗糖,1mM EGTA,pH 7.8),后将其置于冰上匀浆静置10min,使用细胞刮刀刮下,收集悬浮液在4℃,1000g离心10min,弃去沉淀;吸取上清至另一离心管,12000g下离心分离15min,弃去沉淀,收集上清(淡黄色澄清透明的液体);转移上清至预冷的圆底烧瓶中,逐滴加入7.5倍体积的预冷CaCl2(8mM)溶液(变为浑浊液体),冰上继续搅拌15min后将溶液于8000g下离心10min,沉淀即为富集的微粒体(内质网膜,简称EM);弃去上清,使用分离液重悬,涡旋分散(枪头吹打混匀效果更好);使用预冷的匀浆分离液洗涤2次;BCA法测定EM中的蛋白浓度,并保存在 -80℃。
(3)制备PLGA50k-PEI25k阳离子纳米粒(PLGA-PEI nanoparticles,PP NPs):配制PLGA50k-PEI25k二氯甲烷溶液,37℃减压旋转蒸发除去有机溶剂,60℃水浴加入5%葡萄糖溶液,水浴超声水化,PLGA50k-PEI25k终浓度为10mg/mL,得到PLGA50k-PEI25k阳离子纳米粒(PPNPs),4℃保存备用。
(4)制备包载siRNA的阳离子纳米复合物(PLGA-PEI/siRNA纳米复合物,PP/siRNANPs):将siRNA(2nmol,36μg)溶解于500μL 5%葡萄糖溶液,终浓度0.064mg/mL(4μM)。吸取50μL siRNA(4μM),逐滴加入等体积的不同浓度的PP NPs溶液中,混合均匀,37℃孵育15min,得到包载siRNA的纳米复合物(PP/siRNA NPs)。
(5)制备内质网膜修饰的PLGA-PEI/siRNA纳米复合物(EPP/siRNA NPs):将50μL内质网膜(0.4mg/mL)滴入50μL PP/siRNA NPs,37℃孵育5min,水浴超声1min(室温,200W),得到EPP/siRNA NPs。
本发明的siRNA纳米复合物用途如下:
本发明构建一种内质网膜修饰的PLGA-PEI/siRNA阳离子纳米复合物 (EPP/siRNANPs),凭借内质网膜中调节细胞囊泡转运的活性蛋白赋予纳米复合物跨细胞转胞吞作用的能力,实现跨血管内皮细胞增强肿瘤部位蓄积、跨肿瘤细胞增强肿瘤组织深层渗透的目的,发挥更强的基因沉默及抗肿瘤效应。
本发明所采取的技术方案原理如下:
所述步骤(1)中PLGA50k和PEI25k通过一步酰胺化反应新形成酰胺键,得到两亲性的PLGA50k-PEI25k聚合物。
所述步骤(1)中加入EDC和NHS活化剂,可以在PEI与PLGA上羧基基团反应的过程中,建立中间体,更好地进行反应提供了条件。
所述步骤(1)中的反应温度和时间是为了提高反应效率,提高产率。
所述步骤(1)中使用透析是为了去除未反应的原料和催化剂等,得到纯度更高的PLGA50k-PEI25k聚合物。
所述步骤(2)中的使用多次离心是为了去除细胞膜、细胞核等杂质,使用CaCl2是因为钙离子可以沉淀内质网膜上的钙网蛋白,进而富集内质网膜,通过高速离心得到纯化的内质网膜。
所述步骤(3)中的使用悬膜水化+超声的方法是为了便于聚合物在水中会形成均一稳定的纳米粒,其中PLGA50k疏水在内,而PEI25k亲水在外, PEI25k的氨基质子化可以带正电,得到阳离子纳米粒。
所述步骤(4)中的利用阳离子纳米粒PLGA50k-PEI25k的正电性和siRNA 磷酸基团的负电性产生静电作用力,进而包载siRNA,得到纳米复合物 (PP/siRNA NPs)。
所述步骤(5)中的利用阳离子纳米复合物(PP/siRNA NPs)表面残余的正电性和内质网膜蛋白等的负电性产生静电作用力,同时借助超声可以让结合更均匀,得到均一分散的EPP/siRNA NPs。
所述步骤(5)中的外修饰内质网膜,可以将内质网膜蛋白的调控胞内转运的活性功能赋予纳米复合物,便于siRNA纳米复合物发挥跨细胞转胞吞作用。
综上所述,上述制备方法得到的EPP/siRNA NPs具有抗肿瘤活性及良好的生物相容性。该纳米复合物不仅本身拥有较强的潜在抗肿瘤作用,而且可作为药物载体负载其他具有药用价值的有效成分,达到协同给药双重药效的目的。整个制备过程绿色无污染、可操作性强。
本发明中的siRNA纳米复合物的服用剂量:
本发明中的siRNA纳米复合物的建议静脉注射剂量为6-8mL/kg,具体可根据详细需求调整。
以下结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明,而非用于限定本发明的范围。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例1得到的PLGA50k-PEI25k的核磁共振氢谱图;
图2是本发明实施例2得到的内质网膜的透射电镜图;
图3是本发明实施例3得到的不同比例的PP/siRNA NPs对siRNA的包载能力图;
图4是本发明实施例3得到的不同内质网膜(EM)修饰比例的 EPP/siRNA NPs对siRNA的包载能力图;
图5是本发明实施例3得到的不同内质网膜(EM)修饰比例的 EPP/siRNA NPs粒径电位图;
图6是本发明实施例3得到的EPP/siRNA NPs的透射电镜图;
图7是本发明实施例4得到的对比商用转染试剂Lipofectamine2000, EPP/siRNA的细胞摄取能力;
图8是本发明实施例5得到的流式细胞仪检测EPP/siRNA NPs的跨细胞转胞吞作用图。
图9是本发明实施例5中采用FCS ExpressV3软件分析的HUVEC细胞内有高强度的FAM-siRNA图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。
实施例1:合成PLGA50k-PEI25k聚合物
取3g PLGA(50kD)溶于30mL DMSO中,加入1-(3-二甲氨基丙基)-3- 乙基碳二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)(两者质量比例为5:1),完全溶解后继续搅拌两小时,之后滴入0.6g PEI(25kD),室温反应48h,透析(Mw=65kD)三天,离心,取上清冻干,得到PLGA50k-PEI25k样品。对得到的样品采用核磁共振技术(1H NMR)进行表征,得到核磁共振氢谱 (附图1)。从图1中可见制备得到的产物在5.2ppm处的峰归属于归属于酰胺键中N上的H,经过上述测试分析,确定目标产物。
实施例2:提取肿瘤细胞的内质网膜(EM)
准备1×108人乳腺癌MCF-7细胞,加入2.5mL加有酶抑制剂的匀浆分离液,后将其置于冰上匀浆静置10min,使用细胞刮刀刮下,收集悬浮液在4℃,1000g离心10min,弃去沉淀;吸取上清至另一离心管,12000 g下离心分离15min,弃去沉淀,收集上清(淡黄色澄清透明的液体);转移上清至预冷的圆底烧瓶中,逐滴加入7.5倍体积的预冷CaCl2(8mM)溶液(变为浑浊液体),冰上继续搅拌15min后将溶液于8000g下离心10min,沉淀即为富集的微粒体(内质网膜,简称EM);弃去上清,使用分离液重悬,涡旋分散得到内质网膜。取3μL溶液滴加至镀有碳膜的铜网上,滤纸吸干周围多余液体,迅速将样品浸入液氮中,转移至样品杆,透射电镜观察,得到内质网膜的透射电镜图(附图2)。图2所示,内质网膜呈多囊泡聚集形态,类似“葡萄样”聚集体,每个均为清晰的椭圆形囊泡(~30nm,内质网本身为网状膜系统,经过裂解分散,离心过程中容易聚集形成多囊泡聚集体)。
实施例3:制备并表征内质网膜修饰的PLGA-PEI/siRNA纳米复合物
配制PLGA50k-PEI25k二氯甲烷溶液,37℃减压旋转蒸发除去有机溶剂, 60℃水浴加入5%葡萄糖溶液,水浴超声水化,PLGA50k-PEI25k终浓度为10 mg/mL,得到PLGA50k-PEI25k阳离子纳米粒(PP NPs),将siRNA(2nmol, 36μg)溶解于500μL 5%葡萄糖溶液,终浓度0.064mg/mL(4μM)。吸取 25μL siRNA(4μM),逐滴加入等体积的不同浓度的PP NPs溶液中,混合均匀,37℃孵育15min,得到包载siRNA的纳米复合物(PP/siRNA NPs)。
使用马尔文粒度仪(DLS)测定粒径分布和电位,得到附图3。如图3,不同比例下,随着的PLGA50k-PEI25k升高,siRNA的包载效果越好。
进一步地,将50μL内质网膜(0.4mg/mL)滴入50μL PP/siRNA NPs, 37℃孵育5min,水浴超声1min(室温,200W),得到EPP/siRNA NPs。
使用马尔文粒度仪(DLS)测定粒径分布和电位,得到附图4。如图4,不同浓度(0-0.8mg/mL)的内质网膜修饰下,随着浓度的升高,EPP/siRNA NPs的粒径略有增加,粒径基本为100~140nm,电位~40mV。
进一步地考察凝胶阻滞考察包载效率:制剂中加入6×RNA上样缓冲液(siRNA终浓度为1μM),在含有0.5μg/mL gel red的1%琼脂糖凝胶上80V电压电泳3min,再以100V电压电泳15min,凝胶成像系统观察 gel red/siRNA荧光,得到附图5。如图5所示,不同浓度(0-0.8mg/mL) 的内质网膜修饰下,EPP/siRNA NPs均可以有效包载siRNA。
鉴于进一步实验,选择某一特定实施例的制备EPP/siRNA NPs的处方比例如下:
PLGA50k-PEI25k 2.5mg/mL,占比92.04%
siRNA 0.016mg/mL,占比0.59%
内质网膜 0.2mg/mL,占比7.37%
进一步地,使用DLS和透射电镜观察最终纳米复合物的形貌,得到附图6和附图7。如图6所示,EPP/siRNA NPs粒径约为130nm。如图7所示,在透射电子显微镜下可以观察到,EPP/siRNA NPs为分散的球形颗粒,无聚集现象,四周可以看到一层均匀的膜状物,显示内质网膜结合在核心 PP/siRNA外层,验证了EPP/siRNA NPs具有均一稳定的一体化结构。
实施例4:人乳腺癌细胞MCF-7对PLGA-PEI/siRNA纳米复合物的摄取能力
流式细胞术检测细胞摄取:人乳腺癌细胞MCF-7分别以每孔25万接种于六孔板中,24h后更换培养基,加入OPTI-MEM培养基,分别用不同纳米复合物转染FAM-siRNA,FAMsiRNA终浓度为100nM,孵育4h。预冷 PBS洗涤两遍后,消化离心,再用PBS洗涤两遍后,300μL PBS重悬,立即利用流式细胞仪测量细胞中FAM荧光强度,采集10000个细胞,激发波长为488nm,发射波长为518nm,采集数据使用FCS ExpressV3软件分析,得到附图8。如图8所示,内质网膜修饰的EPP/siRNA NPs摄取量是未修饰组(PP/siRNA NPs)的3倍,说明内质网膜修饰可以显著促进细胞对siRNA 的摄取能力,为后续发挥高效基因沉默能力奠定了基础,具有更好的抗肿瘤潜力。
实施例5:PLGA-PEI/siRNA纳米复合物的跨细胞转胞吞能力
采用Transwell法研究EPP/siRNA NPs的跨内皮细胞和跨肿瘤细胞转胞吞能力。在上层接种人脐静脉内皮细胞HUVEC,下层接种人乳腺癌MCF-7 肿瘤细胞,待上层细胞几乎完全贴壁接触时,在上层培养液中加入0.5mL 终浓度为100nM的FAM-siRNA标记的EPP/siRNANPs纳米复合物,37℃孵育6后:使用流式细胞术检测上下两层细胞中的siRNA摄取量:去除培养基,预冷PBS洗涤两遍后,消化离心,再用PBS洗涤两遍后,300μL PBS 重悬,立即利用流式细胞仪测量细胞中FAM荧光强度,采集10000个细胞,激发波长为488nm,发射波长为518nm,采集数据使用FCS ExpressV3软件分析,得到附图9。如图9所示,HUVEC细胞内有高强度的FAM-siRNA (强度值~173,阳性细胞率~97%),同样在MCF-7中也检测到了高强度的FAM-siRNA(强度值~124,阳性细胞率~86%),说明部分EPP/siRNA NPs 从HUVEC细胞中排出,并被再次内吞进入MCF-7中。以上结果说明EPP/siRNA NPs具有跨细胞转胞吞的能力,具有跨血管内皮细胞进入肿瘤组织、增强肿瘤部位蓄积及深层渗透的潜力。
综上,由本发明的实施例可知,本发明通过仿生化手段构建了一种内质网膜修饰的PLGA-PEI/siRNA纳米复合物(EPP/siRNA NPs),凭借内质网膜中调节细胞囊泡转运的活性蛋白赋予纳米复合物跨细胞转胞吞作用的能力,实现跨血管内皮细胞增强肿瘤部位蓄积、跨肿瘤细胞增强肿瘤组织深层渗透的目的,为解决siRNA纳米载体突破肿瘤部位靶向效率低的困境提供了新策略和新技术。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (5)

1.一种具有抗癌活性的仿生化siRNA纳米复合物,其特征在于,通过仿生化手段赋予纳米复合物跨细胞转胞吞能力,其原料组成按质量份计为:
PLGA50k-PEI25k 2.5~5 mg/mL,占比92.04%;
siRNA 0.016~0.032 mg/mL,占比0.59%;
内质网膜 0.2~0.4 mg/mL,占比7.37%;
所述仿生化siRNA纳米复合物为EPP/siRNA纳米复合物。
2.根据权利要求1所述的一种具有抗癌活性的仿生化siRNA纳米复合物的制备方法,其特征在于以下步骤:
(1)一步酰胺化法制备PLGA-PEI聚合物; 取PLGA溶于DMSO中,加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺EDC和N-羟基琥珀酰亚胺NHS,两者质量比例为5:1,完全溶解后继续搅拌两小时,之后滴入PEI,室温反应48 h,透析三天,离心取上清冻干得到PLGA-PEI样品;(2)氯化钙沉淀法提取肿瘤细胞的内质网膜;所述的步骤(2)中使用的是3次离心,温度4 °C,1000 g离心10 min;12000 g离心15 min;8000 g下离心10 min和加入7.5倍体积的预冷CaCl2 8 mM溶液沉淀方式提取内质网膜;(3)薄膜分散法和超声辅助制备PLGA-PEI阳离子纳米粒;(4)负载siRNA药物,并外修饰内质网膜得到EPP/siRNA纳米复合物。
3.根据权利要求2所述的制备方法,其特征在于,所述的步骤(3)中,配制PLGA-PEI二氯甲烷溶液,37 °C减压旋转蒸发除去有机溶剂,60 °C水浴加入5%葡萄糖溶液,水浴超声水化制备PLGA50k-PEI25k阳离子纳米粒PP NPs。
4.根据权利要求2所述的制备方法,其特征在于,所述的步骤(4)中,将siRNA溶解于5%葡萄糖溶液,逐滴加入等体积的不同浓度的PP NPs溶液中,混合均匀,37 °C孵育15 min,得到包载siRNA的纳米复合物PP/siRNA NPs。
5.根据权利要求2所述的制备方法,其特征在于,所述的步骤(4)中,将等体积的内质网膜溶液滴入PP/siRNA NPs中,37 °C孵育5 min,室温下水浴超声1 min,200W,得到EPP/siRNA NPs。
CN202111225901.7A 2021-10-21 2021-10-21 一种具有抗癌活性的仿生化siRNA纳米复合物的制备方法 Active CN113995851B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111225901.7A CN113995851B (zh) 2021-10-21 2021-10-21 一种具有抗癌活性的仿生化siRNA纳米复合物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111225901.7A CN113995851B (zh) 2021-10-21 2021-10-21 一种具有抗癌活性的仿生化siRNA纳米复合物的制备方法

Publications (2)

Publication Number Publication Date
CN113995851A CN113995851A (zh) 2022-02-01
CN113995851B true CN113995851B (zh) 2024-02-27

Family

ID=79923408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111225901.7A Active CN113995851B (zh) 2021-10-21 2021-10-21 一种具有抗癌活性的仿生化siRNA纳米复合物的制备方法

Country Status (1)

Country Link
CN (1) CN113995851B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103566379A (zh) * 2013-09-30 2014-02-12 中国药科大学 一种“胞内触发”式还原敏感型药物联合基因靶向共传递体的制备及应用
CN104225633A (zh) * 2014-09-05 2014-12-24 电子科技大学 一种基因与药物共输送的plga超声纳米泡及其制备方法和应用
CN108096583A (zh) * 2017-12-17 2018-06-01 宋振川 共载有乳腺癌化疗药物MTDH siRNA的肿瘤靶向纳米粒子载体的制备方法
CN108143718A (zh) * 2018-03-01 2018-06-12 国家纳米科学中心 一种抗肿瘤纳米基因药物及其制备方法和应用
WO2020077178A1 (en) * 2018-10-12 2020-04-16 Ann & Robert H. Lurie Children's Hospital of Chicago Plga-peg/pei nanoparticles and methods of use
CN112472822A (zh) * 2020-12-02 2021-03-12 浙江大学 一类细胞内质网靶向纳米载药系统的构建与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015058111A1 (en) * 2013-10-17 2015-04-23 The Brigham And Women's Hospital, Inc. Cationic nanoparticles for co-delivery of nucleic acids and thereapeutic agents
EP3658158A4 (en) * 2017-07-27 2021-04-14 The National Institute for Biotechnology in the Negev Ltd. SMAC / YLDIABLO INHIBITORS TO TREAT CANCER

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103566379A (zh) * 2013-09-30 2014-02-12 中国药科大学 一种“胞内触发”式还原敏感型药物联合基因靶向共传递体的制备及应用
CN104225633A (zh) * 2014-09-05 2014-12-24 电子科技大学 一种基因与药物共输送的plga超声纳米泡及其制备方法和应用
CN108096583A (zh) * 2017-12-17 2018-06-01 宋振川 共载有乳腺癌化疗药物MTDH siRNA的肿瘤靶向纳米粒子载体的制备方法
CN108143718A (zh) * 2018-03-01 2018-06-12 国家纳米科学中心 一种抗肿瘤纳米基因药物及其制备方法和应用
WO2020077178A1 (en) * 2018-10-12 2020-04-16 Ann & Robert H. Lurie Children's Hospital of Chicago Plga-peg/pei nanoparticles and methods of use
CN112472822A (zh) * 2020-12-02 2021-03-12 浙江大学 一类细胞内质网靶向纳米载药系统的构建与应用

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Haliza Katas等.Preparation of polyethyleneimine incorporated poly(d,l-lactide-co-glycolide) nanoparticles by spontaneous emulsion diffusion method for small interfering RNA delivery.《International Journal of Pharmaceutics》.2009,第369卷(第1-2期),摘要部分、第144页右栏第18行至第145页左栏第15行、第145页右栏第2-9行. *
Kaushik Singha等.Polymers in Small-Interfering RNA Delivery.《Nucleic Acid Therapeutics》.2011,第21卷(第3期),第133-147页. *
Nitin Bharat Charbe等.Small interfering RNA for cancer treatment: overcoming hurdles in delivery.《Acta Pharmaceutica Sinica B》.2020,第10卷(第11期),第2075-2109页. *
Qiu Chong等.Regulating intracellular fate of siRNA by endoplasmic reticulum membrane-decorated hybrid nanoplexes.《Nature Communications》.2019,第10卷摘要部分、第1页左栏第1-8行、第2页左栏第18-46行、第11页左栏第28-67行. *
Regulating intracellular fate of siRNA by endoplasmic reticulum membrane-decorated hybrid nanoplexes;Qiu Chong等;《Nature Communications》;第10卷;摘要部分、第2页左栏第18-46行、第11页左栏第28-67行 *
Yogesh Patil等.Polymeric nanoparticles for siRNA delivery and gene silencing.《International Journal of Pharmaceutics》.2009,第367卷(第1-2期),第195-203页. *
刘宵钰等.siRNA注射给药系统研究进展.《中国医药工业杂志》.2019,第50卷(第10期),第1113-1125页. *
邱崇等.用于肿瘤治疗的siRNA纳米输送系统.《中国新药杂志》.2014,第23卷(第16期),第1885-1892页. *
陆媛.阳离子乳剂在基因传递方面的研究进展.《药学与临床研究》.2012,第20卷(第2期),第131-136页. *

Also Published As

Publication number Publication date
CN113995851A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
He et al. Tumor microenvironment responsive drug delivery systems
Wan et al. Aptamer-conjugated extracellular nanovesicles for targeted drug delivery
Jiang et al. Exosomes as novel bio-carriers for gene and drug delivery
CN108175759B (zh) 一种抗肿瘤靶向给药系统及其制备方法与应用
CN105727307B (zh) 一种硫辛酸修饰的纳米多肽载体及其制备方法和应用
US20170128367A1 (en) Liposomal formulations for delivery of nucleic acids
CN109666695B (zh) 一种靶向整合素αvβ3的外泌体载体及其制备方法和应用
CN103100093B (zh) 一种负载小干扰rna的纳米级脂质微泡超声造影剂及制备方法
CN101822838B (zh) 靶向识别肿瘤细胞的纳米药物载体材料及其制备和应用
US10576170B2 (en) Gas-generating nanoparticle
Tong et al. Preparation of protamine cationic nanobubbles and experimental study of their physical properties and in vivo contrast enhancement
CN107184987B (zh) 一种硫辛酸修饰的靶向整合素αvβ3纳米多肽载体及其制备方法和应用
CN114224838B (zh) 一种肿瘤微环境激活的融合膜包裹的仿生纳米递送系统及其制备方法及应用
CN107129522B (zh) 一种硫辛酸修饰的固有无序蛋白纳米载体及其制备方法和应用
CN112142972A (zh) 修饰的聚乙烯亚胺衍生物及其合成方法和应用
CN114259477A (zh) 一种促渗透、缓解肿瘤缺氧并能靶向肿瘤细胞的纳米递送体系及其制备方法和应用
CN113995851B (zh) 一种具有抗癌活性的仿生化siRNA纳米复合物的制备方法
Qiao et al. A brain glioma gene delivery strategy by angiopep-2 and TAT-modified magnetic lipid-polymer hybrid nanoparticles
CN110354096B (zh) 兼具改善耐药脑胶质瘤微环境及逆转耐药的脑靶向递药系统
CN114869858B (zh) 同源性癌细胞膜包被的核酸-化疗药物复合物纳米粒子
CN102631678A (zh) 一种含聚精氨酸的三嵌段聚合物载体及制备方法和用途
Li et al. Self-assembled CaP-based hybrid nanoparticles to enhance gene transfection efficiency in vitro and in vivo: beneficial utilization of PEGylated bisphosphate and nucleus locating signal
CN112426537B (zh) 一种多肽纳米胶束及其制备方法和应用
CN115487155A (zh) 一种pH/酶双重响应的靶向细胞核的纳米载体及其制备与应用
Cheng et al. Application of Cell Membrane Vesicles in Cancer Diagnosis and Treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant