CN113897418B - Probe for detecting DNA point mutation, kit and application - Google Patents
Probe for detecting DNA point mutation, kit and application Download PDFInfo
- Publication number
- CN113897418B CN113897418B CN202110721028.4A CN202110721028A CN113897418B CN 113897418 B CN113897418 B CN 113897418B CN 202110721028 A CN202110721028 A CN 202110721028A CN 113897418 B CN113897418 B CN 113897418B
- Authority
- CN
- China
- Prior art keywords
- sequence
- probe
- site
- substrate
- activity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000523 sample Substances 0.000 title claims abstract description 134
- 230000035772 mutation Effects 0.000 title claims abstract description 64
- 108020004414 DNA Proteins 0.000 claims abstract description 137
- 239000000758 substrate Substances 0.000 claims abstract description 89
- 230000000694 effects Effects 0.000 claims abstract description 60
- 238000001514 detection method Methods 0.000 claims abstract description 45
- 108010036364 Deoxyribonuclease IV (Phage T4-Induced) Proteins 0.000 claims abstract description 22
- 108091027757 Deoxyribozyme Proteins 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 33
- 238000003776 cleavage reaction Methods 0.000 claims description 28
- 230000007017 scission Effects 0.000 claims description 28
- 102200048928 rs121434568 Human genes 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 11
- 239000002773 nucleotide Substances 0.000 claims description 9
- 125000003729 nucleotide group Chemical group 0.000 claims description 9
- 239000002105 nanoparticle Substances 0.000 claims description 8
- 238000010791 quenching Methods 0.000 claims description 8
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- 230000000171 quenching effect Effects 0.000 claims description 7
- 239000003153 chemical reaction reagent Substances 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 238000005520 cutting process Methods 0.000 claims description 4
- 102200055464 rs113488022 Human genes 0.000 claims description 4
- 102200124924 rs11554290 Human genes 0.000 claims description 4
- 102200048955 rs121434569 Human genes 0.000 claims description 4
- 102200048979 rs28929495 Human genes 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 3
- 201000010099 disease Diseases 0.000 claims description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 2
- 108091027568 Single-stranded nucleotide Proteins 0.000 claims 1
- 238000003745 diagnosis Methods 0.000 claims 1
- 102000053602 DNA Human genes 0.000 abstract description 34
- 230000000295 complement effect Effects 0.000 abstract description 17
- 230000002255 enzymatic effect Effects 0.000 abstract 1
- 238000013461 design Methods 0.000 description 18
- 238000003752 polymerase chain reaction Methods 0.000 description 11
- 102000004190 Enzymes Human genes 0.000 description 10
- 108090000790 Enzymes Proteins 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000007480 sanger sequencing Methods 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000000246 agarose gel electrophoresis Methods 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 239000012634 fragment Substances 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- 238000001712 DNA sequencing Methods 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000007846 asymmetric PCR Methods 0.000 description 2
- 230000033590 base-excision repair Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 150000007523 nucleic acids Chemical group 0.000 description 2
- 239000011535 reaction buffer Substances 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- WDRISBUVHBMJEF-MROZADKFSA-N 5-deoxy-D-ribose Chemical compound C[C@@H](O)[C@@H](O)[C@@H](O)C=O WDRISBUVHBMJEF-MROZADKFSA-N 0.000 description 1
- 208000035657 Abasia Diseases 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 108020003215 DNA Probes Proteins 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 101150039808 Egfr gene Proteins 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 101150040459 RAS gene Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 101150080074 TP53 gene Proteins 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 102000015098 Tumor Suppressor Protein p53 Human genes 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000007844 allele-specific PCR Methods 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000011304 droplet digital PCR Methods 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 1
- 108700021358 erbB-1 Genes Proteins 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004776 molecular orbital Methods 0.000 description 1
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 238000007481 next generation sequencing Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 108700025694 p53 Genes Proteins 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 125000003396 thiol group Chemical class [H]S* 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000000733 zeta-potential measurement Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6827—Hybridisation assays for detection of mutation or polymorphism
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明涉及检测DNA点突变的探针、试剂盒及应用。该探针具有用于被核酸内切酶IV(Endo IV)酶切的AP位点,AP位点将所述探针分为第一序列和第二序列;探针可通过其部分序列分别与突变链和野生链互补形成第一底物和第二底物,第一底物和第二底物分别具有被核酸内切酶IV酶切形成具有第二序列的游离单链的第一活性和第二活性,第一活性大于第二活性。由于Endo IV对不同第一底物和第二底物这种截短的dsDNA结构具有独特的酶切活性,进而设计独特的Endo IV探针,使得其与目标链形成此种特殊的dsDNA结构,极大地降低了Endo IV的序列序列依赖性,扩宽了检测的普适性,降低了检测的成本。
The invention relates to a probe, a kit and an application for detecting DNA point mutations. The probe has an AP site for being cleaved by endonuclease IV (Endo IV), and the AP site divides the probe into a first sequence and a second sequence; The mutant strand and the wild strand complement each other to form a first substrate and a second substrate, and the first substrate and the second substrate respectively have the first activity and the activity of being cleaved by endonuclease IV to form a free single strand with the second sequence. The second activity, the first activity is greater than the second activity. Since Endo IV has unique enzymatic activity on the truncated dsDNA structure of different first substrates and second substrates, a unique Endo IV probe is designed to form this special dsDNA structure with the target strand, The sequence dependence of Endo IV is greatly reduced, the universality of detection is broadened, and the cost of detection is reduced.
Description
技术领域technical field
本发明涉及单核苷酸突变检测的技术领域,尤其涉及检测DNA点突变的探针、试剂盒及应用。The invention relates to the technical field of single nucleotide mutation detection, in particular to probes, kits and applications for detecting DNA point mutations.
背景技术Background technique
单核苷酸变异(SNV)或其他类型的各种DNA点突变与多种人类疾病相关,而各种DNA 点突变已被公认为可作为人类癌症临床诊断和治疗的生物标志物,如TP53、EGFR和RAS基因突变。然而,突变型DNA(MT)在临床样本中通常与大量野生型DNA(WT)共存,其丰度水平较低(<0.1%)。目前,已经开发出多种检测DNA点突变的方法,包括DNA测序、聚合酶链反应(PCR)和核酸杂交。DNA测序(Sanger测序,二代测序等)和PCR(等位基因特异性PCR,阻断PCR,液滴数字PCR等)是最常用的策略。然而,这两种策略都需要长的反应和检测时间、成本高、实验条件优化复杂,对仪器和操作人员提出了更高的要求。Single nucleotide variation (SNV) or other types of various DNA point mutations are associated with a variety of human diseases, and various DNA point mutations have been recognized as biomarkers for clinical diagnosis and treatment of human cancer, such as TP53, EGFR and RAS gene mutations. However, mutant DNA (MT) often coexists with large amounts of wild-type DNA (WT) in clinical samples at low abundance levels (<0.1%). Currently, various methods for detecting DNA point mutations have been developed, including DNA sequencing, polymerase chain reaction (PCR), and nucleic acid hybridization. DNA sequencing (Sanger sequencing, next-generation sequencing, etc.) and PCR (allele-specific PCR, blocking PCR, droplet digital PCR, etc.) are the most commonly used strategies. However, both strategies require long reaction and detection times, high costs, and complicated optimization of experimental conditions, which put forward higher requirements for instruments and operators.
基于核酸探针杂交的策略因其方便灵活的策略设计和不需要昂贵的设备而备受关注。但基于探针的DNA点突变的检测策略普遍存在的问题是,探针需要反复的实验条件优化获得;尤其是对不同SNV进行检测时,为确定其探针的灵敏度和选择性,往往需要通过优化反应温度、引入辅助链等方法来进行确定,这无疑增加了探针的设计成本。Nucleic acid probe hybridization-based strategies have attracted much attention due to their convenient and flexible strategy design and the lack of expensive equipment. However, the common problem of the probe-based DNA point mutation detection strategy is that the probe needs to be repeatedly optimized for experimental conditions; especially when detecting different SNVs, in order to determine the sensitivity and selectivity of the probe, it is often necessary to pass Optimization of reaction temperature, introduction of auxiliary strands and other methods to determine, which undoubtedly increases the cost of probe design.
发明内容Contents of the invention
有鉴于此,本发明的目的在于提供一种简化的探针,减少了设计成本。In view of this, the object of the present invention is to provide a simplified probe which reduces the design cost.
第一方面,本发明实施例公开了一种检测DNA点突变的探针,用于区分DNA突变链和 DNA野生链的探针,所述探针为一单核苷酸链,所述探针具有用于被核酸内切酶IV酶切的 AP位点,所述AP位点将所述探针分为第一序列和第二序列;所述探针可通过其部分序列分别与突变链和野生链互补形成第一底物和第二底物,所述第二底物具有一错配的碱基位点,所述错配的碱基位点与所述突变链的突变位点相对应;所述第一底物和所述第二底物分别具有被核酸内切酶IV酶切形成具有所述第二序列的游离单链的第一活性和第二活性,所述第一活性大于所述第二活性。In the first aspect, the embodiment of the present invention discloses a probe for detecting DNA point mutations, a probe for distinguishing DNA mutant strands and DNA wild strands, the probe is a single nucleotide strand, and the probe has an AP site for being cleaved by endonuclease IV, and the AP site divides the probe into a first sequence and a second sequence; the probe can be separated from the mutant strand and the The wild strand is complementary to form a first substrate and a second substrate, the second substrate has a mismatched base site corresponding to the mutation site of the mutant chain The first substrate and the second substrate have respectively the first activity and the second activity of being cut by endonuclease IV to form a free single chain with the second sequence, and the first activity is greater than the second activity.
在本发明实施例中,所述第一底物具有第一双链序列,所述突变链的突变位点处于所述第一双链序列中,所述第二底物具有第二双链序列,所述错配的碱基位点处于所述第二双链序列中;所述第一双链序列和所述第二双链序列对应处在相同的序列位置。其中相同的序列位置为第一底物和第二底物中dsDNA结构在序列位置相同,该探针可以与截短的目标链或者长度较长的目标链的部分序列形成如图4所示的dsDNA结构。In an embodiment of the present invention, the first substrate has a first double-stranded sequence, the mutation site of the mutant chain is in the first double-stranded sequence, and the second substrate has a second double-stranded sequence , the mismatched base position is in the second double-stranded sequence; the first double-stranded sequence and the second double-stranded sequence are correspondingly in the same sequence position. Wherein the same sequence position is the same in the sequence position of the dsDNA structure in the first substrate and the second substrate, and the probe can be formed with the partial sequence of the truncated target strand or the longer target strand as shown in Figure 4 dsDNA structure.
在本发明实施例中,所述第一双链序列中,用于形成所述第一双链序列的所述突变链5’末端处在距离所述AP位点位于所述突变链的5’方向上游1个碱基至3’方向下游7个碱基之间。由此形成有第一双链序列的第一底物具有更高的被核酸内切酶IV酶切的活性。In the embodiment of the present invention, in the first double-stranded sequence, the 5' end of the mutant strand used to form the first double-stranded sequence is at a distance from the AP site 5' of the mutant strand Between 1 base upstream in the direction and 7 bases downstream in the 3' direction. Thus, the first substrate formed with the first double-stranded sequence has a higher activity of being cleaved by endonuclease IV.
在本发明实施例中,所述第一双链序列中,用于形成所述第一双链序列的所述突变链5’末端处在距离所述AP位点位于所述突变链的3’方向下游1个碱基处。由此形成有第一双链序列的第一底物具有最佳的被核酸内切酶IV酶切的活性。In the embodiment of the present invention, in the first double-stranded sequence, the 5' end of the mutant strand used to form the first double-stranded sequence is located 3' away from the AP site of the mutant strand 1 base downstream in the direction. Thus, the first substrate formed with the first double-stranded sequence has the best activity of being cleaved by endonuclease IV.
在本发明实施例中,所述第一双链序列中,所述突变链的突变位点处在距离所述AP位点位于所述突变链的5’方向上游1~4个碱基处或3’方向下游1个碱基处。形成有第一双链序列的第一底物相较于第二底物具有更高的被核酸内切酶IV酶切的活性。In the embodiment of the present invention, in the first double-stranded sequence, the mutation site of the mutant chain is located 1 to 4 bases upstream from the AP site in the 5' direction of the mutant chain or 1 base downstream in the 3' direction. The first substrate formed with the first double-stranded sequence has a higher activity of being cleaved by endonuclease IV than the second substrate.
第二方面,本发明实施例公开了一种检测DNA点突变的探针,包括第一方面涉及的探针,连接在所述探针的所述第一序列上所述AP位点5’方向上游的荧光基团及连接在所述探针的所述第二序列上所述AP位点3’方向下游的荧光猝灭基团。由此形成的探针,能够通过激发产生荧光来表征其形成的底物被酶切的活性。In the second aspect, the embodiment of the present invention discloses a probe for detecting DNA point mutations, including the probe involved in the first aspect, connected to the first sequence of the probe in the 5' direction of the AP site An upstream fluorescent group and a fluorescent quenching group connected downstream in the 3' direction of the AP site on the second sequence of the probe. The probe thus formed can be excited to generate fluorescence to characterize the enzyme cleavage activity of the substrate it forms.
第三方面,本发明实施例公开了一种检测DNA点突变的探针,包括第一方面涉及所述的探针,其中,所述探针的所述第二序列为脱氧核酶序列。In a third aspect, the embodiment of the present invention discloses a probe for detecting DNA point mutations, including the probe described in the first aspect, wherein the second sequence of the probe is a deoxyribozyme sequence.
第四方面,本发明实施例公开了用于DNA点突变检测的试剂盒或试剂组合,包括如第一方面涉及的探针及核酸内切酶IV。In the fourth aspect, the embodiment of the present invention discloses a kit or reagent combination for detecting DNA point mutations, including the probe and endonuclease IV as mentioned in the first aspect.
第五方面,本发明实施例公开了用于DNA点突变检测的试剂盒或试剂组合,包括第一方面涉及的探针,核酸内切酶IV,纳米颗粒及辅助金属离子,所述纳米颗粒连接有标记荧光基团并用于被所述脱氧核酶切割的底物。In the fifth aspect, the embodiment of the present invention discloses a kit or reagent combination for DNA point mutation detection, including the probe involved in the first aspect, endonuclease IV, nanoparticles and auxiliary metal ions, and the nanoparticles are connected to There is a substrate labeled with a fluorophore and used for cleavage by the deoxyribozyme.
第六方面,本发明实施例公开了第一方面、第二方面或第三方面涉及的探针、第四方面或第五方面涉及所述的试剂盒或试剂组合在检测单核苷酸突变体中的应用。In the sixth aspect, the embodiments of the present invention disclose the probes involved in the first aspect, the second aspect or the third aspect, and the kits or combinations of reagents involved in the fourth aspect or the fifth aspect in the detection of single nucleotide mutants in the application.
与现有技术相比,本发明至少具有以下有益效果:Compared with the prior art, the present invention has at least the following beneficial effects:
本发明通过探究Endo IV对不同dsDNA结构的切割活性,设计独特的Endo IV探针,使得其形成此种特殊的dsDNA结构,极大地降低了Endo IV的序列依赖性;并且进一步结合DNAzyme和纳米金技术,摒弃了对探针序列进行荧光和猝灭基团修饰,针对不同的突变位点,只需改变与突变位点匹配的部分,DNAzyme序列部分保持不变,而大大降低了探针设计成本和检测成本。The present invention designs a unique Endo IV probe by exploring the cutting activity of Endo IV to different dsDNA structures, so that it forms this special dsDNA structure, which greatly reduces the sequence dependence of Endo IV; and further combines DNAzyme and nano gold technology, which eliminates the need to modify the probe sequence with fluorescent and quencher groups. For different mutation sites, only the part that matches the mutation site needs to be changed, and the DNAzyme sequence remains unchanged, which greatly reduces the cost of probe design and testing costs.
附图说明Description of drawings
图1为本发明实施例提供的现有技术利用Endo IV酶切检测点突变的原理示意图。Fig. 1 is a schematic diagram of the principle of using Endo IV enzyme digestion to detect point mutations in the prior art provided by the embodiment of the present invention.
图2为本发明实施例提供的Endo IV对于不同底物的切割结果(基于FP-1探针及C1序列);图2A为Endo IV的切割示意;图2B为C1-(X)与FP-1在不同位置的杂交及Endo IV的切割过程;图2C为不同FP-1/C1-(X)被Endo IV切割的荧光增加响应速率结果;其中C1-T38 表示Target链与FP-1链全互补。Figure 2 is the cleavage results of Endo IV for different substrates (based on FP-1 probe and C1 sequence) provided by the examples of the present invention; Figure 2A is a schematic diagram of the cleavage of Endo IV; 1 Hybridization at different positions and the cleavage process of Endo IV; Figure 2C is the result of the fluorescence increase response rate of different FP-1/C1-(X) cleaved by Endo IV; where C1-T38 indicates that the Target chain and FP-1 chain are all complementary.
图3为本发明实施例提供的Endo IV对于不同FP-2/C2-(X)切割的荧光增加响应速率结果图(基于FP-2探针及C2序列);其中C2-T38表示Target链与FP-2链全互补。Fig. 3 is the result graph of the fluorescence increase response rate of Endo IV for different FP-2/C2-(X) cleavage provided by the embodiment of the present invention (based on FP-2 probe and C2 sequence); wherein C2-T38 represents the Target chain and The FP-2 strands are fully complementary.
图4为本发明实施例提供的利用Endo IV酶对不同野生链及突变链形成底物的切割效果;图4A为FP-1与MT或WT杂交的方案;图4B以C1-(+1)作为MT,以C1-(+1/-XM)作为 WT,计算FP-1/MT和FP-1/WT形成的不同荧光增长速率及DF值;图4C以C1-T38作为 MT,计算了FP-1和CM1-T38形成的不同底物的荧光增长速率及DF值;图4D为C1-(+1) 的荧光强度响应,0表示目标链仅为C1-(+1/-1M),图4D的右图显示荧光丰度突变水平低的强度。Figure 4 is the cleavage effect of Endo IV enzymes on substrates formed by different wild strands and mutant strands provided by the examples of the present invention; Figure 4A is a scheme for hybridization of FP-1 with MT or WT; Figure 4B is based on C1-(+1) As MT, C1-(+1/-XM) was used as WT to calculate the different fluorescence growth rates and DF values formed by FP-1/MT and FP-1/WT; Figure 4C used C1-T38 as MT to calculate FP The fluorescence growth rate and DF value of different substrates formed by -1 and CM1-T38; Fig. 4D is the fluorescence intensity response of C1-(+1), 0 means the target chain is only C1-(+1/-1M), Fig. The right panel of 4D shows the intensities at low levels of mutations in fluorescence abundance.
图5为本发明实施例提供的Sub-AuNPs修饰过程表征;图5A为TEM图像;图5B为归一化的紫外可见光谱图;图5C水合粒径图;图5D为Zeta电位结果,图5E为AuNPs和 Sub-AuNPs的琼脂糖凝胶电泳图像结果。Figure 5 is the characterization of the modification process of Sub-AuNPs provided by the embodiment of the present invention; Figure 5A is a TEM image; Figure 5B is a normalized UV-visible spectrum; Figure 5C is a hydration particle size diagram; Figure 5D is a Zeta potential result, Figure 5E Agarose gel electrophoresis image results of AuNPs and Sub-AuNPs.
图6为本发明实施例提供的基于DNAzyme和AuNPs的SNV检测示意图。Fig. 6 is a schematic diagram of SNV detection based on DNAzyme and AuNPs provided by the embodiment of the present invention.
图7为本发明实施例提供的基于DNAzyme和AuNPs的SNV检测的结果图;图7A为不同反应物的琼脂糖凝胶电泳图像,泳道M:DNAmarker;泳道1:游离DNAzyme;泳道2: DP-1;泳道3:DP-1/MT;泳道4:DP-1/WT;泳道5:DP-1/MT+Endo IV;泳道6:DP-1/WT+Endo IV;泳道7:DP-1+Endo IV;图7B为基于Endo IV和DNAzyme的SNV的一步检测法;图 7C为基于Endo IV和DNAzyme的SNV的两步检测法;图7D为一步检测模式对不同成分的荧光强度响应结果;图7E为两步检测模式对不同成分的荧光强度响应结果;图7D和图7E 中,曲线a:DP-1+Endo IV+Sub-AuNPs曲线;曲线b:DP-1+Endo IV+Sub-AuNPs +Mn2+;曲线C:DP-1+C1-(+1)+Endo IV+Sub-AuNPs+Mn2+;曲线D:DP-1+C1-(+1/-1M)+Endo IV+Sub-AuNPs+Mn2+。Figure 7 is the results of SNV detection based on DNAzyme and AuNPs provided by the embodiment of the present invention; Figure 7A is an agarose gel electrophoresis image of different reactants, lane M: DNAmarker; lane 1: free DNAzyme; lane 2: DP- 1; Lane 3: DP-1/MT; Lane 4: DP-1/WT; Lane 5: DP-1/MT+Endo IV; Lane 6: DP-1/WT+Endo IV; Lane 7: DP-1 +Endo IV; Figure 7B is a one-step detection method of SNV based on Endo IV and DNAzyme; Figure 7C is a two-step detection method of SNV based on Endo IV and DNAzyme; Figure 7D is the fluorescence intensity response results of one-step detection mode to different components; Figure 7E is the fluorescence intensity response results of the two-step detection mode to different components; in Figure 7D and Figure 7E, curve a: DP-1+Endo IV+Sub-AuNPs curve; curve b: DP-1+Endo IV+Sub- AuNPs +Mn 2+ ; Curve C: DP-1+C1-(+1)+Endo IV+Sub-AuNPs+Mn 2+ ; Curve D: DP-1+C1-(+1/-1M)+Endo IV +Sub-AuNPs+Mn 2+ .
图8为本发明实施例提供的基于Endo IV和DNAzyme对不同突变丰度的BRAF V600E(A)和不同突变丰度的EGFR L858R(B)各自对应的荧光强度增长率的结果图;图8C-D 为对应的不同突变丰度下荧光强度增加率的线性拟合图;图8A-D中还对应插入了低突变丰度的荧光增长结果。Figure 8 is a graph showing the results of fluorescence intensity growth rates corresponding to BRAF V600E (A) with different mutation abundances and EGFR L858R (B) with different mutation abundances based on Endo IV and DNAzyme provided by the embodiments of the present invention; Figure 8C- D is the linear fitting diagram of the increase rate of fluorescence intensity corresponding to different mutation abundances; Fig. 8A-D also inserts the corresponding fluorescence growth results of low mutation abundances.
图9为本发明实施例提供的基于Endo IV和DNAzyme对不同突变丰度的EGFR T790M(A)、不同突变丰度的EGFR G719S(B)及不同突变丰度的NRAS Q61R(C)各自对应的荧光强度增长率的结果图;图9D-F为对应的不同突变丰度下荧光强度增加率的线性拟合图;图9A-F中还对应插入了低突变丰度的荧光增长结果。Fig. 9 is the corresponding results of EGFR T790M (A), EGFR G719S (B) with different abundances and NRAS Q61R (C) with different abundances based on Endo IV and DNAzyme provided by the embodiment of the present invention. The result graph of the growth rate of fluorescence intensity; Figure 9D-F is the linear fitting graph of the increase rate of fluorescence intensity corresponding to different mutation abundances; Figure 9A-F also inserts the corresponding fluorescence growth results of low mutation abundance.
图10为本发明实施例提供的Sanger法测定EGFR L858R的丰度结果图;图10A为从非小细胞肺癌患者的组织中获得的EGFR L858R突变的Sanger法测序结果;图10B为无EGFRL858R突变的野生型基因组DNA的Sanger法测序结果;图10C为合成的L858R-103WT的Sanger法测序结果。Figure 10 is a diagram of the abundance results of EGFR L858R determined by the Sanger method provided by the embodiment of the present invention; Figure 10A is the Sanger sequencing result of the EGFR L858R mutation obtained from the tissues of patients with non-small cell lung cancer; Sanger sequencing results of wild-type genomic DNA; Figure 10C is the Sanger sequencing results of synthetic L858R-103WT.
图11为5个不同丰富度样本的Sanger测序结果(Sample 1=28%、Sample 2=15%、Sample 3=9%、Sample 4=1%、Sample 5=0.1%)。Figure 11 shows the Sanger sequencing results of 5 samples with different abundances (Sample 1=28%, Sample 2=15%, Sample 3=9%, Sample 4=1%, Sample 5=0.1%).
图12为基于Endo IV和DNAzyme的SNV两步检测法检测EGFR-L858R(T>G)点突变检测的标准曲线。Figure 12 is a standard curve for the detection of EGFR-L858R (T>G) point mutations detected by the SNV two-step detection method based on Endo IV and DNAzyme.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with examples. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
核酸内切酶IV(Endo IV)为一种可以切割双链DNA(dsDNA)中脱碱基位点(AP位点),切断AP位点5’方向上游的磷酸二酯键产生3’OH末端和5’脱氧核糖末端(5’dRP),如图1A所示。另外Endo IV还可以识别AP位点附近的错配碱基,该性质已被用于检测SNV。其基本原理如图1B所示,简而言之就是设计含有AP位点的Endo IV探针(FP),并在探针两端分别标记荧光和猝灭基团。FP的序列与MT完全匹配,而与WT存在一个碱基的错配。 FP可分别与MT和WT形成具有完整双链结构的第一底物(FP/MT)和第二底物(FP/WT),而Endo IV对第一底物和第二底物具有不同切割活性,通过计算二者的反应速率差异,即可实现对SNV的定量检测。但该过程需要通过优化反应温度,引入辅助链等方法来提高SNV 检测的灵敏度和选择性。Endo-nuclease IV (Endo IV) is a kind of abasic site (AP site) in double-stranded DNA (dsDNA), which can cut the phosphodiester bond upstream of the 5' direction of the AP site to generate a 3'OH terminal and 5' deoxyribose terminus (5'dRP), as shown in Figure 1A. In addition, Endo IV can also identify mismatched bases near the AP site, which has been used to detect SNVs. The basic principle is shown in Figure 1B. In short, it is to design an Endo IV probe (FP) containing an AP site, and label fluorescent and quenching groups at both ends of the probe. The sequence of FP is a perfect match with MT, but there is one base mismatch with WT. FP can form a first substrate (FP/MT) and a second substrate (FP/WT) with a complete double-stranded structure with MT and WT, respectively, while Endo IV has different cuts for the first substrate and the second substrate Quantitative detection of SNV can be realized by calculating the reaction rate difference between the two. However, this process needs to improve the sensitivity and selectivity of SNV detection by optimizing the reaction temperature and introducing auxiliary chains.
而本发明实施例通过探究Endo IV对不同dsDNA结构的切割活性,发现不同于现有技术中Endo IV对完全匹配dsDNA具有最高的切割活性,Endo IV对于如图2A或图4A中的结构具有更高的切割活性,且通过不同DNA链的验证,发现该性质具有普适性。也即,通过设计探针的部分序列与突变链形成一种截短的双链序列dsDNA,并且这种截短的序列位于 AP位点附近,能够促使Endo IV对这种截短的双链序列具有更高的活性,从而更高效地切割 AP位点。In the embodiment of the present invention, by exploring the cleavage activity of Endo IV for different dsDNA structures, it is found that Endo IV has the highest cleavage activity for perfectly matched dsDNA in the prior art. High cleavage activity, and through the verification of different DNA strands, it is found that this property is universal. That is, by designing the partial sequence of the probe and the mutant strand to form a truncated double-stranded sequence dsDNA, and this truncated sequence is located near the AP site, which can promote Endo IV to this truncated double-stranded sequence It has higher activity and thus cleaves the AP site more efficiently.
通过此种性质的发现,仅仅需要设计一类能够与突变链突变位点附近序列部分互补的 Endo IV探针,并且此种探针包含AP位点,即可实现Endo IV的切割,大大降低了EndoIV 需要完整的匹配突变链的探针形成底物的序列依赖性。Through the discovery of this property, it is only necessary to design a class of Endo IV probes that can be partially complementary to the sequence near the mutation site of the mutant chain, and this probe contains an AP site to achieve Endo IV cleavage, greatly reducing the EndoIV requires complete sequence-dependence of substrates for probe formation matching the mutant strand.
为此,本发明实施例公开了用于DNA点突变检测或用于区分DNA突变链和DNA野生链的探针,该探针为一单核苷酸链,探针具有用于被核酸内切酶IV酶切的AP位点,AP位点将探针分为第一序列(如图2B中靠近FP-1链5’端的序列)和第二序列如图2B中靠近FP-1 链3’端的序列)。For this reason, the embodiment of the present invention discloses a probe for DNA point mutation detection or for distinguishing a DNA mutant strand and a DNA wild strand, the probe is a single nucleotide strand, and the probe has a The AP site digested by enzyme IV, the AP site divides the probe into the first sequence (as shown in Figure 2B, the sequence near the 5' end of the FP-1 chain) and the second sequence, as shown in Figure 2B, near the 3' end of the FP-1 chain end sequence).
探针可通过其部分序列分别与突变链和野生链互补形成第一底物(如图4中 FP-1/C1-(+1))和第二底物(如图4中FP-1/C1-(+1/-XM)),第二底物具有一错配的碱基位点,错配的碱基位点与突变链的突变位点相对应。第一底物和所述第二底物分别具有被核酸内切酶IV酶切形成具有所述第二序列的游离单链的第一活性和第二活性,第一活性大于第二活性。The probe can form the first substrate (FP-1/C1-(+1) as in Figure 4) and the second substrate (FP-1/C1-(+1) as in Figure 4) and the second substrate (FP-1/ C1-(+1/-XM)), the second substrate has a mismatched base site, and the mismatched base site corresponds to the mutation site of the mutant chain. The first substrate and the second substrate respectively have a first activity and a second activity of being cleaved by endonuclease IV to form a free single chain having the second sequence, and the first activity is greater than the second activity.
由此,根据突变链的突变位点,设计与突变位点附近具有匹配性的Endo IV探针,并且促使AP位点与突变位点靠近,即能够促使该Endo IV探针获得与突变链形成的第一底物,且该第一底物与Endo IV结合的活性远大于该Endo IV探针与野生链形成的第二底物与Endo IV结合的活性,即第一活性远大于第二活性。由此,通过这种探针与突变链形成底物的方式,不仅能够显著地区分突变链和野生链,还能灵敏地检出一些生物材料或样品中含有的丰度极低的突变链或者突变体。Thus, according to the mutation site of the mutant chain, design an Endo IV probe that matches the vicinity of the mutation site, and promote the proximity of the AP site and the mutation site, that is, it can promote the formation of the Endo IV probe and the mutation chain. The first substrate, and the activity of the first substrate combined with Endo IV is much greater than the activity of the second substrate formed by the Endo IV probe and the wild chain and Endo IV, that is, the first activity is much greater than the second activity . Therefore, through the way that the probe and the mutant chain form substrates, not only can the mutant chain and the wild chain be significantly distinguished, but also sensitively detect the mutant chain or the mutant chain with extremely low abundance in some biological materials or samples. mutant.
在本发明实施例中,为表征这种探针形成底物所具有的活性差别,在该探针的第一序列上位于AP位点5’方向上游连接荧光基团,在其第二序列上位于AP位点3’方向下游连接荧光猝灭基团。如此,当该探针与MT形成的第一底物或WT形成的第二底物时,第一底物或第二底物均能被Endo IV切割形成一个具有第二序列的游离单链,并且该游离单链带有荧光猝灭基团,从而使得这个切割过程能够产生荧光。进而,每15s分别记录MT形成的第一底物被切割产生的荧光强度及WT形成的第二底物被切割产生的荧光强度,绘制二者的荧光强度-时间曲线,通过计算该曲线的斜率,即可分别表征为MT形成的第一底物和WT形成的第二底物的荧光强度上升速率,而区分因子(DF)即为MT形成的第一底物与WT形成的第二底物的荧光强度上升速率的比值,DF值越大,即表明,该探针越有利于区分MT与WT,以获得高新的选择性和灵敏度。In the embodiment of the present invention, in order to characterize the difference in activity of the substrates formed by the probe, a fluorophore is connected upstream in the 5' direction of the AP site on the first sequence of the probe, and a fluorescent group is connected on the second sequence of the probe. A fluorescent quencher is attached downstream of the AP site in the 3' direction. In this way, when the probe is combined with the first substrate formed by MT or the second substrate formed by WT, the first substrate or the second substrate can be cut by Endo IV to form a free single strand with the second sequence, And the free single chain has a fluorescent quenching group, so that the cleavage process can generate fluorescence. Furthermore, the fluorescence intensity generated by the cleavage of the first substrate formed by MT and the fluorescence intensity generated by the cleavage of the second substrate formed by WT were recorded every 15s, and the fluorescence intensity-time curves of the two were drawn, and the slope of the curve was calculated. , which can be characterized as the rise rate of the fluorescence intensity of the first substrate formed by MT and the second substrate formed by WT, respectively, and the discrimination factor (DF) is the first substrate formed by MT and the second substrate formed by WT The ratio of the rising rate of the fluorescence intensity, the larger the DF value, the more favorable the probe is for distinguishing MT from WT, so as to obtain high selectivity and sensitivity.
下方将结合具体的实施例进行说明。The following will be described in combination with specific embodiments.
试剂和仪器Reagents and Instruments
Endo IV购买自Thermo Fisher Scientific(美国)。ThermoPol反应缓冲液购自New England Biolabs(美国)。2xTaq PCR Mix购自生工生物工程股份有限公司(中国)。金纳米颗粒(AuNPs,20nm)从BBI Solutions公司(英国)购买。所有实验均采用天根生化科技有限公司的 DNase/RNase去离子水稀释。用Roto-Gene Q2 plex HRM仪器(QIAGEN,德国Hilden公司) 测量样品的荧光强度。利用透射电子显微镜(TEM)(JEM-1400Flash,日本JEOL公司)、紫外- 可见光谱仪(UV-3600,日本岛津公司)、Zetasizer Nano S90 S90(英国Malvern公司)来表征DNA功能化的AuNP。琼脂糖凝胶图像分析在Bio-Rad ChemDocXRS(美国)上进行。Endo IV was purchased from Thermo Fisher Scientific (USA). ThermoPol reaction buffer was purchased from New England Biolabs (USA). 2xTaq PCR Mix was purchased from Sangon Bioengineering Co., Ltd. (China). Gold nanoparticles (AuNPs, 20 nm) were purchased from BBI Solutions (UK). All experiments were diluted with DNase/RNase deionized water from Tiangen Biochemical Technology Co., Ltd. The fluorescence intensity of the samples was measured with a Roto-Gene Q2 plex HRM instrument (QIAGEN, Hilden, Germany). DNA-functionalized AuNPs were characterized using a transmission electron microscope (TEM) (JEM-1400Flash, JEOL, Japan), an ultraviolet-visible spectrometer (UV-3600, Shimadzu, Japan), and Zetasizer Nano S90 S90 (Malvern, UK). Agarose gel image analysis was performed on Bio-Rad ChemDocXRS (USA).
探针、MT及WT合成Probe, MT and WT synthesis
表1和表2列出了本发明实施例所用关于探针、MT及WT的核酸序列。Table 1 and Table 2 list the nucleic acid sequences of the probes, MT and WT used in the embodiments of the present invention.
在表1中,用于Endo IV性质探究的荧光基团(FAM)和猝灭基团(BHQ-1)标记荧光探针命名为FP-1和FP-2。与FP-1或FP-2互补的寡聚核苷酸链分别命名为C1或C2序列。In Table 1, the fluorophore (FAM) and quencher (BHQ-1) labeled fluorescent probes used to explore the properties of Endo IV are named FP-1 and FP-2. The oligonucleotide chain complementary to FP-1 or FP-2 is designated as C1 or C2 sequence, respectively.
表1Table 1
注:“□”表示AP位点;带有下划线的碱基处为与FP-1或FP-2存在的错配位点Note: "□" indicates the AP site; the underlined base is the mismatch site with FP-1 or FP-2
在表2中,DNAzyme的底物被命名为D-Sub-1和D-Sub-2。D-Sub-1可以在AuNPs上进行标记。D-Sub-2为FAM和BHQ-1标记,以用荧光信号反映溶液中的DNAzyme行为。DP-1 至DP-6作为上述类型的Endo IV探针中含有AP位点和DNAzyme序列。DP-1被用来验证该其作为上述类型的Endo IV探针的可行性,DP-2至DP-6用于检测五种不同SNV的探针。In Table 2, the substrates of DNAzymes are named D-Sub-1 and D-Sub-2. D-Sub-1 can be labeled on AuNPs. D-Sub-2 is labeled with FAM and BHQ-1 to reflect the DNAzyme behavior in solution with fluorescent signals. DP-1 to DP-6 contain AP sites and DNAzyme sequences as the above-mentioned types of Endo IV probes. DP-1 was used to verify its feasibility as the above-mentioned type of Endo IV probe, and DP-2 to DP-6 were used to detect five different SNV probes.
表2Table 2
注:“□”表示AP位点;带有下划线为一般DNAzyme序列;加粗的碱基处为该链与DP-X的错配位点Note: "□" indicates the AP site; underlined is the general DNAzyme sequence; the base in bold is the mismatch site between the chain and DP-X
基于EndoBased on Endo IV底物偏好性设计的FP探针FP probe designed with IV substrate preference
Endo IV是一种别嘌呤/尿胞嘧啶(AP)内切酶。它作用于DNA中的各种氧化损伤,并在生物体的碱基切除修复(BER)过程中发挥重要作用。如图2A所示,Endo IV可以切割AP位点,并将具有AP位点的DNA链(图中红色链)切割两部分。现有技术认为,Endo IV的首选底物是包含一个AP位点的精确匹配的dsDNA,而Endo IV对这类底物表现出最高的切割率。然而,在本发明实施例发现Endo IV对其具有不同结构的dsDNA基底表现出不同的切割活性。Endo IV is an allopurine/uracytosine (AP) endonuclease. It acts on various oxidative damages in DNA and plays an important role in the base excision repair (BER) process in organisms. As shown in Figure 2A, Endo IV can cleave the AP site, and cut the DNA strand with the AP site (the red strand in the figure) into two parts. According to the prior art, the preferred substrate of Endo IV is a precisely matched dsDNA containing an AP site, and Endo IV exhibits the highest cleavage rate for this type of substrate. However, in the examples of the present invention, it was found that Endo IV exhibited different cleavage activities on dsDNA substrates with different structures.
为验证这种不同的切割活性,本发明实施例进行了如下实验:In order to verify this different cleavage activity, the embodiment of the present invention carried out the following experiments:
1、设计FP链1. Design FP chain
设计了一个含有37个核苷酸(37nt)的AP-ssDNA探针,其序列如表1中FP-1。FP-1上面标记了荧光基团(FAM、图1B中目标链5’端的球)和荧光猝灭基团(BHQ-1,图1B 中3’端的球)。AP位点(图1中AP site处)能够将FP-1分为第一序列和第二序列,其中,第一序列为靠近5’末端的序列,第二序列为靠近3’末端的序列。An AP-ssDNA probe containing 37 nucleotides (37nt) was designed, the sequence of which is FP-1 in Table 1. FP-1 is labeled with a fluorophore (FAM, the ball at the 5' end of the target strand in Figure 1B) and a fluorescent quencher (BHQ-1, the ball at the 3' end in Figure 1B). The AP site (AP site in Figure 1) can divide FP-1 into a first sequence and a second sequence, wherein the first sequence is a sequence near the 5' end, and the second sequence is a sequence near the 3' end.
2、FP链与目标链形成互补的位置2. The FP strand forms a complementary position with the target strand
设计一个23nt的目标链(图中Target链),该Target链能够与FP-1其中一段序列严格互补。如图2中,将FP-1链的AP位点处定义为“0”位置,Target链的5’末端定义为目标线,将Target链与FP-1形成的截短的双链序列的底物中AP位点于FP-1链的3’方向距离的碱基数定义“+”,5’方向距离的碱基数定义为“-”,如此,对应的Target链可设计为C1-(X) 序列(如表1中所示),其中“X”即为目标链距离AP位点的碱基数,“X”为正整数。Design a 23nt target strand (Target strand in the figure), which can be strictly complementary to a sequence of FP-1. As shown in Figure 2, the AP site of the FP-1 chain is defined as the "0" position, the 5' end of the Target chain is defined as the target line, and the bottom of the truncated double-stranded sequence formed by the Target chain and FP-1 The number of bases in the distance between the AP site and the FP-1 chain in the 3' direction is defined as "+", and the base number in the 5' direction is defined as "-". In this way, the corresponding Target chain can be designed as C1-( X) Sequence (as shown in Table 1), where "X" is the number of bases from the target chain to the AP site, and "X" is a positive integer.
如表1所示,由此合成了FP-1链及其对应的靶序列C1序列,不同的C1序列可与FP-1链不同位置互补以作为图2中的Target链(上海生工),并按照上述方法,利用Endo IV进行SNV检测,绘制荧光增加率-时间曲线,计算DF,结果如图2所示。As shown in Table 1, the FP-1 chain and its corresponding target sequence C1 sequence were thus synthesized, and different C1 sequences can be complementary to different positions of the FP-1 chain as the Target chain in Figure 2 (Shanghai Sangong), And according to the above method, use Endo IV to detect SNV, draw the fluorescence increase rate-time curve, and calculate DF, the results are shown in Figure 2.
在初始状态下,由于FAM的荧光距离相对较近,因此被BHQ-1通过荧光共振能量转移 (FRET)进行淬灭。Endo IV通常对ssDNA探针表现出活性低,但对dsDNA底物的活性高。如图2B所示,一旦AP位点被Endo IV切割,BHQ-1标记的片段(7nt)将被切割形成具有第二序列的游离片段,而产生荧光信号。因此,荧光强度的增加率可以反映Endo IV对不同底物的活性。In the initial state, because the fluorescence distance of FAM is relatively close, it is quenched by BHQ-1 through fluorescence resonance energy transfer (FRET). Endo IV generally exhibits low activity against ssDNA probes but high activity against dsDNA substrates. As shown in Figure 2B, once the AP site is cleaved by Endo IV, the BHQ-1-labeled fragment (7nt) will be cleaved to form a free fragment with the second sequence, thereby generating a fluorescent signal. Therefore, the increase rate of fluorescence intensity can reflect the activity of Endo IV on different substrates.
图2C表示Endo IV对FP-1和C1-(X)系列形成的不同基底的不同切割活性。结果表明,当Target链为C1-(-1)、C1-(0)、C1-(+1)、C1-(2)、C1-(3)、C1-(4)、C1-(5)、C1-(6)和C1-(7) 各自对应的荧光上升速率均超过C1-T38对应的反应速率1倍,即表明本发明提供的FP-1探针无需利用其全长序列与目标链进行互补,即具有被Endo IV酶切活性,均可作为EndoIV 探针设计的基础。这表明本发明实施例提供的FP-1具有更高效地区分突变链和野生链的效果,具有更高的适用性。由此可见,Endo IV对FP-1形成的这种截短的dsDNA底物具有更高的活性和偏好性。其中,当Target链为C1-(+1)时,反应活性最高,其荧光上升速率为C1-T38 (为与FP-1全互补的目标链)的20倍。Figure 2C shows the different cleavage activities of Endo IV on different substrates formed by FP-1 and C1-(X) series. The results show that when the Target chain is C1-(-1), C1-(0), C1-(+1), C1-(2), C1-(3), C1-(4), C1-(5) , C1-(6) and C1-(7) each corresponded to a fluorescence rise rate more than 1 times the reaction rate corresponding to C1-T38, indicating that the FP-1 probe provided by the present invention does not need to utilize its full-length sequence and target strand Complementation, that is, having the activity of being cleaved by Endo IV, can be used as the basis for the design of EndoIV probes. This shows that the FP-1 provided by the embodiment of the present invention has the effect of more efficiently distinguishing the mutant chain and the wild chain, and has higher applicability. It can be seen that Endo IV has higher activity and preference for this truncated dsDNA substrate formed by FP-1. Among them, when the Target chain is C1-(+1), the reaction activity is the highest, and its fluorescence rise rate is 20 times that of C1-T38 (the target chain that is fully complementary to FP-1).
如表1所示,随后设计了另一个探针FP-2及其相应的Target链C2序列,同样不同的C2序列可与FP-2的不同位置互补以作为如图2中所示的Target链,以进一步验证上述特性的普遍性。图3中也显示了类似的结果。根据Endo IV和AP-DNA复合物的晶体结构(Mi,L.;Sun,Y.;Shi,L.;Li,T.ACS Applied Materials&Interfaces 2020,12,7879-7887.),EndoIV需要在AP位点弯曲dsDNA约90°,以便AP位点可以进入酶活性位点进行切割。Endo IV酶的37位精氨酸通过与+1位置的碱基对相互作用以稳定弯曲的dsDNA。As shown in Table 1, another probe FP-2 and its corresponding Target chain C2 sequence were subsequently designed, and the same different C2 sequences can be complementary to different positions of FP-2 as the Target chain as shown in Figure 2 , to further verify the universality of the above properties. Similar results are also shown in Figure 3. According to the crystal structure of Endo IV and AP-DNA complex (Mi, L.; Sun, Y.; Shi, L.; Li, T. ACS Applied Materials & Interfaces 2020, 12, 7879-7887.), EndoIV needs to be in the AP site The point bends the dsDNA approximately 90° so that the AP site can access the active site of the enzyme for cleavage. Arginine 37 of the Endo IV enzyme stabilizes curved dsDNA by interacting with the base pair at the +1 position.
由此,底物FP-1/C1(+1)具有其截短的dsDNA结构使得其在被Endo IV酶切割的过程中具有更低的Endo IV促使弯曲dsDNA所需的能量。因此,与完全匹配的目标相比,获得了更高的反应速度。Thus, the substrate FP-1/C1(+1) has its truncated dsDNA structure so that it has lower energy required by Endo IV to induce bending of dsDNA during cleavage by Endo IV enzyme. Thus, a higher reaction rate is obtained compared to a perfectly matched target.
基于FP探针的突变检测FP probe-based mutation detection
由于Endo IV酶切上述Endo IV探针如FP的活性,与AP位点及AP位点与互补链的位置变化有关,因此本实施例进一步研究了目标链内单核苷酸突变位点与上述此种Endo IV探针形成的截短的dsDNA被酶切的活性是否有关。Since the activity of Endo IV enzyme-cutting the above-mentioned Endo IV probes such as FP is related to the AP site and the position change between the AP site and the complementary strand, this example further studies the relationship between the single nucleotide mutation site in the target chain and the above-mentioned Whether the truncated dsDNA formed by this Endo IV probe is cleaved is related to the enzyme activity.
上述实施例中,由于Endo IV对FP-1/C1-(+1)表现最高的切割活性。如表1所示,可将具有23-nt的C1-(+1)可被视为MT链;改变MT链对应于AP站点附近的C1-(+1)中的一个碱基,设计了不同的C1-(+1/XM)链,分别作为不同的WT链,C1-(+1/XM)序列见表1。In the above examples, because Endo IV exhibited the highest cleavage activity on FP-1/C1-(+1). As shown in Table 1, the C1-(+1) with 23-nt can be regarded as the MT chain; changing the MT chain corresponds to a base in C1-(+1) near the AP site, and different The C1-(+1/XM) chains were used as different WT chains respectively, and the C1-(+1/XM) sequences are shown in Table 1.
将这些MT链、WT链分别与FP-1形成截短的dsDNA结构,利用Endo IV酶切,具体过程如下:在200μL的PCR管中,2μL、1μM的荧光探针(FP-1或FP-2)、2μL、1μM的靶链(C1或C2系列)、2μL在管中加入10×ThermoPol反应缓冲液和2μL的Endo IV(0.0025U/μL)。然后通过去离子水将上述样品稀释至20μL。最后,将该管放入Roto-Gene Q2plexHRM仪器中,增益水平为7。在37℃下每15秒测量一次荧光强度,荧光增加率-时间曲线的线性部分的斜率即为荧光增长率。用MT和WT对应的荧光增长率比计算鉴别因子 (DF)。所有实验测试三次。绘制荧光强度-时间曲线,计算荧光强度上述速率及DF值。结果如图4所示。These MT strands and WT strands were combined with FP-1 to form truncated dsDNA structures, and were digested with Endo IV. The specific process was as follows: In a 200 μL PCR tube, 2 μL, 1 μM fluorescent probe (FP-1 or FP- 2), 2 μL, 1 μM target strand (C1 or C2 series), 2 μL of 10× ThermoPol reaction buffer and 2 μL of Endo IV (0.0025 U/μL) were added to the tube. The above samples were then diluted to 20 μL by deionized water. Finally, the tube was placed into a Roto-Gene Q2plexHRM instrument with a gain level of 7. Fluorescence intensity was measured every 15 seconds at 37°C, and the slope of the linear part of the fluorescence increase rate-time curve was the fluorescence growth rate. The discrimination factor (DF) was calculated using the ratio of fluorescence growth rates corresponding to MT and WT. All experiments were tested three times. Draw the fluorescence intensity-time curve, and calculate the above-mentioned rate and DF value of the fluorescence intensity. The result is shown in Figure 4.
如图4A所示,XM表示在dsDNA中的X位置与FP-1不匹配。由于C1-(+1/XM)与C1-(+1)有一个碱基差,因此C1-(+1/XM)可以视为WT,C1-(+1)视作MT。As shown in Figure 4A, XM indicates that the X position in the dsDNA does not match that of FP-1. Since there is one base difference between C1-(+1/XM) and C1-(+1), C1-(+1/XM) can be regarded as WT, and C1-(+1) can be regarded as MT.
如图4B所示,在FP-1/C1(+1)分别与FP-1/C1(+1/-1M)、FP-1/C1(+1/-2M)、 FP-1/C1(+1/-3M)FP-1/C1(+1/-4M)之间DF值分别103、7.6、7.0和7.0,均能够有效地区分 WT链和MT链,因此,FP-1能够有效地利用其AP位点及与突变链互补形成dsDNA结构中的突变位点位置关系来有效地区分WT链和MT链,提高其作为SNV检测方法的选择性。这是由于,WT链由于具有一个错配碱基,而且这个错配碱基位于此种截短的dsDNA结构的 AP位点附近,使得其形成的FP-1/C1-(+1/XM)底物不利于Endo IV酶弯曲dsDNA,导致其被酶切活性降低。As shown in Figure 4B, when FP-1/C1(+1) is connected with FP-1/C1(+1/-1M), FP-1/C1(+1/-2M), FP-1/C1( The DF values between +1/-3M)FP-1/C1(+1/-4M) are 103, 7.6, 7.0 and 7.0 respectively, which can effectively distinguish WT chain and MT chain, therefore, FP-1 can effectively Utilize its AP site and the position relationship of the mutation site in the dsDNA structure complementary to the mutant chain to effectively distinguish the WT chain and the MT chain, and improve its selectivity as an SNV detection method. This is because the WT chain has a mismatched base, and this mismatched base is located near the AP site of this truncated dsDNA structure, so that the FP-1/C1-(+1/XM) The substrate is not conducive to the bending of dsDNA by the Endo IV enzyme, resulting in a reduced activity of its cleavage.
而对应的图4C所示,在FP-1分别与具有全互补序列的C1-T38的野生链和突变链之间形成底物,对应被切割的荧光增长率计算的区分因子,均不超过1,远远小于FP-1与部分互补序列的C1(+1)形成的野生链和突变链。As shown in the corresponding Figure 4C, substrates are formed between FP-1 and the wild and mutant strands of C1-T38 with full complementary sequences, and the discrimination factors calculated corresponding to the cleaved fluorescence growth rates are not more than 1. , much smaller than the wild and mutant strands formed by FP-1 and partially complementary C1(+1).
并且,这个错配位点处在AP位点-1位置时,活性最低,对于被Endo IV酶弯曲的阻碍最大,从而FP-1/C1(+1)与FP-1/C1(+1/-1M)对应的DF值最大,能够最为高效地区分WT链和MT链。由此在实际检测WT链或突变体时,可以正对设计FP链,根据已知的突变位点,设计具有位于突变位点5’方向的1个碱基处AP位点诸如图4A的FP-1探针,并且FP-1与目标链互补位置终点为AP位点3’端下游1个碱基处,如此即可根据不同的突变链序列及其突变位点对应设计FP探针,再利用该探针对突变链和野生链进行区分和检测,极大地简化了作为Endo IV探针设计的自由度和普适性。当然,该FP探针突变位点与AP位点的位置关系还可如图4中其他几种关系,例如设计具有位于突变位点5’方向的2、3或4个碱基处AP 位点的FP探针。Moreover, when the mismatch site is at the AP site-1 position, the activity is the lowest, and it has the greatest resistance to being bent by the Endo IV enzyme, so that FP-1/C1(+1) and FP-1/C1(+1/ -1M) corresponds to the largest DF value, which can most efficiently distinguish between WT chains and MT chains. Therefore, when actually detecting WT chains or mutants, FP chains can be designed facing each other, and based on known mutation sites, design an AP site with 1 base in the 5' direction of the mutation site, such as the FP in Figure 4A -1 probe, and the end point of the complementary position between FP-1 and the target strand is 1 base downstream of the 3' end of the AP site, so that FP probes can be designed according to different mutant chain sequences and their mutation sites, and then The probe is used to distinguish and detect mutant strands and wild strands, which greatly simplifies the freedom and universality of Endo IV probe design. Of course, the positional relationship between the mutation site of the FP probe and the AP site can also be several other relationships as shown in Figure 4, such as designing an AP site with 2, 3 or 4 bases in the 5' direction of the mutation site the FP probe.
由此说明,本发明实施例公开的FP-1探针仅需要与目标链进行部分互补即能实现高效区分突变链和野生链,并且根据突变位点及其AP位点及与突变链互补形成dsDNA结构中的突变位点位置关系能够进一步提升其区分效果,达到更高的SNV检测选择性和灵敏度。This shows that the FP-1 probe disclosed in the embodiment of the present invention only needs to be partially complementary to the target strand to achieve efficient discrimination between the mutant strand and the wild strand, and is formed according to the mutation site and its AP site and the complementarity with the mutant strand. The positional relationship of mutation sites in the dsDNA structure can further enhance its discrimination effect and achieve higher selectivity and sensitivity for SNV detection.
DNAzyme与AuNPsDNAzymes and AuNPs
DNAzyme脱氧核酶可以沿着微观分子轨道逐步对基底上的脱氧核酸序列(D-Sub)进行催化水解,其为一种具有类似酶的活性可催化分解DNA的DNA,并被认为是一种有用的信号放大工具。DNAzyme deoxyribozyme can catalytically hydrolyze the deoxynucleic acid sequence (D-Sub) on the substrate step by step along the microscopic molecular track, which is a kind of DNA that can catalyze the decomposition of DNA with enzyme-like activity, and is considered to be a useful signal amplification tool.
为了克服灵敏度差和高成本的问题,本发明实施例引入了DNAzyme作为通用荧光信号产生平台,使用AuNPs作为基底,在AuNPs颗粒表面修饰D-Sub形成Sub-AuNPs,以作为DNAzyme的催化分子轨道。并且在D-Sub上标记有内部RNA碱基A(rA)和3’-FAM。In order to overcome the problems of poor sensitivity and high cost, the embodiment of the present invention introduces DNAzyme as a general fluorescent signal generation platform, uses AuNPs as a substrate, and modifies D-Sub on the surface of AuNPs particles to form Sub-AuNPs as the catalytic molecular orbital of DNAzyme. And the D-Sub is marked with internal RNA base A (rA) and 3'-FAM.
当D-Sub通过二硫键结合AuNPs表面形成Sub-AuNPs时,AuNPs猝灭D-Sub上标记的FAM。当加入辅助离子Mn2+时,Mn2+作为催化剂,催化DNAzyme切割Sub-AuNPs中的rA,促使含FAM的核酸片段脱离AuNP表面并发出荧光信号。然后,DNAzyme脱离切割后的片段与另一个底物结合,并重复上述切割过程。由此,一个DNAzyme将切割多个Sub-AuNPs 中的rA,具有信号放大功能。When D-Sub binds to the surface of AuNPs via disulfide bonds to form Sub-AuNPs, AuNPs quench the labeled FAM on D-Sub. When the auxiliary ion Mn 2+ is added, Mn 2+ acts as a catalyst to catalyze DNAzyme to cut rA in Sub-AuNPs, and promote the nucleic acid fragments containing FAM to detach from the surface of AuNPs and emit fluorescent signals. Then, the DNAzyme breaks away from the cleaved fragment to bind another substrate, and the above cleavage process is repeated. Thus, one DNAzyme will cleave rA in multiple Sub-AuNPs and have the function of signal amplification.
D-Sub修饰AuNPs的制备方法如下:The preparation method of D-Sub modified AuNPs is as follows:
根据Peng,H.;Li,X.-F.;Zhang,H.;Le,X.C.Nature Communications 2017,8,14378.公开的方法,制备了D-Sub-1(见表2中的序列)修饰的AuNPs。简单而言,在室温下将5μM D-Sub-1 与AuNPs混合2小时,然后加入氯化钠和Tween 20,以减少非特异性吸附及AuNPs聚集;孵育24小时后,将上述溶液在16000g下离心20min后,用25mM Tris-HCl(pH7.4)洗涤三次后,获得D-Sub-1修饰的AuNPs(Sub-AuNPs)。According to the method published by Peng, H.; Li, X.-F.; Zhang, H.; Le, X.C. Nature Communications 2017, 8, 14378., the modified D-Sub-1 (see sequence in Table 2) was prepared AuNPs. Briefly, 5 μM D-Sub-1 was mixed with AuNPs for 2 hours at room temperature, then NaCl and Tween 20 were added to reduce non-specific adsorption and aggregation of AuNPs; after 24 hours of incubation, the above solution was centrifuged at 16000g After 20 min, D-Sub-1 modified AuNPs (Sub-AuNPs) were obtained after washing three times with 25 mM Tris-HCl (pH 7.4).
Sub-AuNPs的表征和定量:Characterization and quantification of Sub-AuNPs:
将产物Sub-AuNPs重悬于在Tris-HCl缓冲溶液中,储存在4℃供进一步使用。使用透射电子显微镜(TEM)、紫外-可见光谱学、动态光散射(DLS)、Zeta电位分析和琼脂糖凝胶电泳对D-Sub-1修饰的AuNPs进行了相应的表征。在制备的Sub-AuNPs溶液中加入20mM硫醇,并在室温下孵育过夜。然后离心后测定上清液的荧光强度。随后,用D-Sub-1的标准曲线线计算AuNPs上的D-Sub-1负载的浓度,结果表明,平均每一AuNPs颗粒被295条D-Sub-1 覆盖。The product Sub-AuNPs were resuspended in Tris-HCl buffer solution and stored at 4 °C for further use. The D-Sub-1 modified AuNPs were correspondingly characterized using transmission electron microscopy (TEM), UV-vis spectroscopy, dynamic light scattering (DLS), zeta potential analysis, and agarose gel electrophoresis. Add 20 mM thiol to the prepared Sub-AuNPs solution and incubate overnight at room temperature. The fluorescence intensity of the supernatant was then measured after centrifugation. Subsequently, the standard curve of D-Sub-1 was used to calculate the concentration of D-Sub-1 loaded on AuNPs, and the results showed that, on average, each AuNP particle was covered by 295 pieces of D-Sub-1.
采用上述实施例制备了Sub-AuNPs,利用TEM观察其形态和分散性,结果如图5A所示, Sub-AuNPs和AuNPs颗粒均呈球形,直径为20nm。在图5B中,与未修饰的AuNPs相比,由于DNA取代了AuNPs的表面配体,AuNPs的吸收峰从525nm红移到530nm的位置。 Sub-AuNPs上的DNA也将AuNPs的水合粒径从28.7±3.4nm提高至48.7±1.5nm(图5C),并将zeta电位从-14.3±0.2mV升高至-7.8±1.6mV(图5D)。此外,在70V电压下进行了2%的琼脂糖凝胶电泳试验2小时,并观察到Sub-AuNPs的迁移速率降低(图5E)。所有这些结果都证实了DNAzyme的底物已成功地与AuNPs相连。Sub-AuNPs were prepared by using the above examples, and their morphology and dispersion were observed by TEM. As shown in Figure 5A, both Sub-AuNPs and AuNPs particles were spherical with a diameter of 20nm. In Figure 5B, compared with unmodified AuNPs, the absorption peak of AuNPs was red-shifted from 525 nm to 530 nm due to the replacement of surface ligands of AuNPs by DNA. DNA on Sub-AuNPs also increased the hydrated particle size of AuNPs from 28.7 ± 3.4 nm to 48.7 ± 1.5 nm (Fig. 5C), and increased the zeta potential from -14.3 ± 0.2 mV to -7.8 ± 1.6 mV (Fig. 5D ). In addition, a 2% agarose gel electrophoresis experiment was performed at 70 V for 2 hours, and a decrease in the migration rate of Sub-AuNPs was observed (Fig. 5E). All these results confirm that the substrate of DNAzyme has been successfully attached to AuNPs.
基于DNAzyme、AuNPs形成DP探针Formation of DP probes based on DNAzyme and AuNPs
尽管如上述实施例提供的基于Endo IV酶设计的FP探针具有较高的选择性和灵敏度。然而,在需要检测不同的突变链时,仍然需要重新设计荧光基团和荧光猝灭基团标记的探针,一般所知的荧光基团和荧光猝灭基团成本较高,而这将大大增加探针的设计成本,进而提高整个检测的成本。因此,本发明实施例在上述基础上进一步优化了FP探针,将其AP位点下游序列,即其第二序列更换为DNAzyme序列,设计成为DP探针以进一步提升其检测灵敏度,并摒弃了探针上的荧光和猝灭基团标记,降低了检测成本。Although the FP probe designed based on Endo IV enzyme as provided in the above examples has high selectivity and sensitivity. However, when it is necessary to detect different mutant chains, it is still necessary to redesign probes labeled with fluorophores and fluorescent quenchers. The generally known fluorophores and fluorescent quenchers are expensive, and this will greatly The design cost of the probe is increased, thereby increasing the cost of the entire detection. Therefore, the embodiment of the present invention further optimizes the FP probe on the basis of the above, and replaces the downstream sequence of its AP site, that is, its second sequence with a DNAzyme sequence, and designs it as a DP probe to further improve its detection sensitivity, and discards the Fluorescent and quencher labels on the probes reduce detection costs.
参照上述实施例对FP链的设计,将FP链中第二序列对应更换为DNAzyme序列,即可得到DP探针,由此,对应合成DP-1和DP-2的探针(上海生工),序列如表2所示。Referring to the design of the FP chain in the above example, the second sequence in the FP chain is correspondingly replaced with a DNAzyme sequence to obtain a DP probe, thereby correspondingly synthesizing the probes of DP-1 and DP-2 (Shanghai Sangong) , the sequence is shown in Table 2.
如图6A所示,本实施例将DNAzyme序列(D-Sub-1,图中虚线框出的部分)集成到FP-1 的第一序列上(图中虚线框外的部分),并去除探针上的FAM和BHQ-1标记,形成DP-1 探针。目标链(C1-(+1)(图中的MT链)作为MT链可与DP-1杂交,形成截短的dsDNA,如DP-1/C1-(+1)。As shown in Figure 6A, in this embodiment, the DNAzyme sequence (D-Sub-1, the part framed by the dotted line in the figure) is integrated on the first sequence of FP-1 (the part outside the dotted line frame in the figure), and the probe is removed. FAM and BHQ-1 labels on the needle, forming the DP-1 probe. The target strand (C1-(+1) (MT strand in the figure) as MT strand can hybridize with DP-1 to form truncated dsDNA, such as DP-1/C1-(+1).
本实施例发现由于DNAzyme被困在这种截短的dsDNA结构中,很难在辅助因子Mn2+的帮助下切割的Sub-AuNPs。而游离的DNAzyme能够在Mn2+的催化作用下快速切割 Sub-AuNPs上的rA,释放FAM产生放大的荧光信号。This example found that due to the DNAzyme trapped in this truncated dsDNA structure, it is difficult to cut Sub-AuNPs with the help of cofactor Mn 2+ . The free DNAzyme can rapidly cleave rA on Sub-AuNPs under the catalysis of Mn 2+ , releasing FAM to generate an amplified fluorescent signal.
因此,通过计算不同丰度MT对应的荧光信号上升速率,制作标准曲线,根据标准曲线即可获得未知样品中突变链的丰度。Therefore, by calculating the rise rate of fluorescence signals corresponding to different abundances of MT, a standard curve can be made, and the abundance of the mutant chain in the unknown sample can be obtained according to the standard curve.
由此,通过在探针的第二序列设计成DNAzyme,使得探针无需昂贵的荧光基团和猝灭基团修饰,使得探针优化时的成本明显下降,且设计规则简单。同时,针对不同目标基因进行检测时,只需更换探针链中的红色部分,保持DNAzyme序列不变,无需更换纳米金上的荧光底物链,即可实现信号产生。Therefore, by designing the second sequence of the probe as a DNAzyme, the probe does not need to be modified with expensive fluorescent groups and quenching groups, so that the cost of probe optimization is significantly reduced, and the design rules are simple. At the same time, when detecting different target genes, only the red part of the probe chain needs to be replaced, the DNAzyme sequence remains unchanged, and the signal generation can be realized without replacing the fluorescent substrate chain on the gold nanoparticles.
基于DP探针的SNV检测DP probe-based SNV detection
由此,本发明实施例探索了基于Endo IV和DNAzyme的SNV检测策略的可行性。目标链(MT(C1-(+1))或WT(C1-(+1/-1M))均可与DP-1杂交,形成截短的dsDNA结构。对于Endo IV的首选底物DP-1/MT,AP位点将被Endo IV切割以释放游离的DNAzyme。随后, DNAzyme不断切割Sub-AuNPs上的底物,产生放大的荧光信号。Therefore, the embodiment of the present invention explores the feasibility of the SNV detection strategy based on Endo IV and DNAzyme. The target strand (MT(C1-(+1)) or WT(C1-(+1/-1M)) can hybridize with DP-1 to form a truncated dsDNA structure. The preferred substrate for Endo IV is DP-1 /MT, the AP site will be cleaved by Endo IV to release the free DNAzyme. Subsequently, the DNAzyme continuously cleaves the substrate on the Sub-AuNPs, resulting in an amplified fluorescent signal.
相反,由于Endo IV与DP-1/WT的切割活性弱,大多数DP-1/WT仍未被切割,从而其仅能获得极其少量的DNAzyme,而无法与Sub-AuNPs上的底物反应产生荧光信号。该原理如图7所示。On the contrary, due to the weak cleavage activity of Endo IV and DP-1/WT, most of DP-1/WT is still not cleaved, so it can only obtain a very small amount of DNAzyme, which cannot react with the substrate on Sub-AuNPs to produce fluorescent signal. The principle is shown in Figure 7.
本发明实施例了进行了琼脂糖凝胶电泳,验证了DP-1与目标链(MT或WT)的杂交,以及Endo IV与DP-1/MT和DP-1/WT的切割行为。如图7A所示,游离DNAzyme和DP-1显示了一个单条带(泳道1和泳道2)。在DP-1/MT(3泳道)或DP-1/WT(4泳道)杂交后,相比于DP-1单链条带更亮和稍微滞后。当Endo IV加入DP-1/MT混合物时,出现了两个新的条带游离的DNAzyme(5泳道)和第一序列(6泳道)。相较于DP-1/MT,在DP-1/WT/Endo IV混合物中没有观察到其他条带,说明DP-1/WT具有极低的被Endo IV酶切的活性。In the embodiment of the present invention, agarose gel electrophoresis was performed to verify the hybridization between DP-1 and the target chain (MT or WT), and the cutting behavior of Endo IV with DP-1/MT and DP-1/WT. As shown in Figure 7A, free DNAzyme and DP-1 showed a single band (lane 1 and lane 2). After DP-1/MT (3 lanes) or DP-1/WT (4 lanes) hybridization, the single-stranded band is brighter and slightly lagging compared to DP-1. When Endo IV was added to the DP-1/MT mixture, two new bands appeared, free DNAzyme (lane 5) and first sequence (lane 6). Compared with DP-1/MT, no other bands were observed in the DP-1/WT/Endo IV mixture, indicating that DP-1/WT has very low activity of being cleaved by Endo IV.
而基于Endo IV、DNAzyme及AuNPs的检测可分为一步法检测(图7B)和两步法检测(图7C)。The detection based on Endo IV, DNAzyme and AuNPs can be divided into one-step detection (Figure 7B) and two-step detection (Figure 7C).
一步法检测:One-step detection:
1)于200μL的PCR管,混合2μL的DP-1(1μM)、2μL的目标链(MT或WT、2μM) 和1.5μL的硫酸铵(400mM)。1) In a 200 μL PCR tube, mix 2 μL of DP-1 (1 μM), 2 μL of the target strand (MT or WT, 2 μM) and 1.5 μL of ammonium sulfate (400 mM).
2)继续加入2μL Endo IV、2μL Sub-AuNPs和2μL Mn2+(25mM),加去离子水使总体积达到20μL。2) Continue to add 2 μL Endo IV, 2 μL Sub-AuNPs and 2 μL Mn 2+ (25 mM), and add deionized water to make the total volume reach 20 μL.
3)将PCR管放入Roto-Gene Q2 plex HRM仪器中37℃反应40min,增益水平为9。每15秒测量一次荧光强度,所有实验均独立进行,测试3次。3) Put the PCR tube into the Roto-Gene Q2 plex HRM instrument and react at 37°C for 40min with a gain level of 9. Fluorescence intensity was measured every 15 s, and all experiments were performed independently and tested 3 times.
图7B显示为一步法测SNV,Endo IV和Sub-AuNPs同时加入反应体系中,结果如图7D所示,C1-(+1)和C1-(+1/-1M)分别作为MT链(C曲线)和WT链(D曲线)的荧光强度在初始时间内增加的不够迅速。Figure 7B shows a one-step method for measuring SNV. Endo IV and Sub-AuNPs were added to the reaction system at the same time, and the results are shown in Figure 7D. Curve) and the fluorescence intensity of the WT chain (curve D) did not increase rapidly enough in the initial time.
两步法检测:Two-step detection:
1)于200μL的PCR管,混合2μL DP-1(1μM)、2μL目标链(MT或WT、2μM)、 1.5μL硫酸铵(400mM)和2μL Endo IV。1) In a 200 μL PCR tube, mix 2 μL DP-1 (1 μM), 2 μL target strand (MT or WT, 2 μM), 1.5 μL ammonium sulfate (400 mM) and 2 μL Endo IV.
2)在37℃下孵育15min后,上述溶液在80℃下加热20min将Endo IV失活。2) After incubating at 37°C for 15 minutes, the above solution was heated at 80°C for 20 minutes to inactivate Endo IV.
3)然后加入2μL Sub-AuNPs和2μL Mn2+(25mM),去离子水使总体积达到20μL。3) Then add 2 μL of Sub-AuNPs and 2 μL of Mn 2+ (25 mM), deionized water to bring the total volume to 20 μL.
4)将PCR管放入Roto-Gene Q2plex HRM仪器中37℃反应40min,增益水平为9,每15秒测量一次荧光强度,所有实验均独立进行,测试3次。4) Put the PCR tube into the Roto-Gene Q2plex HRM instrument to react at 37°C for 40min, with a gain level of 9, and measure the fluorescence intensity every 15 seconds. All experiments were performed independently and tested 3 times.
而图7C显示的两步法检测SNV时,第一步先是DP-1/C1-(+1)或DP-1/C1-(+1/-1M))形成的底物被Endo IV切割,完成切割后,再进行第二步是DNAzyme对AuNPs修饰的底物的催化反应,结果如图7E所示,MT和WT的荧光率增加与图7E有明显差异,尤其其在初始阶段(曲线C),因而具有更为准确的检测效果。When the two-step method shown in Figure 7C detects SNV, the first step is that the substrate formed by DP-1/C1-(+1) or DP-1/C1-(+1/-1M)) is cut by Endo IV, After the cleavage is completed, the second step is the catalytic reaction of DNAzyme on the substrate modified by AuNPs. The results are shown in Figure 7E. The increase in the fluorescence rate of MT and WT is significantly different from that in Figure 7E, especially in the initial stage (curve C ), thus having a more accurate detection effect.
5例临床相关SNV的检测Detection of 5 clinically relevant SNVs
接下来的实施例基于DP探针,检测了五种合成的临床相关的SNVs(BRAF V600E、EGFR L858R、EGFR T790M、EGFR G719S和NRAS Q61R),5种SNVs对应的突变链和野生链如表2所示。这些突变与许多癌症密切相关,如NSCLC、结直肠癌和甲状腺癌。根据这些样本的突变位点,本实施例设计了5个基于DNAzyme序列的探针DP-2-V600E、DP-3-L858R、 DP-4-T790M、DP-5-G719S和DP-6-Q61R,序列如表2所示。The following example detected five synthetic clinically relevant SNVs (BRAF V600E, EGFR L858R, EGFR T790M, EGFR G719S and NRAS Q61R) based on DP probes, and the mutant and wild chains corresponding to the five SNVs are shown in Table 2 shown. These mutations are strongly associated with many cancers, such as NSCLC, colorectal and thyroid cancers. According to the mutation sites of these samples, five DNAzyme sequence-based probes DP-2-V600E, DP-3-L858R, DP-4-T790M, DP-5-G719S and DP-6-Q61R were designed in this example , the sequence is shown in Table 2.
如图8、图9所示,BRAF V600E、EGFR L858R、EGFR T790M、EGFR G719S和NRAS Q61R的检测限值可分别达到0.01%、0.05%、0.05%、0.01%和0.01%。As shown in Figure 8 and Figure 9, the detection limits of BRAF V600E, EGFR L858R, EGFR T790M, EGFR G719S and NRAS Q61R can reach 0.01%, 0.05%, 0.05%, 0.01% and 0.01%, respectively.
表3本发明实施例提供探针与其他探针的SNV检测比较Table 3 The embodiment of the present invention provides the SNV detection comparison of the probe and other probes
如表3所示,基于Endo IV的一般SNV检测方法的故障下限在0.003%到1%之间。其中,一般的Endo IV探针需要温度优化或者还需要λ核酸外切酶辅助,并且一般的Endo IV探针在针对不同的检测目标时,设计成本更高。此外,而本发明公开的FP/DP探针的检测成本为 0.231$/管,大约是一个样品Sanger测序价格的十分之一,一个sample NGS序列价格的1%。因此,与其他DNA探针的方法相比,本发明基于FP/DP探针方法对这些SNV的突变丰度检测极限是顶级水平,具有普遍性和简单性的优点。As shown in Table 3, the lower limit of failure of general SNV detection methods based on Endo IV is between 0.003% and 1%. Among them, general Endo IV probes require temperature optimization or λ exonuclease assistance, and general Endo IV probes are more costly to design for different detection targets. In addition, the detection cost of the FP/DP probe disclosed in the present invention is 0.231$/tube, which is about one-tenth of the Sanger sequencing price of a sample and 1% of the price of a sample NGS sequence. Therefore, compared with other DNA probe methods, the detection limit of the mutation abundance of these SNVs based on the FP/DP probe method of the present invention is at the top level, and has the advantages of universality and simplicity.
EGFR-L858R(T>G)点突变检测EGFR-L858R(T>G) point mutation detection
为了进一步证明本发明实施例提供的探针潜在的临床应用,本实施例从一名NSCLC患者中提取了组织DNA,进行临床样品的验证。具体方法如下:In order to further demonstrate the potential clinical application of the probes provided in the examples of the present invention, in this example, tissue DNA was extracted from a patient with NSCLC for verification of clinical samples. The specific method is as follows:
1)使用天天生物技术公司购买的DNeasy Blood&Tissue Kit从非小细胞肺癌(NSCLC) 患者组织中提取突变型EGFR L858R基因组DNA,阴性对照组为商业化的Promega基因组 DNA。1) The DNeasy Blood&Tissue Kit purchased by Tiantian Biotechnology Company was used to extract mutant EGFR L858R genomic DNA from non-small cell lung cancer (NSCLC) patient tissues, and the negative control group was commercial Promega genomic DNA.
2)然后用常规PCR扩增获得含有EGFR L858R突变型和野生型DNA的103-bp的dsDNA,使用的正向引物L858R-FP(如表2中SEQ ID NO.67所示)和反向引物L858R-RP(如表2中SEQ ID NO.68所示),通过PCR扩增提取的基因组样品。并通过Sanger测序得知 EGFRL858R的丰度估计为53%(图10)。2) Then use conventional PCR amplification to obtain 103-bp dsDNA containing EGFR L858R mutant and wild-type DNA, using forward primer L858R-FP (as shown in SEQ ID NO.67 in Table 2) and reverse primer L858R-RP (shown as SEQ ID NO.68 in Table 2), the extracted genome sample was amplified by PCR. And the abundance of EGFRL858R was estimated to be 53% by Sanger sequencing (Fig. 10).
3)根据丰度水平,将MT样本由Promega(美国)指定数量的正常基因组DNA稀释,制备不同突变丰度的标准样品(分别为50%、20%、10%、50%、1%、0.5%、0.05%、0)。3) According to the abundance level, the MT sample was diluted with a specified amount of normal genomic DNA from Promega (USA) to prepare standard samples with different mutation abundances (50%, 20%, 10%, 50%, 1%, 0.5 %, 0.05%, 0).
4)然后进行非对称PCR反应,以获得合适的ssDNA目标链。最后,用上述实施例提供的方法测量了ssDNA目标链中EGFR L858R的丰度。具体为:于200μL PCR管中,加入25μL 2×Taq PCR Mix,10μL×5μM L858R-FP、1μL×5μM L858R-RP和20ng以上标准样品,去离子水使总体积达到50μL,在Rotor-Gene Q2plex HRM仪器上进行PCR程序(15s,94℃,50℃, 72℃,15s,35个周期)。4) An asymmetric PCR reaction is then carried out to obtain a suitable ssDNA target strand. Finally, the abundance of EGFR L858R in the ssDNA target strand was measured by the method provided in the above examples. Specifically: in a 200 μL PCR tube, add 25 μL 2×Taq PCR Mix, 10 μL×5 μM L858R-FP, 1 μL×5 μM L858R-RP and more than 20 ng of standard samples, deionized water to make the total volume reach 50 μL, and in the Rotor-Gene Q2plex The PCR program (15s, 94°C, 50°C, 72°C, 15s, 35 cycles) was performed on the HRM instrument.
5)不对称PCR完成后,TIANquick Mini Purification Kit纯化目标链,并使用NanoDrop 2000紫外-可见分光光度计测定浓度。然后根据(3)获得的实际样品的标准曲线。未知丰度实际样浓度可通过标准曲线倒推得出。5) After the asymmetric PCR is completed, the TIANquick Mini Purification Kit is used to purify the target chain, and the concentration is determined using a NanoDrop 2000 UV-Vis spectrophotometer. Then the standard curve of the actual sample obtained according to (3). The actual sample concentration of unknown abundance can be deduced from the standard curve.
6)然后通过两步法对(3)进行SNV突变检测,以获得标准曲线,如图12所示。其中涉及的L858R-103MT、L858R-103WT及DP-3-L858R探针序列如表2所示。6) Then perform SNV mutation detection on (3) by a two-step method to obtain a standard curve, as shown in FIG. 12 . The sequences of L858R-103MT, L858R-103WT and DP-3-L858R probes involved are shown in Table 2.
为了比较本发明提供的两步法与最广泛使用的突变检测方法Sanger,为此还准备了另外 5个不同突变丰度的标准样本(28%、15%、9%、1%和0.1%),结果图11、图12及表4。In order to compare the two-step method provided by the present invention with the most widely used mutation detection method Sanger, another five standard samples (28%, 15%, 9%, 1% and 0.1%) with different mutation abundances were also prepared for this purpose , the results in Figure 11, Figure 12 and Table 4.
表4Table 4
如图12所示,本发明提供的两步法法测到低至0.05%。表4为用Sanger法和本发明实施例提供的两步法测量的5个不同丰度的EGFR L858R突变样本的结果。如表4所示,当突变丰度大于10%时,通过Sanger和本发明的方法测量的丰度与标准样本的初始丰度基本一致。Sanger无法检测到低丰度突变(<10%)样本,而本发明公开的方法仍然可以检测低丰度的样本,而且检测的丰度与标准样本中的初始丰度一致,这表明本发明公开的探针、利用该探针进行检测方法具有在临床样本检测中的实用性。As shown in Figure 12, the two-step method provided by the present invention detects as low as 0.05%. Table 4 shows the results of 5 different abundances of EGFR L858R mutation samples measured by the Sanger method and the two-step method provided in the examples of the present invention. As shown in Table 4, when the mutation abundance is greater than 10%, the abundance measured by Sanger and the method of the present invention is basically consistent with the initial abundance of the standard sample. Sanger cannot detect low-abundance mutation (<10%) samples, and the method disclosed by the invention can still detect low-abundance samples, and the detected abundance is consistent with the initial abundance in the standard sample, which shows that the disclosed method of the present invention The probe and the detection method using the probe have practicality in the detection of clinical samples.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person skilled in the art within the technical scope disclosed in the present invention can easily think of changes or Replacement should be covered within the protection scope of the present invention.
序列表sequence listing
<110> 华中科技大学<110> Huazhong University of Science and Technology
<120> 检测DNA点突变的探针、试剂盒及应用<120> Probes, kits and applications for detecting DNA point mutations
<160> 68<160> 68
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 37<211> 37
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 1<400> 1
gatgtacacc cctatcacga ttagcattaa acacgga 37gatgtacacc cctatcacga ttagcattaa acacgga 37
<210> 2<210> 2
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 2<400> 2
taatcgtgat aggggtgtac atc 23taatcgtgat aggggtgtac atc 23
<210> 3<210> 3
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 3<400> 3
ctaatcgtga taggggtgta cat 23ctaatcgtga taggggtgta cat 23
<210> 4<210> 4
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 4<400> 4
gctaatcgtg ataggggtgt aca 23gctaatcgtg ataggggtgt aca 23
<210> 5<210> 5
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 5<400> 5
tgctaatcgt gataggggtg tac 23tgctaatcgt gataggggtg tac 23
<210> 6<210> 6
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 6<400> 6
atgctaatcg tgataggggt gta 23atgctaatcg tgataggggt gta 23
<210> 7<210> 7
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 7<400> 7
aatgctaatc gtgatagggg tgt 23aatgctaatc gtgatagggg tgt 23
<210> 8<210> 8
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 8<400> 8
taatgctaat cgtgataggg gtg 23taatgctaat cgtgataggg gtg 23
<210> 9<210> 9
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 9<400> 9
ttaatgctaa tcgtgatagg ggt 23ttaatgctaa tcgtgatagg ggt 23
<210> 10<210> 10
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 10<400> 10
attaatgcta atcgtgatag ggg 23attaatgcta atcgtgatag ggg 23
<210> 11<210> 11
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 11<400> 11
tattaatgct aatcgtgata ggg 23tattaatgct aatcgtgata ggg 23
<210> 12<210> 12
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 12<400> 12
gtattaatgc taatcgtgat agg 23gtattaatgc taatcgtgat agg 23
<210> 13<210> 13
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 13<400> 13
tgtattaatg ctaatcgtga tag 23tgtattaatg ctaatcgtga tag 23
<210> 14<210> 14
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 14<400> 14
gtgtattaat gctaatcgtg ata 23gtgtattaat gctaatcgtg ata 23
<210> 15<210> 15
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 15<400> 15
cgtgtattaa tgctaatcgt gat 23cgtgtattaa tgctaatcgt gat 23
<210> 16<210> 16
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 16<400> 16
ccgtgtatta atgctaatcg tga 23ccgtgtatta atgctaatcg tga 23
<210> 17<210> 17
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 17<400> 17
tccgtgtatt aatgctaatc gtg 23tccgtgtatt aatgctaatc gtg 23
<210> 18<210> 18
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 18<400> 18
cattaatgct aatcgtgata ggg 23cattaatgct aatcgtgata ggg 23
<210> 19<210> 19
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 19<400> 19
tactaatgct aatcgtgata ggg 23tactaatgct aatcgtgata ggg 23
<210> 20<210> 20
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 20<400> 20
tatcaatgct aatcgtgata ggg 23tatcaatgct aatcgtgata ggg 23
<210> 21<210> 21
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 21<400> 21
tattcatgct aatcgtgata ggg 23tattcatgct aatcgtgata ggg 23
<210> 22<210> 22
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 22<400> 22
tattactgct aatcgtgata ggg 23tattactgct aatcgtgata ggg 23
<210> 23<210> 23
<211> 38<211> 38
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 23<400> 23
tccgtgtatt aatgctaatc gtgatagggg tgtacatc 38tccgtgtatt aatgctaatc gtgatagggg tgtacatc 38
<210> 24<210> 24
<211> 38<211> 38
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 24<400> 24
tccgtgcatt aatgctaatc gtgatagggg tgtacatc 38tccgtgcatt aatgctaatc gtgatagggg tgtacatc 38
<210> 25<210> 25
<211> 38<211> 38
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 25<400> 25
tccgtgtact aatgctaatc gtgatagggg tgtacatc 38tccgtgtact aatgctaatc gtgatagggg tgtacatc 38
<210> 26<210> 26
<211> 38<211> 38
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 26<400> 26
tccgtgtatc aatgctaatc gtgatagggg tgtacatc 38tccgtgtatc aatgctaatc gtgatagggg tgtacatc 38
<210> 27<210> 27
<211> 38<211> 38
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 27<400> 27
tccgtgtatt catgctaatc gtgatagggg tgtacatc 38tccgtgtatt catgctaatc gtgatagggg tgtacatc 38
<210> 28<210> 28
<211> 38<211> 38
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 28<400> 28
tccgtgtatt actgctaatc gtgatagggg tgtacatc 38tccgtgtatt actgctaatc gtgatagggg tgtacatc 38
<210> 29<210> 29
<211> 37<211> 37
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 29<400> 29
acccctatca cgattagcat taagttgtaa actgcct 37acccctatca cgattagcat taagttgtaa actgcct 37
<210> 30<210> 30
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 30<400> 30
ttaatgctaa tcgtgatagg ggt 23ttaatgctaa tcgtgatagg ggt 23
<210> 31<210> 31
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 31<400> 31
cttaatgcta atcgtgatag ggg 23cttaatgcta atcgtgatag ggg 23
<210> 32<210> 32
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 32<400> 32
acttaatgct aatcgtgata ggg 23acttaatgct aatcgtgata ggg 23
<210> 33<210> 33
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 33<400> 33
aacttaatgc taatcgtgat agg 23aacttaatgc taatcgtgat agg 23
<210> 34<210> 34
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 34<400> 34
caacttaatg ctaatcgtga tag 23caacttaatg ctaatcgtga tag 23
<210> 35<210> 35
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 35<400> 35
acaacttaat gctaatcgtg ata 23acaacttaat gctaatcgtg ata 23
<210> 36<210> 36
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 36<400> 36
tacaacttaa tgctaatcgt gat 23tacaacttaa tgctaatcgt gat 23
<210> 37<210> 37
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 37<400> 37
ttacaactta atgctaatcg tga 23ttacaactta atgctaatcg tga 23
<210> 38<210> 38
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 38<400> 38
attacaactt aatgctaatc gtg 23attacaactt aatgctaatc gtg 23
<210> 39<210> 39
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 39<400> 39
tattacaact taatgctaat cgt 23tattacaact taatgctaat cgt 23
<210> 40<210> 40
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 40<400> 40
gtattacaac ttaatgctaa tcg 23gtattacaac ttaatgctaa tcg 23
<210> 41<210> 41
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 41<400> 41
agtattacaa cttaatgcta atc 23agtattacaa cttaatgcta atc 23
<210> 42<210> 42
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 42<400> 42
cagtattaca acttaatgct aat 23cagtattaca acttaatgct aat 23
<210> 43<210> 43
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 43<400> 43
gcagtattac aacttaatgc taa 23gcagtattac aacttaatgc taa 23
<210> 44<210> 44
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 44<400> 44
ggcagtatta caacttaatg cta 23ggcagttatta caacttaatg cta 23
<210> 45<210> 45
<211> 23<211> 23
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 45<400> 45
aggcagtatt acaacttaat gct 23aggcagtatt acaacttaat gct 23
<210> 46<210> 46
<211> 38<211> 38
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 46<400> 46
aggcagtatt acaacttaat gctaatcgtg ataggggt 38aggcagtatt acaacttaat gctaatcgtg ataggggt 38
<210> 47<210> 47
<211> 31<211> 31
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 47<400> 47
atctcttctc cgagccggtc gaaatagtga a 31atctcttctc cgagccggtc gaaatagtga a 31
<210> 48<210> 48
<211> 30<211> 30
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 48<400> 48
ttcactatgg aagagatttt tttttttttt 30ttcactatgg aagagatttttttttttttt 30
<210> 49<210> 49
<211> 61<211> 61
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 49<400> 49
gatgtacacc cctatcacga ttagcattaa atctcttctc cgagccggtc gaaatagtga 60gatgtacacc cctatcacga ttagcattaa atctcttctc cgagccggtc gaaatagtga 60
a 61a 61
<210> 50<210> 50
<211> 62<211> 62
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 50<400> 50
gatgtacaca cccactccat cgagatttct tatctcttct ccgagccggt cgaaatagtg 60gatgtacaca cccactccat cgagatttct tatctcttct ccgagccggt cgaaatagtg 60
aa 62aa 62
<210> 51<210> 51
<211> 45<211> 45
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 51<400> 51
taggtgattt tggtctagct acagagaaat ctcgatggag tgggt 45taggtgattt tggtctagct acagagaaat ctcgatggag tgggt 45
<210> 52<210> 52
<211> 45<211> 45
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 52<400> 52
taggtgattt tggtctagct acagtgaaat ctcgatggag tgggt 45taggtgattt tggtctagct acagtgaaat ctcgatggag tgggt 45
<210> 53<210> 53
<211> 62<211> 62
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 53<400> 53
gatgtacacc cgcacccagc agtttggccc catctcttct ccgagccggt cgaaatagtg 60gatgtacacc cgcacccagc agtttggccc catctcttct ccgagccggt cgaaatagtg 60
aa 62aa 62
<210> 54<210> 54
<211> 45<211> 45
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 54<400> 54
tgggcgggcc aaactgctgg gtgcggaaga gaaagaatac catgc 45tgggcgggcc aaactgctgg gtgcggaaga gaaagaatac catgc 45
<210> 55<210> 55
<211> 45<211> 45
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 55<400> 55
tgggctggcc aaactgctgg gtgcggaaga gaaagaatac catgc 45tgggctggcc aaactgctgg gtgcggaaga gaaagaatac catgc 45
<210> 56<210> 56
<211> 61<211> 61
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 56<400> 56
gatgtacaag ccgaagggca tgagctgcag atctcttctc cgagccggtc gaaatagtga 60gatgtacaag ccgaagggca tgagctgcag atctcttctc cgagccggtc gaaatagtga 60
a 61a 61
<210> 57<210> 57
<211> 42<211> 42
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 57<400> 57
catcatgcag ctcatgccct tcggctgcct cctggactat gt 42catcatgcag ctcatgccct tcggctgcct cctggactat gt 42
<210> 58<210> 58
<211> 42<211> 42
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 58<400> 58
catcacgcag ctcatgccct tcggctgcct cctggactat gt 42catcacgcag ctcatgccct tcggctgcct cctggactat gt 42
<210> 59<210> 59
<211> 61<211> 61
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 59<400> 59
cactagatac gtgccgaacg caccggagct atctcttctc cgagccggtc gaaatagtga 60cactagatac gtgccgaacg caccggagct atctcttctc cgagccggtc gaaatagtga 60
a 61a 61
<210> 60<210> 60
<211> 47<211> 47
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 60<400> 60
ctgaattcaa aaagatcaaa gtgctgagct ccggtgcgtt cggcacg 47ctgaattcaa aaagatcaaa gtgctgagct ccggtgcgtt cggcacg 47
<210> 61<210> 61
<211> 47<211> 47
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 61<400> 61
ctgaattcaa aaagatcaaa gtgctgggct ccggtgcgtt cggcacg 47ctgaattcaa aaagatcaaa gtgctgggct ccggtgcgtt cggcacg 47
<210> 62<210> 62
<211> 62<211> 62
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 62<400> 62
cactagatat catggcactg tactcttctc tatctcttct ccgagccggt cgaaatagtg 60cactagatat catggcactg tactcttctc tatctcttct ccgagccggt cgaaatagtg 60
aa 62aa 62
<210> 63<210> 63
<211> 43<211> 43
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 63<400> 63
gacatactgg atacagctgg acgagaagag tacagtgcca tga 43gacatactgg atacagctgg acgagaagag tacagtgcca tga 43
<210> 64<210> 64
<211> 43<211> 43
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 64<400> 64
gacatactgg atacagctgg acaagaagag tacagtgcca tga 43gacatactgg atacagctgg acaagaagag tacagtgcca tga 43
<210> 65<210> 65
<211> 103<211> 103
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 65<400> 65
ccgcagcatg tcaagatcac agattttggg cgggccaaac tgctgggtgc ggaagagaaa 60ccgcagcatg tcaagatcac agattttggg cgggccaaac tgctgggtgc ggaagagaaa 60
gaataccatg cagaaggagg caaagtaagg aggtggcttt agg 103gaataccatg cagaaggagg caaagtaagg aggtggcttt agg 103
<210> 66<210> 66
<211> 103<211> 103
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 66<400> 66
ccgcagcatg tcaagatcac agattttggg ctggccaaac tgctgggtgc ggaagagaaa 60ccgcagcatg tcaagatcac agattttggg ctggccaaac tgctgggtgc ggaagagaaa 60
gaataccatg cagaaggagg caaagtaagg aggtggcttt agg 103gaataccatg cagaaggagg caaagtaagg aggtggcttt agg 103
<210> 67<210> 67
<211> 17<211> 17
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 67<400> 67
ccgcagcatg tcaagat 17ccgcagcatg tcaagat 17
<210> 68<210> 68
<211> 19<211> 19
<212> DNA<212>DNA
<213> Artificial<213> Artificial
<400> 68<400> 68
cctaaagcca cctccttac 19cctaaagcca cctccttac 19
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110721028.4A CN113897418B (en) | 2021-06-28 | 2021-06-28 | Probe for detecting DNA point mutation, kit and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110721028.4A CN113897418B (en) | 2021-06-28 | 2021-06-28 | Probe for detecting DNA point mutation, kit and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113897418A CN113897418A (en) | 2022-01-07 |
CN113897418B true CN113897418B (en) | 2023-08-22 |
Family
ID=79187525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110721028.4A Active CN113897418B (en) | 2021-06-28 | 2021-06-28 | Probe for detecting DNA point mutation, kit and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113897418B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6548247B1 (en) * | 1997-04-16 | 2003-04-15 | Trevigen, Inc. | Detection and mapping of point mutations using partial digestion |
CN102296116A (en) * | 2011-09-02 | 2011-12-28 | 北京大学 | Method for signal amplification and detection of target sequence of DNA |
CN110274941A (en) * | 2019-07-17 | 2019-09-24 | 福州大学 | Utilize the preparation method of DSN enzyme and the DNA self assembly electrochemica biological sensor of DNAzyme |
CN111172252A (en) * | 2020-02-17 | 2020-05-19 | 华中科技大学 | Method for specifically regulating and controlling nuclease activity |
CN111778315A (en) * | 2020-06-10 | 2020-10-16 | 山东师范大学 | A gold nanoparticle sensor based on hairpin-locked DNAzyme probe and its application in detecting MUC1 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2002230526A1 (en) * | 2000-12-01 | 2002-06-11 | Cornell Research Foundation, Inc. | Detection of nucleic acid differences using combined endonuclease cleavage and ligation reactions |
CA3015204A1 (en) * | 2016-02-20 | 2017-08-24 | Vladimir I. Bashkirov | Methods and systems for detecting target nucleic acids |
-
2021
- 2021-06-28 CN CN202110721028.4A patent/CN113897418B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6548247B1 (en) * | 1997-04-16 | 2003-04-15 | Trevigen, Inc. | Detection and mapping of point mutations using partial digestion |
CN102296116A (en) * | 2011-09-02 | 2011-12-28 | 北京大学 | Method for signal amplification and detection of target sequence of DNA |
CN110274941A (en) * | 2019-07-17 | 2019-09-24 | 福州大学 | Utilize the preparation method of DSN enzyme and the DNA self assembly electrochemica biological sensor of DNAzyme |
CN111172252A (en) * | 2020-02-17 | 2020-05-19 | 华中科技大学 | Method for specifically regulating and controlling nuclease activity |
CN111778315A (en) * | 2020-06-10 | 2020-10-16 | 山东师范大学 | A gold nanoparticle sensor based on hairpin-locked DNAzyme probe and its application in detecting MUC1 |
Non-Patent Citations (1)
Title |
---|
Sensitive DNA mutation detection at physiological temperature with Endonuclease IV by inhibiting its side activity;Zhen Zhang等;《Chin. J. Chem.》;20210531;第39卷(第9期);2477-2482 * |
Also Published As
Publication number | Publication date |
---|---|
CN113897418A (en) | 2022-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2021200925B2 (en) | Assays for single molecule detection and use thereof | |
JP6749236B2 (en) | Multiplex detection of nucleic acids | |
US8354227B2 (en) | Binary deoxyribozyme probes for nucleic acid analysis | |
WO2020215652A1 (en) | Detection technology system for enriching low-abundance dna mutation on the basis of nuclease-coupled pcr principle and application thereof | |
EP2013561B1 (en) | Binary probes for fluorescent analysis of nucleic acids | |
US11261481B2 (en) | Probes for improved melt discrimination and multiplexing in nucleic acid assays | |
US9863001B2 (en) | Method for the detection of cytosine methylations in DNA | |
US20110165565A1 (en) | Compositions and methods for polynucleotide extraction and methylation detection | |
AU2006272462A1 (en) | Quantification of microsphere suspension hybridization and uses thereof | |
KR20140010093A (en) | Kit and method for sequencing a target dna in a mixed population | |
EP1544309B1 (en) | Assay for detecting methylation status by methylation specific primer extension (MSPE) | |
KR20080073321A (en) | Mitigation of the Coupt-1 DNA Denial in Nucleic Acid Hybridization | |
WO2009131223A1 (en) | Method for analysis of dna methylation | |
WO2007015993A1 (en) | Methylation specific primer extension assay for the detection of genomic imprinting disorders | |
CN113897418B (en) | Probe for detecting DNA point mutation, kit and application | |
WO2023071788A1 (en) | Fluorescence pcr method for detecting nucleic acid | |
CN114286865A (en) | Melting temperature methods, kits and reporter oligonucleotides for detecting variant nucleic acids | |
CN107406879A (en) | The detection method of genetic mutation and the fluorescence labeling oligonucleotides used wherein | |
CN113637673B (en) | DNAzyme combination, long-chain DNAzyme for cleavage of DNA/RNA chimeras and application | |
KR20150038944A (en) | Method for Analysis of Gene Methylation and Ratio Thereof | |
KR20240005282A (en) | Kit for detecting nucleic acid based on crispr/cas9 and method using the same | |
CN118638791A (en) | Guide DNA for enhancing the cleavage activity of Argonaute proteins and its application in target detection | |
WO2008078834A9 (en) | Method for determination of dna methylation | |
KR20240104309A (en) | Method for detection of lung cancer using lung cancer-specific methylation marker gene | |
WO2024013241A1 (en) | Variant allele enrichment by unidirectional dual probe primer extension |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |