[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN113969392A - 一种可调控的Ti-Al-C系MAX相涂层的制备方法 - Google Patents

一种可调控的Ti-Al-C系MAX相涂层的制备方法 Download PDF

Info

Publication number
CN113969392A
CN113969392A CN202111177314.5A CN202111177314A CN113969392A CN 113969392 A CN113969392 A CN 113969392A CN 202111177314 A CN202111177314 A CN 202111177314A CN 113969392 A CN113969392 A CN 113969392A
Authority
CN
China
Prior art keywords
substrate
coating
max phase
phase
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111177314.5A
Other languages
English (en)
Inventor
汪爱英
李忠昌
王振玉
张栋
周定伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute Of Industrial Technology
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute Of Industrial Technology
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute Of Industrial Technology, Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute Of Industrial Technology
Priority to CN202111177314.5A priority Critical patent/CN113969392A/zh
Publication of CN113969392A publication Critical patent/CN113969392A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种可调控的Ti‑Al‑C系MAX相涂层的制备方法,包括:以Ti‑Al复合靶作为溅射靶,以碳氢气体作为反应气源,所述的碳氢气体的流量为5‑12sccm,采用直流磁控溅射,对清洁后的基体表面溅射得到Ti‑Al‑C涂层,将所述的Ti‑Al‑C涂层加热到600‑700℃,保温60‑180min得到Ti‑Al‑C系MAX相涂层。该方法能够简单、高效的调控不同的Ti‑Al‑C系MAX相,同时能够降低热处理温度。

Description

一种可调控的Ti-Al-C系MAX相涂层的制备方法
技术领域
本发明涉及表面处理技术领域,具体为一种可调控的Ti-Al-C系MAX相涂层的制备方法。
背景技术
MAX相材料是一大类热力学稳定、具有密排六方结构的层状高性能陶瓷金属材料,通式为Mn+1AXn,其中M位为早期过渡金属元素,包括Ti、Cr等,A位通常为元素周期表中ⅢA或ⅣA族元素,像Al、Si等,X位元素为C或N,可以理解为由单层A原子分割的金属碳化物或金属氮化物纳米层状化合物。
一般来说,M-X以强的共价键和离子键结合,而M-A依靠相对较弱的金属键结合。这种独特的层状结构和成键方式,使MAX相兼具金属和陶瓷的优异性能,如优异的机械稳定性、高硬度,热震耐受好,强的耐蚀性和高温抗氧化性,良好的电导率和热导率,以及自愈合特性和可加工性等,在核能、海洋、航空航天、汽车、生物医药等高技术领域具有广泛的应用。
在通式Mn+1AXn中,n值表示MAX相晶体结构中每两层A原子之间M原子的层数为n+1,目前大多数已知的MAX相材料n值主要有1、2、3,根据n值的不同将MAX相分为211,312,413相。其中典型的含Al的MAX相材料通过形成保护性Al2O3层而表现出显著的抗高温氧化和抗腐蚀性能,最具代表的Ti-Al-C体系和Cr-Al-C体系中又以Ti-Al-C化合物与Al2O3的热膨胀系数相近成为不锈钢、钛合金、镍基高温合金等基体的合适的防护涂层。
Ti-Al-C系MAX相包括211相的Ti2AlC和312相的Ti3AlC2两种,两者具有相似的成键特征和能带结构,性能相近。目前,Ti2AlC和Ti3AlC2的主要制备方法为物理气相沉积(PVD)技术中的阴极电弧溅射或者磁控溅射,由于相对复杂的MAX相长c轴晶体结构的合成需要足够的扩散率来划分元素,所以两者的成相需要高的热处理温度(800-1000℃),Ti3AlC2因为更长的c轴,成相温度要更高。
如何在较低温度下实现211相和312相的制备,使得Ti-Al-C系MAX相对于不同类型基材有更强的适应性,以及基于需求如何调控Ti-Al-C系MAX的不同相是亟需解决的问题。
发明内容
本发明提供一种可调控的Ti-Al-C系MAX相涂层的制备方法,该方法能够简单、高效的调控不同的Ti-Al-C系MAX相,同时能够降低热处理温度。
一种可调控的Ti-Al-C系MAX相涂层的制备方法,包括:
以Ti-Al复合靶作为溅射靶,以碳氢气体作为反应气源,所述的碳氢气体的流量为5-12sccm,持续通入惰性气体,采用直流磁控溅射,对清洁后的基体表面溅射得到Ti-Al-C涂层,将所述的Ti-Al-C涂层加热到600-700℃,保温60-180min得到Ti-Al-C系MAX相涂层。
进一步的,所述的碳氢气体的流量为5-8sccm,得到Ti-Al-C系MAX相为211相。
进一步的,所述的碳氢气体的流量为9-12sccm,得到Ti-Al-C系MAX相为312相。
进一步的,所述碳氢气体为乙炔或甲烷。
本发明利用直流磁控溅射技术与碳氢气体流量相结合,为基体表面单位面积内提供足够量的碳原子,降低了211和312相的热处理温度,并且通过控制碳氢气体流量能够根据需要获得211相和312相,实现对制备211相和312相的调控,并且结合直流磁控溅射技术,在较大的碳氢气体流量的情况下,得到结构致密,表面光滑,晶粒均匀细小的Ti-Al-C系MAX相为211相。
所述的惰性气体为氩气或氮气,所述惰性气体的流量为150-200sccm。
所述的直流磁控溅射的参数为:溅射靶功率为1500-2500W,基体负偏压为0-100V,腔体气压为0.6-1.2Pa,沉积时间为60-180min,真空度低于1-3×10-5Pa。
所述的Ti-Al复合靶的Ti-Al元素比为2:1.2~1.5。
对所述的基体表面进行清洁的步骤为:
对基体表面用400#~2000#的SiC砂纸打磨,然后抛光预处理后在丙酮中超声清洗10-15min。
所述的基体为不锈钢或钛基合金。
对所述的基体表面进行清洁后,进行等离子体辉光刻蚀处理,所述的等离子体辉光刻蚀处理的参数为:等离子流量为30-35sccm,离子源电压为1000~1200V,基体施加负偏压150-250V,刻蚀时间为20-40min。通过等离子体辉光刻蚀处理使得基体与溅射涂层结合更加紧密。
所述的等离子体为氩气,氮气中的任意一种。
在所述的对基体进行等离子体辉光刻蚀处理之后,在所述的基体表面溅射一层过渡层。
所述的基体表面溅射一层过渡层的步骤为:关闭所述的反应源,并通入保护性气体,开起所述的Ti-Al复合靶对基体进行直流溅射。
进一步的,所述的过渡层为TiAl间化合物。
进一步的,所述的溅射参数为:溅射功率1800~2400W,基体偏压为-100~0V。
进一步的,所述的保护性气体的流量为150~250sccm,腔体气压为0.6~1.2Pa。
进一步的,将所述的Ti-Al-C涂层加热之前,控制真空度低于1-3×10-3Pa。
与现有技术相比,本发明的有益效果为:
(1)采用Ti-Al复合靶和碳氢气体的反应磁控溅射沉积制备,能够通过对反应气体的流量调节轻松实现对热处理后涂层中211相和312相成分的控制和相纯度的调控;从而有利于根据成分性能优势满足不同领域的应用需求。
(2)通过对反应气体碳氢气体流量的调控,改善了312相成相对于退火温度的依赖,在一定程度上降低了312相的退火温度,即单纯通过流量调控,实现了较低温度下211相或312相的制备。
附图说明
图1为实施例1~3制得的Ti-Al-C系MAX相涂层涂层的XRD谱图。
图2为实施例1~3制得的Ti-Al-C系MAX相涂层涂层的表面形貌图,其中,2(a)为实施例1制得的Ti-Al-C系MAX相涂层涂层的表面形貌图,2(b)为实施例2制得的Ti-Al-C系MAX相涂层涂层的表面形貌图,2(c)为实施例3制得的Ti-Al-C系MAX相涂层涂层的表面形貌图。
具体实施方式
本发明实施例主要在保护性气体中,以Ti-Al复合靶为溅射靶,以碳氢气体作为反应气体,通过对反应气体碳氢气体的流量调节,实现对涂层中Ti-Al-C系MAX相成分的控制和调控。
下面结合优选实施例及附图对本发明的技术方案做进一步的详细说明,本实施例在以发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:
本实施例中,基体材料为1Cr11Ni2W2MoV不锈钢,基体表面涂层的具体制备步骤如下:
步骤1:使用400#~2000#的SiC砂纸依次对1Cr11Ni2W2MoV不锈钢表面进行打磨,再使用金刚石研磨膏进行抛光20min。
步骤2:将打磨抛光后的1Cr11Ni2W2MoV不锈钢基体置于丙酮中超声清洗10min,而后冷风吹干用导电胶粘贴于样品架上备用。
步骤3:将粘贴有基体的样品架置于沉积腔体室中,待机械泵和分子泵抽真空至3×10-5Pa以下,设置腔体温度为100℃,向真空腔体中通入34sccm的高纯氩气,设置线性阳极离子源电流为0.2A,基体偏压为-200V,对1Cr11Ni2W2MoV不锈钢的表面刻蚀清洗30min。
步骤4:Ti-Al过渡层的沉积条件与以下步骤5中的一致,区别在于通入的气体不同,过渡层的沉积不通入碳氢反应气体,只通入200sccm的高纯氩气。
步骤5:以Ti-Al复合靶为溅射靶,腔体中通入高纯氩气,高纯甲烷气体为反应气体,进行反应磁控溅射沉积得到包含Cr,Al,C三种元素成分的涂层,其中高纯氩气的流量为200sccm,高纯甲烷的流量为5sccm,溅射靶的Ti、Al比为2:1.5,溅射功率为2000W,基体偏压为0V,腔体气压为1Pa,沉积时间为120min。
步骤6:将得到的沉积态Ti-Al-C涂层置于退火炉中,真空度低于2×10-3Pa,在700℃中保温90min。
步骤7:对上述制得的涂层的进行XRD和扫描电镜测试。
图1和图2分别是一定甲烷反应气体流量的所制备涂层的X射线衍射和扫描电镜测试图谱,由图1所示,实施例1中的涂层成分主要是TiAl间化合物和少量被检测到的Ti2AlC的峰。图2(a)所示的扫描电镜测试中,表面平整致密。
实施例2:
本实施例中,基体材料为1Cr11Ni2W2MoV不锈钢,基体表面涂层的具体制备步骤如下:
步骤1:使用400#~2000#的SiC砂纸依次对1Cr11Ni2W2MoV不锈钢表面进行打磨,再使用金刚石研磨膏进行抛光20min。
步骤2:将打磨抛光后的1Cr11Ni2W2MoV不锈钢基体置于丙酮中超声清洗10min,而后冷风吹干用导电胶粘贴于样品架上备用。
步骤3:将粘贴有基体的样品架置于沉积腔体室中,待机械泵和分子泵抽真空至3×10-5Pa以下,设置腔体温度为100℃,向真空腔体中通入34sccm的高纯氩气,设置线性阳极离子源电流为0.2A,基体偏压为-200V,对1Cr11Ni2W2MoV不锈钢的表面刻蚀清洗30min。
步骤4:Ti-Al过渡层的沉积条件与以下步骤5中的一致,区别在于通入的气体不同,过渡层的沉积不通入碳氢反应气体,只通入200sccm的高纯氩气。
步骤5:以Ti-Al复合靶为溅射靶,腔体中通入高纯氩气和高纯甲烷气体为反应气体进行反应磁控溅射沉积得到包含Cr,Al,C三种元素成分的涂层,其中高纯氩气的流量为200sccm,高纯甲烷的流量为7.5sccm,溅射靶的Ti、Al比为2:1.5,溅射功率为2000W,基体偏压为0V,腔体气压为1Pa,沉积时间为120min。
步骤6:将得到的沉积态Ti-Al-C涂层置于退火炉中,真空度低于2×10-3Pa,在700℃中保温90min。
步骤7:对上述制得的涂层的进行XRD和扫描电镜测试。
图1和图2分别是一定甲烷反应气体流量的所制备涂层的X射线衍射和扫描电镜测试图谱,由图1所示,实施例2中的涂层成分TiAl化合物消失,涂层的主要成分转变为了Ti2AlC。图2(b)所示的扫描电镜测试中,表面平整致密,有部分颗粒聚集,晶粒大小为0.24μm。
实施例3:
本实施例中,基体材料为1Cr11Ni2W2MoV不锈钢,基体表面涂层的具体制备步骤如下:
步骤1:使用400#~2000#的SiC砂纸依次对1Cr11Ni2W2MoV不锈钢表面进行打磨,再使用金刚石研磨膏进行抛光20min。
步骤2:将打磨抛光后的1Cr11Ni2W2MoV不锈钢基体置于丙酮中超声清洗10min,而后冷风吹干用导电胶粘贴于样品架上备用。
步骤3:将粘贴有基体的样品架置于沉积腔体室中,待机械泵和分子泵抽真空至3×10-5Pa以下,设置腔体温度为100℃,向真空腔体中通入34sccm的高纯氩气,设置线性阳极离子源电流为0.2A,基体偏压为-200V,对1Cr11Ni2W2MoV不锈钢的表面刻蚀清洗30min。
步骤4:Ti-Al过渡层的沉积条件与以下步骤5中的一致,区别在于通入的气体不同,过渡层的沉积不通入碳氢反应气体,只通入200sccm的高纯氩气。
步骤5:以Ti-Al复合靶为溅射靶,腔体中通入高纯氩气和高纯甲烷气体为反应气体进行反应磁控溅射沉积得到包含Cr,Al,C三种元素成分的涂层,其中高纯氩气的流量为200sccm,高纯甲烷的流量为10sccm,溅射靶的Ti、Al比为2:1.5,溅射功率为2000W,基体偏压为0V,腔体气压为1Pa,沉积时间为120min。
步骤6:将得到的沉积态Ti-Al-C涂层置于退火炉中,真空度低于2×10-3Pa,在700℃中保温90min。
步骤7:对上述制得的涂层的进行XRD和扫描电镜测试。
图1和图2分别是一定甲烷反应气体流量的所制备涂层的X射线衍射和扫描电镜测试图谱,由图1所示,实施例3中的涂层成分由Ti2AlC转变为了Ti3AlC2。图2(c)所示的扫描电镜测试中,表面平整致密,颗粒变得细化,晶粒大小为0.13μm。

Claims (10)

1.一种可调控的Ti-Al-C系MAX相涂层的制备方法,其特征在于,包括:
以Ti-Al复合靶作为溅射靶,以碳氢气体作为反应气源,所述的碳氢气体的流量为5-12sccm,对清洁后的基体表面进行直流磁控溅射得到Ti-Al-C涂层,将所述的Ti-Al-C涂层加热到600-700℃,保温60-180min得到Ti-Al-C系MAX相涂层。
2.根据权利要求1所述的可调控的Ti-Al-C系MAX相涂层的制备方法,其特征在于,所述的碳氢气体的流量为5-8sccm,得到Ti-Al-C系MAX相为211相。
3.根据权利要求1所述的可调控的Ti-Al-C系MAX相涂层的制备方法,其特征在于,所述的碳氢气体的流量为9-12sccm,得到Ti-Al-C系MAX相为312相。
4.根据权利要求1-3任一项所述的可调控的Ti-Al-C系MAX相涂层的制备方法,其特征在于,所述碳氢气体为乙炔或甲烷。
5.根据权利要求1所述的可调控的Ti-Al-C系MAX相涂层的制备方法,其特征在于,所述的直流磁控溅射的参数为:溅射靶功率为1500-2500W,基体负偏压为0-100V,腔体气压为0.6-1.2Pa,沉积时间为60-180min,真空度低于1-3×10-5Pa。
6.根据权利要求1所述的可调控的Ti-Al-C系MAX相涂层的制备方法,其特征在于,所述的Ti-Al复合靶的Ti-Al元素比为2:1.2~1.5。
7.根据权利要求1所述的可调控的Ti-Al-C系MAX相涂层的制备方法,其特征在于,对所述的基体表面进行清洁,包括:
对基体表面用400#~2000#的SiC砂纸打磨,然后抛光预处理后在丙酮中超声清洗10-15min。
8.根据权利要求1所述的可调控的Ti-Al-C系MAX相涂层的制备方法,其特征在于,所述的基体为不锈钢或钛基合金。
9.根据权利要求7所述的可调控的Ti-Al-C系MAX相涂层的制备方法,其特征在于,对所述的基体表面进行清洁后,进行等离子体辉光刻蚀处理,所述的等离子体辉光刻蚀处理的参数为:等离子流量为30-35sccm,离子源电压为1000~1200V,基体施加负偏压150-250V,刻蚀时间为20-40min。
10.根据权利要求9所述的可调控的Ti-Al-C系MAX相涂层的制备方法,其特征在于,在所述的对基体进行等离子体辉光刻蚀处理之后,在所述的基体表面溅射一层过渡层,所述的过渡层为TiAl间化合物。
CN202111177314.5A 2021-10-09 2021-10-09 一种可调控的Ti-Al-C系MAX相涂层的制备方法 Pending CN113969392A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111177314.5A CN113969392A (zh) 2021-10-09 2021-10-09 一种可调控的Ti-Al-C系MAX相涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111177314.5A CN113969392A (zh) 2021-10-09 2021-10-09 一种可调控的Ti-Al-C系MAX相涂层的制备方法

Publications (1)

Publication Number Publication Date
CN113969392A true CN113969392A (zh) 2022-01-25

Family

ID=79587203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111177314.5A Pending CN113969392A (zh) 2021-10-09 2021-10-09 一种可调控的Ti-Al-C系MAX相涂层的制备方法

Country Status (1)

Country Link
CN (1) CN113969392A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103924203A (zh) * 2014-04-24 2014-07-16 中国科学院宁波材料技术与工程研究所 一种基体表面的耐辐照防护涂层及其制备方法
CN106884141A (zh) * 2017-01-24 2017-06-23 复旦大学 一种Ti2AlC MAX相薄膜的制备方法
CN107620033A (zh) * 2016-07-14 2018-01-23 中国科学院宁波材料技术与工程研究所 一种高纯强致密max相涂层的制备方法
CN113235062A (zh) * 2021-07-12 2021-08-10 中国科学院宁波材料技术与工程研究所 一种max相多层复合涂层及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103924203A (zh) * 2014-04-24 2014-07-16 中国科学院宁波材料技术与工程研究所 一种基体表面的耐辐照防护涂层及其制备方法
CN107620033A (zh) * 2016-07-14 2018-01-23 中国科学院宁波材料技术与工程研究所 一种高纯强致密max相涂层的制备方法
CN106884141A (zh) * 2017-01-24 2017-06-23 复旦大学 一种Ti2AlC MAX相薄膜的制备方法
CN113235062A (zh) * 2021-07-12 2021-08-10 中国科学院宁波材料技术与工程研究所 一种max相多层复合涂层及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘培等: "气体流量及后续热处理对Cr2AlC涂层制备及结构性能的影响", 《第七届全国青年表面工程学术会议暨重庆市第二届汽车摩托车摩擦学材料先进技术与应用推进会论文集》, pages 67 *

Similar Documents

Publication Publication Date Title
KR101850667B1 (ko) 입방정계 지르코니아 층의 제조방법
CN113981392B (zh) 一种Ti-Al-C MAX相涂层及其低温成相制备方法
Liu et al. Fabrication and mechanical properties of high purity of Cr2AlC coatings by adjustable Al contents
CN111074223A (zh) 成分均匀可控的高熵合金薄膜的物理气相沉积制备方法
CN104805405B (zh) 一种氮化铝压电薄膜及其制备方法
CN107130222A (zh) 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法
CN111349901B (zh) 一种切削刀具用耐高温氧化铝厚膜涂层的制备方法
CN111647851B (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN108611613B (zh) 一种纳米多层结构碳基薄膜的制备方法
CN108677144A (zh) 一种制备铝氮共掺类金刚石复合薄膜的方法
CN113293331A (zh) 一种高熵合金表面碳化物/金刚石涂层及其制备方法
CN111155064A (zh) 高功率脉冲磁控溅射制备TiAlSiN复合涂层的方法
CN112410728A (zh) 高Cr含量CrB2-Cr涂层的制备工艺
CN115386828A (zh) 一种max相固溶体涂层、制备方法及其应用
CN112391592A (zh) 一种高温抗氧化钽铪碳三元陶瓷碳化物涂层及其制备方法
CN114703452B (zh) 一种CoCrFeNi高熵合金掺杂非晶碳薄膜及其制备方法
Zhang et al. Syntheses and properties of Ti2AlN MAX-phase films
CN108330455B (zh) 一种Cr2AlC相纯度可调控的涂层制备方法
CN108130518A (zh) 一种具有高温热稳定性的AlB2型WB2(N)硬质薄膜及其制备方法
CN110565063B (zh) 一种锆钽硼涂层及其制备方法和应用
CN113969392A (zh) 一种可调控的Ti-Al-C系MAX相涂层的制备方法
JP3971338B2 (ja) α型結晶構造主体のアルミナ皮膜の製造方法、α型結晶構造主体のアルミナ皮膜で被覆された部材およびその製造方法
JP3281173B2 (ja) 高硬度薄膜及びその製造方法
CN112391593B (zh) 一种高Cr含量、韧性好的CrB2-Cr涂层及其制备工艺
CN111647859B (zh) 一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination