CN113880576A - 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法 - Google Patents
低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法 Download PDFInfo
- Publication number
- CN113880576A CN113880576A CN202111199478.8A CN202111199478A CN113880576A CN 113880576 A CN113880576 A CN 113880576A CN 202111199478 A CN202111199478 A CN 202111199478A CN 113880576 A CN113880576 A CN 113880576A
- Authority
- CN
- China
- Prior art keywords
- sintering
- ceramic material
- tungsten bronze
- hours
- sodium tungsten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
- C04B2235/3267—MnO2
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3281—Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/668—Pressureless sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明公开了一种低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法,该陶瓷材料的结构通式为Sr1.4Ba0.6NaNb5O15+x wt.%M,其中M为CuO或MnO2,x的取值为0.25~1.0。本发明通过Cu、Mn掺杂改性Sr1.4Ba0.6NaNb5O15,大幅度降低了陶瓷的烧结温度,从而降低了陶瓷在烧结过程中的能耗,节能环保;同时,Cu、Mn掺杂改性后陶瓷的各向异性明显降低,致密度显著提高,进而提高了电学性能,所得陶瓷材料具有较高的介电常数、较低的介电损耗,此外陶瓷材料具有较好的铁电性能。本发明制备方法简单、成本低廉、重复性好、成品率高,有望为取向生长的钨青铜结构无铅铌酸盐材料的改性研究提供有力参考。
Description
技术领域
本发明属于钨青铜结构陶瓷材料技术领域,具体涉及一种兼具低烧结温度和低各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法。
背景技术
随着社会的进步和科学技术的发展,材料不断智能化、集成化、多功能化,压铁电材料作为一类重要的电介质材料,其电子元件的微型化和环保化要求更高,为了适应其生产及实际应用,要求压铁电材料具有较为稳定且优异的介电、铁电性能,但目前的材料体系几乎都不能满足要求,因此,开发出一种无铅且性能优异的压铁电材料日趋迫切。钨青铜结构无铅铌酸盐材料不含铅等重金属,对环境友好,并且由于其八面体间隙存在一系列不同形状的空隙位置,通过调节晶体学间隙的填充情况可以诱导出灵活多变的结构与功能特性,随着组成调节和结构变化材料可以表现出不同的介电、铁电、压电、热释电、非线性光学效应和光电效应等多种性能,已成为一类非常重要的功能材料,也是无铅压铁电器件研发的关键材料。然而,由于钨青铜结构化合物的(001)面具有较低的表面能,其生长速率明显高于其他晶面,这使得钨青铜结构无铅铌酸盐材料在高温烧结过程中(001)方向的生长速度过快,很容易产生各向异性的棒状晶粒,从而恶化其烧结行为、降低致密度,进一步恶化其各项性能。鉴于以上叙述,如何能够在无铅钨青铜体系中获得一种稳定的、可低温烧结的、各向异性降低的、电学性能优异的压铁电陶瓷材料成为一个热点问题,也是工业应用的迫切需求。
发明内容
本发明的目的是提供一种兼具低烧结温度和低各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料,并为其提供一种工艺简单、重复性好、成本低廉的制备方法。
针对上述目的,本发明所采用的陶瓷材料的结构通式为Sr1.4Ba0.6NaNb5O15+xwt.%M,其中x wt.%代表M占Sr1.4Ba0.6NaNb5O15的质量百分比,x的取值为0.25~1.0;所述M代表CuO或MnO2。
上述的M代表CuO时,x的取值优选为0.5。
本发明铌酸锶钡钠钨青铜型压铁电陶瓷材料的制备方法由下述步骤组成:
1、配料
按照通式Sr1.4Ba0.6NaNb5O15的化学计量比,分别称取纯度为98.00%以上的SrCO3、BaCO3、Na2CO3、Nb2O5,将称取的所有原料混合均匀后装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨20~24小时,分离锆球,在60~80℃下干燥20~24小时,用研钵研磨,得到原料混合物;
2、预烧
将原料混合物置于氧化铝坩埚内,用玛瑙棒压实,加盖,置于电阻炉在1210~1250℃预烧5~8小时,自然冷却至室温,用研钵研磨,得到预烧粉;
3、二次球磨
将预烧粉和烧结助剂装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨20~24小时,分离锆球,在60~80℃下干燥20~24小时,用研钵研磨,得到含烧结助剂的预烧粉;所述烧结助剂为CuO或MnO2,烧结助剂的加入量为预烧粉质量的0.25%~1.0%;
4、造粒、压片
向含烧结助剂的预烧粉中加入质量分数为5%的聚乙烯醇水溶液,造粒,过80~120目筛,用粉末压片机压制成圆柱状坯体;
5、排胶
将圆柱状坯体放在氧化锆锆板上,将氧化锆锆板置于氧化铝密闭匣钵中,用380分钟升温至500℃,保温3小时,随炉自然冷却至室温,得到排胶后的圆柱状坯体;
6、无压密闭烧结
将排好胶的圆柱状坯体先以10℃/分钟的升温速率升温至1000℃,再以3℃/分钟的升温速率升温至1230~1250℃,保温20~60分钟,继续以3℃/分钟的速率降温至1180~1200℃,保温1~3小时,随炉自然冷却至室温,得到铌酸锶钡钠钨青铜型压铁电陶瓷材料;或者将排好胶的圆柱状坯体先以10℃/分钟的升温速率升温至1000℃,再以3℃/分钟的升温速率升温至1250~1380℃,烧结3~5小时,随炉自然冷却至室温,得到铌酸锶钡钠钨青铜型压铁电陶瓷材料。
上述步骤2中,优选将原料混合物在1230℃预烧6小时,预烧的升温速率为3℃/分钟。
上述步骤3中,优选烧结助剂为CuO,CuO的加入量为预烧粉质量的0.5%。进一步优选在步骤6中,将排好胶的圆柱状坯体先以10℃/分钟的升温速率升温至1000℃,再以3℃/分钟的升温速率升温至1230℃,保温30分钟,继续以3℃/分钟的速率降温至1200℃,保温2小时,随炉自然冷却至室温。
本发明的有益效果如下:
1、本发明选择在Sr1.4Ba0.6NaNb5O15体系中添加烧结助剂CuO或MnO2,通过Cu、Mn掺杂改性Sr1.4Ba0.6NaNb5O15,大幅度降低了Sr1.4Ba0.6NaNb5O15体系陶瓷的烧结温度,所采取的烧结温度在钨青铜体系陶瓷中最低,减少了陶瓷在烧结过程中的能量损耗,符合节能环保的理念;同时,Cu、Mn掺杂改性后的Sr1.4Ba0.6NaNb5O15体系陶瓷的各向异性明显降低、致密度显著提高,进而使得陶瓷材料获得了更加优异的介电和铁电性能。
2、本发明制备方法简单、成本低廉、重复性好、成品率高,有望为取向生长的钨青铜结构无铅铌酸盐材料的改性研究提供有力参考。
附图说明
图1是对比例1及实施例1~8制备的铌酸锶钡钠钨青铜型压铁电陶瓷材料的XRD图。
图2是对比例1及实施例1~4制备的铌酸锶钡钠钨青铜型压铁电陶瓷材料的各向异性和体密度的对比图。
图3是对比例1及实施例5~8制备的铌酸锶钡钠钨青铜型压铁电陶瓷材料的各向异性和体密度的对比图。
图4是实施例2制备的铌酸锶钡钠钨青铜型压铁电陶瓷材料沿c轴和a/b轴的晶粒尺寸分布图(插图为陶瓷样品的SEM图)。
图5是对比例1制备的铌酸锶钡钠钨青铜型压铁电陶瓷材料在不同测试频率下的介电常数和介电损耗图。
图6是实施例2制备的铌酸锶钡钠钨青铜型压铁电陶瓷材料在不同测试频率下的介电常数和介电损耗图。
图7是对比例1及实施例1~8制备的铌酸锶钡钠钨青铜型压铁电陶瓷材料的电滞回线图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
1、配料
按照Sr1.4Ba0.6NaNb5O15的化学计量比,分别称取纯度为99.00%的SrCO3 5.9873g、纯度为99.00%的BaCO3 3.4300g、纯度为99.80%的Na2CO3 1.5229g、纯度为99.99%的Nb2O519.0598g,混合均匀后装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,采用转速为401转/分钟的球磨机充分混合球磨24小时,分离锆球,在80℃下干燥24小时,用研钵研磨30分钟,得到原料混合物。
2、预烧
将原料混合物置于氧化铝坩埚中,用玛瑙棒压实,加盖,置于电阻炉内,以3℃/分钟的升温速率升温至1230℃,保温6小时,随炉自然冷却至室温,出炉,用研钵研磨30分钟,得到预烧粉。
3、二次球磨
将20g预烧粉和0.05g纯度为99.99%的CuO装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,采用转速为401转/分钟的球磨机充分混合球磨20小时,分离锆球,置于80℃干燥箱内干燥24小时,用研钵研磨30分钟,得到含CuO的预烧粉。
4、造粒、压片
向10g含CuO的预烧粉中加入5g质量分数为5%的聚乙烯醇水溶液,造粒,过120目筛,制成球状粉粒,将球状粉粒放入直径为11.5mm的不锈钢模具内,用粉末压片机在60MPa的压力下将其压制成厚度为1.0mm的圆柱状坯体。
5、排胶
将圆柱状坯体放在氧化锆锆板上,将氧化锆锆板置于氧化铝密闭匣钵中,用380分钟升温至500℃,保温3小时,随炉自然冷却至室温,排除有机物,得到排胶后的圆柱状坯体。
6、无压密闭烧结
将排好胶的圆柱状坯体先以10℃/分钟的升温速率升温至1000℃,再以3℃/分钟的升温速率升温至1230℃,保温30分钟,继续以3℃/分钟的速率降温至1200℃,保温2小时,随炉自然冷却至室温,得到结构式为Sr1.4Ba0.6NaNb5O15+0.25wt.%CuO的铌酸锶钡钠钨青铜型压铁电陶瓷材料。
实施例2
本实施例的步骤3中,将20g预烧粉和0.1g纯度为99.99%的CuO装入尼龙罐中,其他步骤与实施例1相同,得到结构式为Sr1.4Ba0.6NaNb5O15+0.5wt.%CuO的铌酸锶钡钠钨青铜型压铁电陶瓷材料。
实施例3
本实施例的步骤3中,将20g预烧粉和0.15g纯度为99.99%的CuO装入尼龙罐中;步骤6中,将排好胶的圆柱状坯体先以10℃/分钟的升温速率升温至1000℃,再以3℃/分钟的升温速率升温至1230℃,保温30分钟,继续以3℃/分钟的速率降温至1180℃,保温2小时,随炉自然冷却至室温,其他步骤与实施例1相同,得到结构式为Sr1.4Ba0.6NaNb5O15+0.75wt.%CuO的铌酸锶钡钠钨青铜型压铁电陶瓷材料。
实施例4
本实施例的步骤3中,将20g预烧粉和0.2g纯度为99.99%的CuO装入尼龙罐中;步骤6中,将排好胶的圆柱状坯体先以10℃/分钟的升温速率升温至1000℃,再以3℃/分钟的升温速率升温至1230℃,保温30分钟,继续以3℃/分钟的速率降温至1180℃,保温2小时,随炉自然冷却至室温,其他步骤与实施例1相同,得到结构式为Sr1.4Ba0.6NaNb5O15+1.0wt.%CuO的铌酸锶钡钠钨青铜型压铁电陶瓷材料。
实施例5
本实施例的步骤3中,将20g预烧粉和0.05g纯度为99.95%的MnO2装入尼龙罐中,其他步骤与实施例1相同,得到结构式为Sr1.4Ba0.6NaNb5O15+0.25wt.%MnO2的铌酸锶钡钠钨青铜型压铁电陶瓷材料。
实施例6
本实施例的步骤3中,将20g预烧粉和0.1g纯度为99.95%的MnO2装入尼龙罐中,其他步骤与实施例1相同,得到结构式为Sr1.4Ba0.6NaNb5O15+0.5wt.%MnO2的铌酸锶钡钠钨青铜型压铁电陶瓷材料。
实施例7
本实施例的步骤3中,将20g预烧粉和0.15g纯度为99.95%的MnO2装入尼龙罐中,其他步骤与实施例1相同,得到结构式为Sr1.4Ba0.6NaNb5O15+0.75wt.%MnO2的铌酸锶钡钠钨青铜型压铁电陶瓷材料。
实施例8
本实施例的步骤3中,将20g预烧粉和0.2g纯度为99.95%的MnO2装入尼龙罐中;步骤6中,将排好胶的圆柱状坯体先以10℃/分钟的升温速率升温至1000℃,再以3℃/分钟的升温速率升温至1230℃,保温30分钟,继续以3℃/分钟的速率降温至1180℃,保温2小时,随炉自然冷却至室温,其他步骤与实施例1相同,得到结构式为Sr1.4Ba0.6NaNb5O15+1.0wt.%MnO2的铌酸锶钡钠钨青铜型压铁电陶瓷材料。
对比例1
在实施例1的步骤3中,不添加CuO;步骤6中,将排好胶的圆柱状坯体先以10℃/分钟的升温速率升温至1000℃,再以3℃/分钟的升温速率升温至1360℃,保温4小时,随炉自然冷却至室温,其他步骤与实施例1相同,得到铌酸锶钡钠钨青铜型压铁电陶瓷材料。
上述实施例1~8制备的铌酸锶钡钠钨青铜型压铁电陶瓷材料以及对比例1制备的铌酸锶钡钠钨青铜型压铁电陶瓷材料表面打磨、抛光、超声、擦拭干净,在其上下表面分别涂覆银浆,置于马弗炉中840℃保温30分钟,自然冷却至室温。采用日本理学公司生产的SmartLab9型射线衍射仪进行结构表征;采用日立高新公司生产的SU3500型钨灯丝扫描电子显微镜进行微观形貌表征并利用Nano Measurer软件对陶瓷晶粒的c轴和a/b轴进行晶粒尺寸采集,采用阿基米德原理对陶瓷的体密度进行测定;采用安捷伦科技有限公司生产的4294A、E4980A介电分析仪、美国Radiant公司生产的铁电测试仪对其电性能进行测试,并通过下式计算相关形貌及性能参数:
各向异性fl:fl=dc/da/b
体密度ρb:ρb=m1(ρ0-ρl)/(m1-m2)+ρl
介电常数εr:εr=4Ct/(πε0d)
式中:dc为陶瓷晶粒沿c轴的平均晶粒尺寸,da/b为陶瓷晶粒沿a/b轴的平均晶粒尺寸,m1为陶瓷样品在空气中的质量,m2为陶瓷样品在蒸馏水中的湿重,ρl为空气的密度(0.0012g/cm3),ρ0为蒸馏水在测试温度时的密度,C为电容,t为陶瓷样品的厚度,ε0为真空介电常数(8.85×10-12F/m),d为陶瓷样品的直径。结果见图1~7和表1。
表1对比例1以及实施例1~8的压铁电陶瓷材料的各项性能
由图1可见,实施例3和4制备的陶瓷材料中出现了少量的Na0.5Sr0.25NbO3第二相,其他实施例和对比例制备的陶瓷材料均形成了纯的四方钨青铜结构(TTB),没有发现其他杂峰。由图2、3及表1可见,对比例1制备的陶瓷材料的烧结温度为1360℃,各向异性为2.725,体密度为4.808g/cm3,经烧结助剂的添加,实施例1~8制备的陶瓷材料烧结温度和各向异性均有明显降低,体密度显著增大,烧结温度约为1180℃~1200℃,各向异性约为1.791~2.465,体密度约为5.009~5.036g/cm3,尤其当烧结助剂为CuO,其添加量为0.5wt.%时陶瓷的各向异性低至1.791,体密度高达5.036g/cm3。由图4可见,实施例2制备的陶瓷材料沿a/b轴的平均晶粒尺寸为1.6μm,沿c轴的平均晶粒尺寸为2.8μm,两者差距较小,陶瓷生长逐渐趋于各向同性,陶瓷样品呈现出较为致密的微观形貌。由图5~7及表1可见,实施例1~8制备的陶瓷材料相比于对比例1其介电损耗(tanδ)较低,剩余极化强度(Pr)较高,且实施例2制备的陶瓷材料其介电常数高于对比例1,这充分说明适量Cu、Mn的引入提高了铌酸锶钡钠钨青铜型压铁电陶瓷材料的电学性能,尤其当烧结助剂为CuO,其添加量为0.5wt.%时,陶瓷材料的介电常数由对比例1的973.6提高到991.0,介电损耗由对比例1的0.044降低到0.027,剩余极化强度由对比例1的6.791提高到8.620。
Claims (6)
1.一种低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料,其特征在于:所述陶瓷材料的结构通式为Sr1.4Ba0.6NaNb5O15+x wt.%M,其中x wt.%代表M占Sr1.4Ba0.6NaNb5O15的质量百分比,x的取值为0.25~1.0;所述M代表CuO或MnO2。
2.根据权利要求1所述的低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料,其特征在于:所述M代表CuO,x的取值为0.5。
3.一种权利要求1所述的低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料的制备方法,其特征在于它由下述步骤组成:
(1)配料
按照通式Sr1.4Ba0.6NaNb5O15的化学计量比,分别称取纯度为98.00%以上的SrCO3、BaCO3、Na2CO3、Nb2O5,将称取的所有原料混合均匀后装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨20~24小时,分离锆球,在60~80℃下干燥20~24小时,用研钵研磨,得到原料混合物;
(2)预烧
将原料混合物置于氧化铝坩埚内,用玛瑙棒压实,加盖,置于电阻炉在1210~1250℃预烧5~8小时,自然冷却至室温,用研钵研磨,得到预烧粉;
(3)二次球磨
将预烧粉和烧结助剂装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨20~24小时,分离锆球,在60~80℃下干燥20~24小时,用研钵研磨,得到含烧结助剂的预烧粉;所述烧结助剂为CuO或MnO2,烧结助剂的加入量为预烧粉质量的0.25%~1.0%;
(4)造粒、压片
向含烧结助剂的预烧粉中加入质量分数为5%的聚乙烯醇水溶液,造粒,过80~120目筛,用粉末压片机压制成圆柱状坯体;
(5)排胶
将圆柱状坯体放在氧化锆锆板上,将氧化锆锆板置于氧化铝密闭匣钵中,用380分钟升温至500℃,保温3小时,随炉自然冷却至室温,得到排胶后的圆柱状坯体;
(6)无压密闭烧结
将排好胶的圆柱状坯体先以10℃/分钟的升温速率升温至1000℃,再以3℃/分钟的升温速率升温至1230~1250℃,保温20~60分钟,继续以3℃/分钟的速率降温至1180~1200℃,保温1~3小时,随炉自然冷却至室温,得到铌酸锶钡钠钨青铜型压铁电陶瓷材料;
或者将排好胶的圆柱状坯体先以10℃/分钟的升温速率升温至1000℃,再以3℃/分钟的升温速率升温至1250~1380℃,烧结3~5小时,随炉自然冷却至室温,得到铌酸锶钡钠钨青铜型压铁电陶瓷材料。
4.根据权利要求3所述的低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料的制备方法,其特征在于:步骤(2)中,在1230℃预烧6小时,预烧的升温速率为3℃/分钟。
5.根据权利要求3所述的低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料的制备方法,其特征在于:步骤(3)中,所述烧结助剂为CuO,CuO的加入量为预烧粉质量的0.5%。
6.根据权利要求3~5任意一项所述的低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料的制备方法,其特征在于:步骤(6)中,将排好胶的圆柱状坯体先以10℃/分钟的升温速率升温至1000℃,再以3℃/分钟的升温速率升温至1230℃,保温30分钟,继续以3℃/分钟的速率降温至1200℃,保温2小时,随炉自然冷却至室温。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111199478.8A CN113880576B (zh) | 2021-10-14 | 2021-10-14 | 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111199478.8A CN113880576B (zh) | 2021-10-14 | 2021-10-14 | 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113880576A true CN113880576A (zh) | 2022-01-04 |
CN113880576B CN113880576B (zh) | 2022-12-23 |
Family
ID=79002889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111199478.8A Active CN113880576B (zh) | 2021-10-14 | 2021-10-14 | 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113880576B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114605151A (zh) * | 2022-04-24 | 2022-06-10 | 西安理工大学 | Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法 |
CN116425536A (zh) * | 2023-04-11 | 2023-07-14 | 西安理工大学 | 具有非公度调制结构的Ti掺杂铌酸锶钡钆铁电陶瓷材料及制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101160269A (zh) * | 2005-04-18 | 2008-04-09 | 株式会社村田制作所 | 电介质陶瓷组成物及层叠陶瓷电容器 |
CN103172374A (zh) * | 2011-12-26 | 2013-06-26 | Tdk株式会社 | 压电陶瓷和压电元件 |
CN105541413A (zh) * | 2016-02-03 | 2016-05-04 | 陕西师范大学 | 一种高d33无铅铌酸锶钙钠钨青铜型压铁电陶瓷材料及其制备方法 |
-
2021
- 2021-10-14 CN CN202111199478.8A patent/CN113880576B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101160269A (zh) * | 2005-04-18 | 2008-04-09 | 株式会社村田制作所 | 电介质陶瓷组成物及层叠陶瓷电容器 |
CN103172374A (zh) * | 2011-12-26 | 2013-06-26 | Tdk株式会社 | 压电陶瓷和压电元件 |
CN105541413A (zh) * | 2016-02-03 | 2016-05-04 | 陕西师范大学 | 一种高d33无铅铌酸锶钙钠钨青铜型压铁电陶瓷材料及其制备方法 |
Non-Patent Citations (1)
Title |
---|
仪修杰: ""非铅铁电压电单晶材料的制备与性能研究"", 《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅰ辑》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114605151A (zh) * | 2022-04-24 | 2022-06-10 | 西安理工大学 | Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法 |
CN114605151B (zh) * | 2022-04-24 | 2022-12-09 | 西安理工大学 | Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法 |
CN116425536A (zh) * | 2023-04-11 | 2023-07-14 | 西安理工大学 | 具有非公度调制结构的Ti掺杂铌酸锶钡钆铁电陶瓷材料及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113880576B (zh) | 2022-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105198416B (zh) | 一种低温烧结的高储能密度反铁电陶瓷材料及其制备方法 | |
CN109942292B (zh) | 一种钛酸铋钠基透明陶瓷材料及其制备方法和应用 | |
CN111978082B (zh) | 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法 | |
CN109133915A (zh) | 一种高储能钛酸钡基介质材料及其制备方法 | |
CN113213929A (zh) | 高储能效率及密度的铌酸钾钠基铁电陶瓷材料及制备方法 | |
CN113880576B (zh) | 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法 | |
CN110436920B (zh) | 一种钛酸铋钠-钽酸钠固溶陶瓷材料及其制备方法和应用 | |
CN111548156A (zh) | 一类高储能密度和温度稳定性的铌酸银基无铅反铁电陶瓷材料及其制备方法 | |
CN111995391A (zh) | 高储能密度电容器用低烧反铁电陶瓷材料及其制备方法 | |
CN110981476A (zh) | 一种铌酸钾钠基透明陶瓷材料及其制备方法 | |
CN113307619A (zh) | 一种铁酸铋-钛酸铅-铌镁酸铋三元体系高温压电陶瓷的制备方法 | |
CN115073169A (zh) | 一种高能量低损耗的(1-x)NBT-SBT-xBKT无铅陶瓷材料及其制备方法 | |
CN105753471B (zh) | 一种高电卡效应铌酸锶钡陶瓷的制备方法 | |
CN113666743A (zh) | 一种knn基透明储能陶瓷材料及其制备方法 | |
CN110498681B (zh) | 室温下高电卡效应的弛豫铁电陶瓷及制备方法和应用 | |
CN114605151B (zh) | Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法 | |
CN107814569A (zh) | 一种无铅反铁电体陶瓷及其制备方法 | |
CN109516799B (zh) | 一种具有高温度稳定性的高介陶瓷电容器材料及其制备方法 | |
CN114478006A (zh) | 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用 | |
CN113024250B (zh) | 高储能密度和储能效率的Sb5+掺杂铌酸锶钠银钨青铜铁电陶瓷材料及制备方法 | |
CN114436643A (zh) | 一种巨介电常数、低介电损耗陶瓷及其制备方法 | |
CN115093216A (zh) | 一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷及其制备方法 | |
CN107445611A (zh) | 一种无铅低损耗高储能密度陶瓷材料及其制备方法 | |
CN115286386B (zh) | 一种非化学计量Nb5+的铌钽锆铁酸钾钠铋陶瓷及其制备方法 | |
CN114031395B (zh) | BNT-BKT-BT-AlN复合压电材料及其制备和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |