CN113985521B - Silicon-silicon nitride three-dimensional integrated polarization-independent wavelength selective optical switch array chip - Google Patents
Silicon-silicon nitride three-dimensional integrated polarization-independent wavelength selective optical switch array chip Download PDFInfo
- Publication number
- CN113985521B CN113985521B CN202111233583.9A CN202111233583A CN113985521B CN 113985521 B CN113985521 B CN 113985521B CN 202111233583 A CN202111233583 A CN 202111233583A CN 113985521 B CN113985521 B CN 113985521B
- Authority
- CN
- China
- Prior art keywords
- waveguide
- silicon nitride
- input
- polarization
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 181
- 230000010287 polarization Effects 0.000 title claims abstract description 117
- 229910052581 Si3N4 Inorganic materials 0.000 title claims abstract description 112
- SBEQWOXEGHQIMW-UHFFFAOYSA-N silicon Chemical compound [Si].[Si] SBEQWOXEGHQIMW-UHFFFAOYSA-N 0.000 title claims abstract description 31
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 79
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 48
- 239000010703 silicon Substances 0.000 claims abstract description 48
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000011229 interlayer Substances 0.000 claims abstract description 26
- 239000010410 layer Substances 0.000 claims description 76
- 230000008878 coupling Effects 0.000 claims description 13
- 238000010168 coupling process Methods 0.000 claims description 13
- 238000005859 coupling reaction Methods 0.000 claims description 13
- 239000000835 fiber Substances 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 239000013307 optical fiber Substances 0.000 claims description 5
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 4
- 238000003491 array Methods 0.000 claims description 3
- 238000005253 cladding Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 230000010363 phase shift Effects 0.000 claims description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims 1
- 230000002401 inhibitory effect Effects 0.000 claims 1
- 230000008901 benefit Effects 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 7
- 230000010354 integration Effects 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 6
- 230000005540 biological transmission Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12007—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
- G02B6/354—Switching arrangements, i.e. number of input/output ports and interconnection types
- G02B6/3554—3D constellations, i.e. with switching elements and switched beams located in a volume
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
- G02B6/354—Switching arrangements, i.e. number of input/output ports and interconnection types
- G02B6/3554—3D constellations, i.e. with switching elements and switched beams located in a volume
- G02B6/3556—NxM switch, i.e. regular arrays of switches elements of matrix type constellation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12133—Functions
- G02B2006/12145—Switch
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mathematical Physics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
技术领域technical field
本发明涉及光通信技术领域,特别是一种硅-氮化硅三维集成偏振无关波长选择光开关阵列芯片。The invention relates to the technical field of optical communication, in particular to a silicon-silicon nitride three-dimensional integrated polarization-independent wavelength selection optical switch array chip.
背景技术Background technique
自20世纪90年代以来,随着互联网技术的迅速发展,用户对互联网流量的需求日益增长,并随之带来了对光纤通信容量的迫切增长需求。交换机用于互连数据中心的服务器以及全球光纤通信网络中的各种终端设备。现有的光网络在数据交换节点处大多仍采用电交换技术,受“电子瓶颈”的限制,传输速率和容量无法满足发展需求,大端口数、低功耗的光交换成为本领域的研究重点。Since the 1990s, with the rapid development of Internet technology, users' demand for Internet traffic has been increasing, and with it, there has been an urgent growing demand for optical fiber communication capacity. Switches are used to interconnect servers in data centers and various end devices in global fiber-optic communication networks. Most of the existing optical networks still use electrical switching technology at the data switching nodes. Due to the limitation of "electronic bottleneck", the transmission rate and capacity cannot meet the development needs. Optical switching with a large number of ports and low power consumption has become the focus of research in this field. .
波分复用(WDM)技术的发展为网络扩容提供了一种有效的解决方案,能够在同一根光纤中同时让两个以上的光波长信号通过各自的信道传输信息。波长选择光开关(简称为WSS) 可以对多波长光信号中的每个波长进行独立交换,支持将任意波长通道分配到任意路径,可以降低光纤的用量。基于硅上液晶(简称为LCoS)技术的WSS受到了广泛研究并实现了商业化,通过液晶和衍射光栅在自由空间中将不同波长光信号进行分离。尽管基于LCoS的WSS能够实现较高维度的波长切换,但是器件尺寸还是很大。通过在一块芯片上集成的方式可以使器件结构紧凑,硅基光电子可以借助成熟的微电子加工工艺实现大规模生产,具备高集成度、低成本、高可靠性等优势。目前报道的硅基平台上的WSS最常见的是基于微环谐振器的结构,利用微环的波长选择特性,通过调节微环的谐振波长可以对传输的光信号进行开关切换。但是由于绝缘体上硅波导构成的微环尺寸较小,容易受工艺误差的影响,并且对温度敏感,不适合实际应用。此外,硅基集成平台上常用的硅波导尺寸为500nm×220nm,波导宽度和高度不相等导致其对偏振敏感,需要额外的偏振控制器件来调整偏振状态。The development of wavelength division multiplexing (WDM) technology provides an effective solution for network expansion, which can simultaneously transmit information through two or more optical wavelength signals through their respective channels in the same optical fiber. The wavelength selective optical switch (abbreviated as WSS) can independently switch each wavelength in the multi-wavelength optical signal, and supports the assignment of any wavelength channel to any path, which can reduce the consumption of optical fibers. WSS based on liquid crystal-on-silicon (LCoS) technology has been widely studied and commercialized, and the optical signals of different wavelengths are separated in free space by liquid crystal and diffraction grating. Although LCoS-based WSS can achieve higher-dimensional wavelength switching, the device size is still large. By integrating on a chip, the device structure can be made compact, and silicon-based optoelectronics can be mass-produced with the help of mature microelectronics processing technology, with the advantages of high integration, low cost, and high reliability. The most commonly reported WSS on a silicon-based platform is based on the structure of a microring resonator. Using the wavelength selective properties of the microring, the transmitted optical signal can be switched by adjusting the resonant wavelength of the microring. However, due to the small size of the microring formed by the silicon-on-insulator waveguide, it is easily affected by process errors and is sensitive to temperature, which is not suitable for practical applications. In addition, the commonly used silicon waveguides on silicon-based integrated platforms are 500 nm × 220 nm in size, and the unequal width and height of the waveguides make them sensitive to polarization, requiring additional polarization control devices to adjust the polarization state.
发明内容SUMMARY OF THE INVENTION
针对上述大规模光开关芯片的实际应用需求以及现有的光开关实施方案所存在的缺陷,本发明提出一种硅-氮化硅三维集成的偏振无关波长选择光开关阵列芯片。该芯片结构简单、工艺容差大、可扩展性强。更重要的是,本发明利用硅-氮化硅三维集成的优势从很大程度上减轻了波导交叉带来的性能恶化,同时构建形成偏振无关的波长选择光开关系统,能够在未来超大容量光通信系统中发挥重要作用。In view of the practical application requirements of the above-mentioned large-scale optical switch chips and the defects existing in the existing optical switch implementations, the present invention proposes a silicon-silicon nitride three-dimensional integrated polarization-independent wavelength selective optical switch array chip. The chip has the advantages of simple structure, large process tolerance and strong expansibility. More importantly, the present invention takes advantage of the three-dimensional integration of silicon-silicon nitride to greatly reduce the performance deterioration caused by the crossover of the waveguides, and at the same time constructs a polarization-independent wavelength selective optical switch system, which can be used for ultra-large-capacity optical switches in the future. important role in the communication system.
为实现上述目的,本发明的技术解决方案如下:For achieving the above object, the technical solution of the present invention is as follows:
一种硅-氮化硅三维集成偏振无关波长选择光开关阵列芯片,其特点在于,包含N路光输入耦合器、N路偏振旋转分束器、N×N×M波长选择光开关阵列、N路偏振旋转合束器和N路光输出耦合器,每一路输入光信号包含M个波长,所述的N×N×M波长选择光开关阵列包含对称分布的2N个输入端口和对称分布的2N个输出端口其中,N为2以上的正整数,分别代表输入和输出光波导的数目,M为2以上的正整数,代表所传输的不同波长的光信道数目;A silicon-silicon nitride three-dimensional integrated polarization-independent wavelength-selective optical switch array chip is characterized in that it includes N-channel optical input couplers, N-channel polarization rotation beam splitters, N×N×M wavelength-selective optical switch arrays, N channels polarization rotation beam combiner and N optical output couplers, each input optical signal includes M wavelengths, and the N×N×M wavelength selective optical switch array includes symmetrically distributed 2N input ports and symmetrically distributed 2N where N is a positive integer greater than 2, representing the number of input and output optical waveguides, respectively, and M is a positive integer greater than 2, representing the number of optical channels of different wavelengths transmitted;
第i路输入单模光纤与第i路光输入耦合器的输入端连接,该光输入耦合器的输出端与第i路所述的偏振旋转分束器的输入端连接,该偏振旋转分束器的2个输出端分别与所述的 N×N×M波长选择光开关阵列的第i对的2个输入端口连接,该所述的N×N×M波长选择光开关阵列(103)的第i对的2个输出端分别与第i路偏振旋转合束器的2个输入端相连,该偏振旋转合束器(105)的输出端与第i路光输出耦合器(106)的输入端连接,该光输出耦合器(106)的输出端与第i单模光纤连接,i=1,2,……,N;The i-th input single-mode fiber is connected to the input end of the i-th optical input coupler, and the output end of the optical input coupler is connected to the input end of the i-th polarization rotation beam splitter. The polarization rotation beam splitter The two output ends of the device are respectively connected with the two input ports of the i-th pair of the N×N×M wavelength selective optical switch array, and the N×N×M wavelength selective optical switch array (103) The two output ends of the i-th pair are respectively connected to the two input ends of the i-th polarization rotation beam combiner, and the output end of the polarization-rotation beam combiner (105) is connected to the input of the i-th optical output coupler (106). end connection, the output end of the optical output coupler (106) is connected to the i-th single-mode fiber, i=1, 2, ..., N;
每路偏振旋转分束器(102)将各路光信号分为正交偏振的二束光,且其中一束的偏振态旋转90度,使得在每路偏振旋转分束器(102)的2个输出端的光信号具有相同偏振,所述的N×N×M波长选择光开关阵列(103)将从每一对输入端输入的任意波长的光信号任意路由到不同的输出端输出,;所述的N路偏振旋转合束器(105)将2N束相同偏振态的光信号重新转化为正交偏振态并合并输出为N路,最后输出到输出单模光纤发射。Each polarization rotation beam splitter (102) divides each optical signal into two beams of orthogonal polarization, and the polarization state of one of the beams is rotated by 90 degrees, so that in 2 beams of each polarization rotation beam splitter (102) The optical signals of the two output terminals have the same polarization, and the N×N×M wavelength selective optical switch array (103) arbitrarily routes the optical signals of any wavelength input from each pair of input terminals to different output terminals for output; so The N-way polarization rotating beam combiner (105) re-converts 2N beams of optical signals of the same polarization state into orthogonal polarization states, and combines them to output N-way, and finally outputs them to the output single-mode fiber for emission.
所述的硅-氮化硅三维集成偏振无关波长选择光开关阵列芯片在SOI晶圆上通过硅-氮化硅三维集成波导实现,包含三层波导,分别为底层硅波导、中间层氮化硅波导和顶层氮化硅波导,各波导之间通过氧化硅隔离,硅波导和顶层氮化硅波导在高度方向上间距大于0.8μm,位于中间层的氮化硅波导与底层硅波导和顶层氮化硅波导在高度方向上的间距均小于0.5 μm。所述的N×N×M波长选择光开关阵列将从每一对底层硅波导的输入端输入的任意波长的光信号任意路由到顶层氮化硅波导的不同的输出端输出,通过波导层间耦合器将在顶层氮化硅波导中的光信号转换到底层硅波导上,并传输至所述的偏振旋转合束器。The silicon-silicon nitride three-dimensional integrated polarization-independent wavelength selective optical switch array chip is realized on the SOI wafer by silicon-silicon nitride three-dimensional integrated waveguides, including three layers of waveguides, which are the bottom layer silicon waveguide and the middle layer silicon nitride respectively. The waveguide and the top layer silicon nitride waveguide are separated by silicon oxide. The spacing between the silicon waveguide and the top layer silicon nitride waveguide is greater than 0.8 μm in the height direction. The pitch of the silicon waveguides in the height direction is all less than 0.5 μm. The N×N×M wavelength selective optical switch array arbitrarily routes optical signals of arbitrary wavelengths input from the input ends of each pair of bottom silicon waveguides to different output ends of the top silicon nitride waveguides for output, and passes between the layers of the waveguides. The coupler converts the optical signal in the top layer silicon nitride waveguide to the bottom layer silicon waveguide for transmission to the polarization rotating beam combiner.
所述的硅-氮化硅三维集成偏振无关波长选择光开关阵列芯片,每一路输入光信号包含M 个波长;在所述的偏振旋转分束器处将每路光信号分为正交偏振的2束光,并且其中一束的偏振态旋转90度,使得在偏振旋转分束器的2个输出端的光信号具有相同偏振;所述的N×N ×M波长选择光开关阵列对该2N路×M个波长的光信号提供动态路由;所述的2N路波导层间耦合器协助光信号在硅-氮化硅三维波导层之间传输;所述的N路偏振旋转合束器能够将2N 束相同偏振态的光信号重新转化为正交偏振态并合并输出为N路,最后输出到单模光纤发射。In the silicon-silicon nitride three-dimensional integrated polarization-independent wavelength selective optical switch array chip, each input optical signal contains M wavelengths; at the polarization rotation beam splitter, each optical signal is divided into orthogonal polarizations. 2 beams of light, and the polarization state of one beam is rotated by 90 degrees, so that the optical signals at the two output ends of the polarization rotation beam splitter have the same polarization; the N×N×M wavelength selective optical switch array The optical signals of ×M wavelengths provide dynamic routing; the 2N-way waveguide interlayer coupler assists the transmission of optical signals between the silicon-silicon nitride three-dimensional waveguide layers; the N-way polarization rotation beam combiner can combine 2N The optical signals of the same polarization state are re-converted into orthogonal polarization states and combined and output into N channels, and finally output to the single-mode fiber for emission.
所述的N路光输入耦合器和N路光输出耦合器,分别包含N个光输入耦合器和N个光输出耦合器,结构采用二维光栅耦合器或倒锥形模斑转换器,以垂直或水平耦合的方式将包含随机偏振态的多波长光信号从单模光纤耦合输入/输出光芯片。The N-way optical input coupler and N-way optical output coupler respectively include N optical input couplers and N optical output couplers, and the structure adopts a two-dimensional grating coupler or an inverted tapered mode spot converter, so as to The multi-wavelength optical signal containing random polarization states is coupled into/out of the optical chip from a single-mode fiber by means of vertical or horizontal coupling.
所述的N路偏振旋转分束器和N路偏振旋转合束器,都包含N个偏振旋转分束器,其中在用作偏振旋转合束器时,只需将偏振旋转分束器的输入、输出端口置换下即可;所述的偏振旋转分束器可采用渐变脊型波导结合非对称定向耦合器结构实现。The N-way polarization rotation beam splitter and the N-way polarization rotation beam splitter both include N polarization rotation beam splitters, and when used as a polarization rotation beam combiner, only the input of the polarization rotation beam splitter needs to be connected. , the output port can be replaced; the polarization rotation beam splitter can be realized by adopting a graded ridge waveguide combined with an asymmetric directional coupler structure.
所述的2N路波导层间耦合器由2N个三维波导层间耦合器构成,包含一个由顶层氮化硅波导和中间层氮化硅波导构成的氮化硅-氮化硅层间耦合器,还有一个由中间层氮化硅波导和底层硅波导构成的氮化硅-硅层间耦合器,两个层间耦合器之间通过中间层的氮化硅波导连接。在任意两个相邻波导层之间用两个相反方向的锥形波导结构来完成模场耦合,实现光信号在三层波导之间传输。The 2N-way waveguide interlayer coupler is composed of 2N three-dimensional waveguide interlayer couplers, including a silicon nitride-silicon nitride interlayer coupler composed of a top layer silicon nitride waveguide and an intermediate layer silicon nitride waveguide, There is also a silicon nitride-silicon interlayer coupler composed of an intermediate layer silicon nitride waveguide and a bottom layer silicon waveguide, and the two interlayer couplers are connected through the intermediate layer silicon nitride waveguide. Between any two adjacent waveguide layers, two tapered waveguide structures with opposite directions are used to complete the mode field coupling, so as to realize the transmission of optical signals between the three-layer waveguides.
所述的N×N×M波长选择光开关阵列由N×N个2×2波长选择光开关单元按照横纵交叉 (cross-bar)的拓扑结构连接而成。The N×N×M wavelength selective optical switch array is formed by connecting N×
所述的2×2波长选择光开关单元采用硅-氮化硅三维集成的微环结构,包括一个底层硅波导、一个顶层的氮化硅波导和M组Q-级串联氮化硅微环(M≥2,Q≥2),底层硅波导两端分别为输入端(西)和直通端(东),顶层氮化硅波导的两端分别为交叉端(北)和上载端(南)。利用硅波导和顶层的氮化硅波导构成三维波导交叉结,抑制波导交叉导致的损耗和串扰;利用中间层氮化硅波导构成级联微环,分别与硅波导和顶层的氮化硅波导通过竖向耦合构成三维集成级联微环谐振器。The 2×2 wavelength selective optical switch unit adopts a silicon-silicon nitride three-dimensional integrated micro-ring structure, including a bottom layer silicon waveguide, a top layer silicon nitride waveguide and M groups of Q-level series silicon nitride micro-rings ( M≥2, Q≥2), the two ends of the bottom silicon waveguide are the input end (west) and the straight end (east), respectively, and the two ends of the top layer silicon nitride waveguide are the cross end (north) and the upload end (south). The silicon waveguide and the silicon nitride waveguide on the top layer are used to form a three-dimensional waveguide crossing junction to suppress the loss and crosstalk caused by the crossing of the waveguides; the intermediate layer silicon nitride waveguide is used to form a cascaded micro-ring, which passes through the silicon waveguide and the silicon nitride waveguide on the top layer respectively. The vertical coupling constitutes a three-dimensional integrated cascaded microring resonator.
所述的2×2波长选择光开关单元的级联微环中的M组Q-级串联氮化硅微环(M≥2,Q≥ 2),每一组级联微环Cm(m=1~M)包含了Q个相同结构相互串联的氮化硅微环;所述的Q个串联氮化硅微环之间及与底层硅波导和顶层氮化硅波导间的耦合系数可以通过设计波导间距、耦合区域波导长度来改变,以增大器件的工作带宽,所述的级联微环的组数M对应可实现波长路由的通道数,每一组级联微环Cm中所有Q个氮化硅微环的谐振波长都相同;所述的级联微环的每个氮化硅微环上面集成了微加热器,可以调节氮化硅微环的谐振波长,微加热器通过在氮化硅微环上方制作氮化钛金属热电阻或直接对氮化硅微环下方的硅波导掺杂为同样的微环结构来实现,将微加热器结构尽量靠近级联微环来降低热移相功耗,还可以对包层氧化硅和底部的硅衬底做刻蚀处理,形成空气槽,进一步提升热移相效率。M groups of Q-stage series-connected silicon nitride micro-rings (M ≥ 2, Q ≥ 2) in the cascaded micro-rings of the 2×2 wavelength selective optical switch unit, each group of cascaded micro-rings C m (m =1~M) contains Q silicon nitride microrings with the same structure connected in series; the coupling coefficients between the Q series silicon nitride microrings and with the bottom silicon waveguide and the top silicon nitride waveguide can be obtained through Design the waveguide spacing and the length of the waveguide in the coupling area to increase the working bandwidth of the device. The number of groups M of the cascaded microrings corresponds to the number of channels that can realize wavelength routing. In each group of cascaded microrings Cm , all The resonant wavelengths of the Q silicon nitride microrings are all the same; a micro heater is integrated on each silicon nitride microring of the cascaded microrings, which can adjust the resonant wavelength of the silicon nitride microring. It is realized by fabricating titanium nitride metal thermal resistance above the silicon nitride microring or directly doping the silicon waveguide under the silicon nitride microring into the same microring structure, and placing the microheater structure as close as possible to the cascaded microrings to reduce The thermal phase shifting power consumption can also be etched on the cladding silicon oxide and the bottom silicon substrate to form air grooves, which further improves the thermal phase shifting efficiency.
所述的2×2波长选择光开关单元,初始状态所有氮化硅微环的谐振波长都相同,为λ0,与输入波长(λ1~λM)都不相同,此时从输入端(直通端)输入的光信号直接从直通端(输入端)输出;通过对其中一组级联微环Cn(n=1~M)上的微加热器进行加电,可以将Cn中微环的谐振波长平移与其中某个输入波长λn相同,此时从输入端(直通端)输入的波长为λn的光信号就从交叉端(下载端)输出,其他波长的输入光还是保持从直通端(输入端)输出;通过对不同组级联微环上的微加热器加不同的电压电调,使其谐振波长分别与对应输入波长对准,从而在该2×2波长选择光开关单元中实现所有的输入波长从输入端(直通端)能够任意路由到交叉端和直通端(上载端和输入端)输出,实现波长动态路由。For the 2×2 wavelength selective optical switch unit, the resonant wavelengths of all silicon nitride microrings in the initial state are the same, which is λ 0 , which is different from the input wavelength (λ 1 ~λ M ). The optical signal input from the straight-through end) is directly output from the straight -through end (input end); The resonant wavelength shift of the ring is the same as that of one of the input wavelengths λ n . At this time, the optical signal with wavelength λ n input from the input end (through end) is output from the cross end (download end), and the input light of other wavelengths remains Output from the straight-through end (input end); by applying different voltage and electrical adjustments to the micro-heaters on different groups of cascaded micro-rings, so that the resonant wavelengths are aligned with the corresponding input wavelengths, so as to select the light at the 2×2 wavelength. The switch unit realizes that all input wavelengths can be arbitrarily routed from the input end (straight-through end) to the output of the crossover end and the straight-through end (upload end and input end) to realize wavelength dynamic routing.
所述的硅-氮化硅三维集成偏振无关波长选择光开关阵列芯片,通过对第p行、第q列的第m组串联微环上的微加热器加电使其谐振波长红移到对应的波长λm通道(p≤N,q≤N,m≤M),可以将从p输入端口输入的波长为λm的光信号路由到q输出端口;通过对多组串联微环加电,可处理波长粒度光信号的任意路由。The silicon-silicon nitride three-dimensional integrated polarization-independent wavelength selective optical switch array chip red-shifts its resonance wavelength to the corresponding value by applying power to the micro-heaters on the m-th group of series-connected micro-rings in the p-th row and the q-th column. The wavelength λm channel ( p≤N , q≤N, m≤M ) can route the optical signal with wavelength λm input from the p input port to the q output port; Can handle arbitrary routing of wavelength granularity optical signals.
和现有技术相比,本发明的优势体现在以下几个方面:Compared with the prior art, the advantages of the present invention are embodied in the following aspects:
1.本发明硅-氮化硅三维集成的偏振无关波长选择光开关阵列芯片依托硅-氮化硅三维集成平台实现,具有器件结构简单、集成度高、制作工艺与CMOS工艺兼容、大端口数、低损耗、低串扰、低功耗、低成本的优势。1. The polarization-independent wavelength selective optical switch array chip of the silicon-silicon nitride three-dimensional integration of the present invention is realized by relying on the silicon-silicon nitride three-dimensional integration platform, and has the advantages of simple device structure, high integration degree, manufacturing process compatible with CMOS process, and large number of ports. , low loss, low crosstalk, low power consumption, low cost advantages.
2.本发明利用氮化硅微环作为光开关的基础单元,具有较高的工艺容差,不需要额外功耗来校准微环的谐振波长,降低了光开关系统的控制复杂度。2. The present invention uses the silicon nitride microring as the basic unit of the optical switch, which has high process tolerance, does not require additional power consumption to calibrate the resonant wavelength of the microring, and reduces the control complexity of the optical switch system.
3.本发明光开关阵列芯片支持多波长光信号的传输和交换,而且具备同时传输两束光信号的特性,可以利用偏振复用和波长复用在两个维度上增加光信号容量,对于大容量光通信的发展具有实际意义。3. The optical switch array chip of the present invention supports the transmission and exchange of multi-wavelength optical signals, and has the characteristics of transmitting two beams of optical signals at the same time, and can use polarization multiplexing and wavelength multiplexing to increase the optical signal capacity in two dimensions. The development of capacity optical communication has practical significance.
附图说明Description of drawings
图1为本发明基于硅-氮化硅三维集成偏振无关波长选择光开关阵列芯片的总体结构图;1 is a general structural diagram of an array chip of the present invention based on a silicon-silicon nitride three-dimensional integrated polarization-independent wavelength selective optical switch;
图2为本发明的2×2波长选择光开关单元结构图及其工作原理;FIG. 2 is a structural diagram of a 2×2 wavelength selective optical switch unit of the present invention and its working principle;
图3为本发明4×4×2偏振无关波长选择光开关阵列芯片实施例示意图;FIG. 3 is a schematic diagram of an embodiment of a 4×4×2 polarization-independent wavelength selective optical switch array chip according to the present invention;
图4为本发明的移相器截面结构示意图;4 is a schematic diagram of a cross-sectional structure of a phase shifter of the present invention;
图5为本发明的波导层间耦合器的实施例结构示意图;FIG. 5 is a schematic structural diagram of an embodiment of the waveguide interlayer coupler of the present invention;
图6为本发明实施例4×4×2波长选择光开关阵列的几种代表性工作状态示意图。FIG. 6 is a schematic diagram of several representative working states of a 4×4×2 wavelength selective optical switch array according to an embodiment of the present invention.
具体实施方式Detailed ways
为了进一步阐述本发明的核心技术方案以及应用目标,下文结合附图和实施例来做出说明。但值得注意的是,本发明所涉及的范围不局限于此处提到的实施例。In order to further illustrate the core technical solutions and application objectives of the present invention, the following descriptions are made in conjunction with the accompanying drawings and embodiments. However, it should be noted that the scope of the present invention is not limited to the embodiments mentioned here.
如图1所示,本发明硅-氮化硅三维集成偏振无关波长选择光开关阵列芯片,包含N路光输入耦合器101、N路偏振旋转分束器102、N×N×M波长选择光开关阵列103、2N路波导层间耦合器104、N路偏振旋转合束器105和N路光输出耦合器106。所述的N路光输入耦合器101的输入端与输入的N路单模光纤连接,所述的N路偏振旋转分束器102的输入端分别与所述的N路光输入耦合器101的输出端连接;所述的N×N×M波长选择光开关阵列103,包含2N个输入端口和2N个输出端口,所述的2N个输入端口分布在东西两侧,分别与所述的N 路偏振旋转分束器102的2N个输出端连接,2N个输出端口分布在南北两侧,分别与所述的 2N路波导层间耦合器104的输入端相连;所述的N路偏振旋转合束器105的2N个输入端分别与所述的2N路波导层间耦合器104的输出端相连;所述的N路偏振旋转合束器105的输出端与所述的N路光输出耦合器106的输入端连接,所述的N路光输出耦合器106的输出端与 N路单模光纤连接;As shown in FIG. 1 , the silicon-silicon nitride three-dimensional integrated polarization-independent wavelength selective optical switch array chip of the present invention includes N channels of
所述的硅-氮化硅三维集成偏振无关波长选择光开关阵列103是在SOI晶圆上通过硅-氮化硅三维集成波导实现,参见图2,包含三层波导,分别为底层硅波导201、中间层氮化硅波导202和顶层氮化硅波导203,各波导之间通过氧化硅隔离,所述的底层硅波导201和所述的顶层氮化硅波导203在高度方向上的间距大于0.8μm,所述的中间层的氮化硅波导202分别与所述的底层硅波导201和所述的顶层氮化硅波导203在高度方向上的间距均小于0.5μm。The silicon-silicon nitride three-dimensional integrated polarization-independent wavelength selective
每一路输入光信号包含M个波长;所述的偏振旋转分束器102将每路光信号分为正交偏振的2束光,并且其中一束光的偏振态旋转90度,使得在所述的偏振旋转分束器102的2个输出端的光信号具有相同偏振;所述的N×N×M波长选择光开关阵列103对该2N路×M个波长的光信号提供动态路由;所述的2N路波导层间耦合器104协助光信号在硅-氮化硅三维波导层之间传输;所述的N路偏振旋转合束器105将2N束相同偏振态的光信号重新转化为正交偏振态并合并输出为N路,最后通过所述的N路光输出耦合器106的输出端输出经输出端的 N路单模光纤O发射。Each input optical signal contains M wavelengths; the polarization
实施例:Example:
图3展示了本发明硅-氮化硅三维集成偏振无关波长选择光开关阵列芯片的一个实施例,即4×4×2(N=4,M=2)偏振无关波长选择光开关阵列芯片。本实施例利用硅-氮化硅三维集成波导实现,包含三层波导:底层硅波导201和其上的中间层氮化硅波导202和顶层氮化硅波导203。所述的硅波导201和顶层氮化硅波导203在高度方向上间距大于0.8μm,保证三维波导交叉结具有较低的损耗(小于0.01dB),所述的中间层的氮化硅波导202与所述的底层硅波导201和顶层氮化硅波导203在高度方向上的间距均小于0.5μm,保证光信号在三层波导之间耦合传输的损耗较小(小于0.1dB)。FIG. 3 shows an embodiment of the silicon-silicon nitride three-dimensional integrated polarization-independent wavelength selective optical switch array chip of the present invention, that is, a 4×4×2 (N=4, M=2) polarization-independent wavelength selective optical switch array chip. This embodiment is implemented using a silicon-silicon nitride three-dimensional integrated waveguide, which includes three layers of waveguides: a bottom
在本实施例中,4个光输入耦合器101和4个光输出耦合器106为水平结构,通过端面耦合的方式将包含正交偏振态的两波长光信号耦合进光芯片/耦合出光芯片;8个偏振旋转分束器102或106采用渐变脊型波导结合非对称定向耦合器的结构,4个偏振旋转分束器102 用于将输入光信号转换为相同偏振态的信号并分束,另外4个偏振旋转分束器的输入与输出反向放置构成4个偏振旋转分束器105,将具有相同偏振态的信号重新转换为正交偏振态并合并;4×4×2波长选择光开关阵列103包含16个2×2波长选择光开关单元,光开关单元之间通过cross-bar拓扑结构进行连接,每个光开关单元包含2组氮化硅双微环(Q=2),能够同时传输两个WDM通道的光信号,每个氮化硅微环均集成了微加热器用于热移相。In this embodiment, the four
图4为本实施例中的热移相器结构截面示意图。对氮化硅微环实现热移相的方式有两种:分别为在氮化硅微环上方制作金属热电阻(图4(a))或直接对氮化硅微环的下方的硅波导掺杂为同样的微环结构(图4(b))来实现低功耗热移相。在本实施例中,移相器附近的二氧化硅包层和底部的硅衬底均做了刻蚀处理,形成空气槽,将热量集中在移相器区域,防止其向周围和衬底扩散,可以进一步提升热移相效率。FIG. 4 is a schematic cross-sectional view of the structure of the thermal phase shifter in this embodiment. There are two ways to achieve thermal phase shift for the silicon nitride microring: making a metal thermal resistance above the silicon nitride microring (Fig. 4(a)) or directly doping the silicon waveguide below the silicon nitride microring The same microring structure (Fig. 4(b)) is used to achieve low-power thermal phase shifting. In this embodiment, the silicon dioxide cladding near the phase shifter and the silicon substrate at the bottom are etched to form air grooves to concentrate the heat in the phase shifter area and prevent it from spreading to the surroundings and the substrate , which can further improve the thermal phase shifting efficiency.
图5为本实施例中的波导层间耦合器104结构,包括一个由顶层氮化硅波导203和中间层氮化硅波导202构成的氮化硅-氮化硅层间耦合器D和一个由中间层氮化硅波导202和底层硅波导201构成的氮化硅-硅层间耦合器E。在任意两个相邻波导层之间用两个相反方向的锥形波导结构来完成模场耦合,实现光信号在三层波导201、202、203之间传输。5 shows the structure of the
本实施例的4×4×2偏振无关波长选择光开关阵列芯片,在对第p行、第q列的第m组串联微环加电使其谐振波长红移到对应的波长λm通道(p≤4,q≤4,m≤2)时,从p输入端口输入的波长为λm的光信号可以路由到q输出端口;通过对多组串联微环加电,可处理波长粒度光信号的任意路由。图6给出了几种代表性的4×4×2波长选择光开关阵列工作状态示意图。In the 4×4×2 polarization-independent wavelength selective optical switch array chip of this embodiment, the resonant wavelength of the m-th group of micro-rings in the p-th row and the q-th column is red-shifted to the corresponding wavelength λ m channel ( When p≤4, q≤4, m≤2), the optical signal with a wavelength of λ m input from the p input port can be routed to the q output port; by powering up multiple groups of serial microrings, the wavelength granularity optical signal can be processed any route. Figure 6 shows a schematic diagram of several representative working states of a 4×4×2 wavelength selective optical switch array.
以图6(3)的状态为例,对本发明硅-氮化硅偏振无关波长选择光开关阵列芯片的工作过程进行详细说明如下。Taking the state of FIG. 6(3) as an example, the working process of the silicon-silicon nitride polarization-independent wavelength selective optical switch array chip of the present invention will be described in detail as follows.
在图3的4×4×2偏振无关波长选择光开关阵列芯片中,一束包含随机偏振态的两波长光信号(TE+TM,λ1λ2)经过I1耦合器1001从单模光纤耦合进入光芯片,经过偏振旋转分束器1021之后分成两束相同偏振的光信号,分别为原有的TE→TE偏振态光信号以及TM→TE偏振态光信号。TE→TE偏振态光信号传输到4×4×2波长选择光开关阵列的西1端口,TM→TE 偏振态光信号则传输到4×4×2波长选择光开关阵列的东1’端口。在不加电的情况下,串联氮化硅微环的谐振波长与输入光信号的两个波长通道λ1、λ2均不一致。给4×4×2波长选择光开关阵列中第一行第二列的第一组串联氮化硅微环加电热调,使其谐振波长红移到λ1,同样的给第一行第一列的第二组串联氮化硅微环加电热调,使其谐振波长红移到λ2,此时西1 端口输入的光信号λ1、λ2分别路由到北2、北1波导,东1’端口输入的光信号λ1、λ2沿逆时针分别路由到南2’、南1’端口。上述四个输出端口的光信号分别经过波导层间耦合器从顶层氮化硅波导传输到硅波导,其中北1和南1’两端口的光信号λ2经过偏振旋转合束器10501合束并从O1耦合器10601输出,北2和南2’两端口的光信号λ1经过偏振旋转合束器10502合并从O2耦合器10602输出。综上,I1输入的正交偏振态双波长光信号分别被路由到O1和O2两个输出端。类似的,其他端口输入的光信号均按照相同的方式在输入-输出端口之间传输。In the 4×4×2 polarization-independent wavelength selective optical switch array chip of FIG. 3 , a two-wavelength optical signal (TE+TM, λ 1 λ 2 ) containing random polarization states passes through the I 1 coupler 1001 from the single-mode fiber After being coupled into the optical chip, after passing through the polarization rotating beam splitter 1021, it is divided into two optical signals of the same polarization, which are the original TE→TE polarization state optical signal and the TM→TE polarization state optical signal respectively. The TE→TE polarization state optical signal is transmitted to the
本发明的具体实施方式不局限于上述的实施例,对于本技术领域的其他人员很容易理解。前述实施例已经对本发明进行了清晰的表述,但所记载的技术方案仍然可以修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments of the present invention are not limited to the above-mentioned embodiments, and are easily understood by other persons in the technical field. The foregoing embodiments have clearly described the present invention, but the technical solutions described can still be modified, or some technical features thereof can be equivalently replaced. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111233583.9A CN113985521B (en) | 2021-10-22 | 2021-10-22 | Silicon-silicon nitride three-dimensional integrated polarization-independent wavelength selective optical switch array chip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111233583.9A CN113985521B (en) | 2021-10-22 | 2021-10-22 | Silicon-silicon nitride three-dimensional integrated polarization-independent wavelength selective optical switch array chip |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113985521A CN113985521A (en) | 2022-01-28 |
CN113985521B true CN113985521B (en) | 2022-08-09 |
Family
ID=79740448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111233583.9A Active CN113985521B (en) | 2021-10-22 | 2021-10-22 | Silicon-silicon nitride three-dimensional integrated polarization-independent wavelength selective optical switch array chip |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113985521B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117075364A (en) * | 2022-05-09 | 2023-11-17 | 北京万集科技股份有限公司 | Phase shifter |
CN115857109A (en) * | 2022-12-07 | 2023-03-28 | 赛丽科技(苏州)有限公司 | Resonator system, tunable laser and control method of resonator system |
CN117289398B (en) * | 2023-11-24 | 2024-01-30 | 中国科学院长春光学精密机械与物理研究所 | A focal plane switch array beam scanning system based on microring resonator switches |
CN119172033A (en) * | 2024-11-21 | 2024-12-20 | 上海赛丽微电子有限公司 | Polarization locking device, method, optical communication equipment and optical chip |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9261754B2 (en) * | 2013-12-13 | 2016-02-16 | Telefonaktiebolaget L M Ericsson (Publ) | Parallel and WDM silicon photonics integration in information and communications technology systems |
CN104317005A (en) * | 2014-10-27 | 2015-01-28 | 中国科学院半导体研究所 | Wavelength choice photoswitch based on tunable micro-ring resonators |
CN108141651B (en) * | 2016-07-07 | 2020-04-03 | 华为技术有限公司 | Optical routing device |
CN107870397B (en) * | 2016-09-26 | 2020-02-21 | 华为技术有限公司 | Wavelength selective optical switch |
CN111427122B (en) * | 2020-05-14 | 2021-05-04 | 上海交通大学 | N×N silicon-based polarization independent optical switch system |
CN112269224B (en) * | 2020-09-08 | 2022-04-26 | 南京邮电大学 | Silicon-silicon nitride integrated polarizing beam splitter based on vertical coupling structure |
-
2021
- 2021-10-22 CN CN202111233583.9A patent/CN113985521B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113985521A (en) | 2022-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113985521B (en) | Silicon-silicon nitride three-dimensional integrated polarization-independent wavelength selective optical switch array chip | |
Suzuki et al. | Low-insertion-loss and power-efficient 32× 32 silicon photonics switch with extremely high-Δ silica PLC connector | |
Lee et al. | Silicon photonic switch fabrics: Technology and architecture | |
Lu et al. | Broadband 4$\times $4 Nonblocking Silicon Electrooptic Switches Based on Mach–Zehnder Interferometers | |
TWI472820B (en) | Core-selective optical switches and method of forming thereof | |
Suzuki et al. | Low-loss, low-crosstalk, and large-scale optical switch based on silicon photonics | |
CN113484952B (en) | A three-dimensional hybrid multiplexing signal all-optical wavelength conversion device on a silicon substrate | |
CN105794131B (en) | Photoswitch, optical add/drop multiplexer, communication network node and communication network | |
CN103091782B (en) | Array waveguide grating module with polarization control | |
Li et al. | Ultra-low-loss multi-layer 8× 8 microring optical switch | |
CN113406747A (en) | Wavelength division multiplexer and silicon optical integrated chip | |
US6816296B2 (en) | Optical switching network and network node and method of optical switching | |
JP2004093787A (en) | Optical switch, optical communication device, and optical communication system | |
CN108519642B (en) | An integrated optical mode switch compatible with wavelength division multiplexing and mode division multiplexing functions | |
CN113985522B (en) | Micro-ring optical switch based on silicon-silicon nitride three-dimensional integration | |
WO2014155642A1 (en) | Optical matrix switch and control system therefor | |
CN108650187B (en) | 4X 4 non-blocking wavelength selection router based on series double-ring resonator | |
JP4916489B2 (en) | Optical circuit | |
CN116449499A (en) | A Wavelength Selective Switching Device Based on Microring Resonator Array | |
CN114236696A (en) | 1 XN wavelength selective switch | |
JPS5945423A (en) | Matrix optical switch and its driving method | |
Lee et al. | Multi-wavelength message routing in a non-blocking four-port bidirectional switch fabric for silicon photonic networks-on-chip | |
Zhou et al. | Broadband 4× 4 non-blocking optical switch fabric based on Mach-Zehnder interferometers | |
Chansky et al. | Edge wavelength selective switch for optical access networks | |
Poulopoulos et al. | Air trenches-assisted highly selective, fully flexible SOI filtering element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |