[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN113823780B - 一种硅碳复合负极材料及其制备方法和应用 - Google Patents

一种硅碳复合负极材料及其制备方法和应用 Download PDF

Info

Publication number
CN113823780B
CN113823780B CN202110962970.XA CN202110962970A CN113823780B CN 113823780 B CN113823780 B CN 113823780B CN 202110962970 A CN202110962970 A CN 202110962970A CN 113823780 B CN113823780 B CN 113823780B
Authority
CN
China
Prior art keywords
silicon
powder
graphite
negative electrode
carbon composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110962970.XA
Other languages
English (en)
Other versions
CN113823780A (zh
Inventor
范霞
李长东
张振华
毛林林
阮丁山
蔡勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Brunp Recycling Technology Co Ltd
Guangdong Brunp Recycling Technology Co Ltd
Hunan Bangpu Automobile Circulation Co Ltd
Original Assignee
Hunan Brunp Recycling Technology Co Ltd
Guangdong Brunp Recycling Technology Co Ltd
Hunan Bangpu Automobile Circulation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Brunp Recycling Technology Co Ltd, Guangdong Brunp Recycling Technology Co Ltd, Hunan Bangpu Automobile Circulation Co Ltd filed Critical Hunan Brunp Recycling Technology Co Ltd
Priority to CN202110962970.XA priority Critical patent/CN113823780B/zh
Publication of CN113823780A publication Critical patent/CN113823780A/zh
Priority to HU2400069A priority patent/HUP2400069A1/hu
Priority to GB2310157.9A priority patent/GB2617032A/en
Priority to ES202390107A priority patent/ES2981439A2/es
Priority to DE112022000300.6T priority patent/DE112022000300T5/de
Priority to PCT/CN2022/092461 priority patent/WO2023020042A1/zh
Application granted granted Critical
Publication of CN113823780B publication Critical patent/CN113823780B/zh
Priority to US18/372,711 priority patent/US20240014382A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/30Destroying solid waste or transforming solid waste into something useful or harmless involving mechanical treatment
    • B09B3/35Shredding, crushing or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/70Chemical treatment, e.g. pH adjustment or oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B2101/00Type of solid waste
    • B09B2101/15Electronic waste
    • B09B2101/16Batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明属于电池材料技术领域,公开了一种硅碳复合负极材料及其制备方法和应用,该制备方法包括以下步骤:将石墨负极粉溶于酸溶液中,固液分离,取沉淀物并洗涤,干燥,加入还原剂,进行热处理,得到提纯后的石墨材料;向石墨材料加入改性硅粉混合,再加入到含有聚酰亚胺的二甲基甲酰胺溶液中搅拌,蒸馏,再进行碳化处理,得到硅碳复合负极材料。本发明不仅采用酸浸的方式对回收的石墨负极粉进行提纯,还采用在氯气气氛下加入还原剂进行热处理对回收的石墨负极粉进行进一步提纯,提高了回收后石墨粉的纯度。

Description

一种硅碳复合负极材料及其制备方法和应用
技术领域
本发明属于电池材料技术领域,具体涉及一种硅碳复合负极材料及其制备方法和应用。
背景技术
锂离子电池材料因其具有电压高、比容量高、循环性能优越,重量轻便等优点,锂离子电池得到广泛地应用,且具有广阔的应用前景,市场占有率日益增大,也改变了资源需求从化石燃料转向锂电池燃料,并且日益增加了这种资源的稀缺性。
随着新能源汽车的快速产业化和迅猛发展,作为重要零部件之一的动力锂离子电池被大量的应用。然而随着锂离子电池在使用过程中不断充放电的进行,电池的性能会逐渐衰减,当衰减到一定程度时电池将进行降级利用或者报废处理。而目前我们国家废旧电池的回收率还很低,特别是随着经济的发展,锂离子电池得到越来越广泛的应用和大规模的发展,带来的资源短缺问题和环境问题将日趋严重,废旧电池的回收处理也越来越受到人们的普遍关注。大量的废旧电池如果不能得到有效地回收处理,不仅对生态环境和人体健康造成危害,同时造成资源的浪费。如何绿色无污染地资源化回收锂离子电池是新能源汽车产业链急需解决的问题。
目前,针对废旧锂离子电池的回收利用主要集中在正极材料的回收研究,且更关注钴酸锂以及三元材料的分离和提纯。由于废旧锂离子电池中含有高达97%的石墨等碳材料,因此,对负极石墨进行回收和再利用是非常有意义的。
硅基负极材料因其较高的理论比容量(高温4200mAh/g,室温3580mAh/g)、低的脱锂电位(<0.5v)、环境友好、储量丰富、成本较低等优势而被认为是极具潜力的高能量密度锂离子电池负极材料。然而,由于硅负极材料在充放电过程中伴随着锂离子的嵌入和脱出,硅体积发生300%以上的膨胀和收缩,大幅度的膨胀与收缩使硅主体材料结构遭到严重破坏,最终导致电极活性物质与集流体脱离,导致电池循环性能大大降低。此外,硅负极材料的导电性差是限制其应用的另外一个关键因素。目前解决这类问题的主要方法是通过纳米化缓解硅的体积膨胀,以及利用无定形碳包覆和与碳材料进行复合从而提高导电性能。其原理是碳作为分散基体可以缓冲硅负极在锂脱嵌时的体积变化,保持结构的稳定性;同时,碳的高导电性可提高电池内部的导电性。有相关技术报道了一种硅碳负极材料的制备方法,将碳纳米管和碳纳米纤维沉积到纳米硅粉表面或嵌入到纳米硅粉颗粒之间形成核,在核的表面包覆碳层。其首次比容量大于500mAh/g,循环60周容量保持率大于92%。但其制备方法过于复杂,且需要用专门仪器操作。另外又有相关技术报道了硅碳负极的制备方法,通过二次酸洗,制备多孔硅材料,再进行碳包覆,制备硅碳负极材料。但是此法成本较高,无法实现大规模应用;目前,通常采用商业石墨材料制备生产硅碳负极材料,生产成本较高。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种硅碳复合负极材料及其制备方法和应用,其具有操作方便、生产成本低和能耗低等优点,适用于工业化生产。
为实现上述目的,本发明采用以下技术方案:
一种硅碳复合负极材料的制备方法,包括以下步骤:
S1.将石墨负极粉溶于酸溶液中,固液分离,取沉淀物并洗涤,干燥,加入还原剂,进行热处理,得到提纯后的石墨材料;
S2.向所述石墨材料加入改性硅粉混合,再加入到含有聚酰亚胺的二甲基甲酰胺溶液中搅拌,蒸馏,再进行碳化处理,得到硅碳复合负极材料。
优选地,步骤S2中,所述改性硅粉为硅烷偶联剂溶液改性的硅粉;所述硅烷偶联剂溶液是由醋酸水溶液水解硅烷偶联剂得到。
进一步优选地,所述改性硅粉的制备步骤为:将硅烷偶联剂用醋酸水溶液进行水解,加入硅粉中,超声分散,干燥,得到改性硅粉。
采用了硅烷偶联剂对硅粉进行改性,其改性原理是:(1)与硅原子相连的Si-X基水解,生成Si-OH的低聚硅氧烷;(2)低聚硅氧烷中的Si-OH与Si基体表面的-OH形成氢键;(3)加热固化过程中,伴随脱水反应而与基材形成共价键。
进一步优选地,所述硅烷偶联剂为γ-甲基丙烯酰氧基丙基三甲氧基硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷中的一种。
进一步优选地,所述醋酸水溶液的pH为3.5~5.5。
进一步优选地,所述硅粉和硅烷偶联剂溶液的质量比为100:(1-2)。
进一步优选地,所述超声分散的时间为2-10min。
优选地,步骤S1中,所述石墨负极粉是由废旧锂离子电池进行拆分,破碎,过筛,即得。
优选地,步骤S1中,所述酸溶液为硫酸、盐酸中的一种。
优选地,步骤S1中,所述还原剂为焦炭、活性炭、炭黑中的至少一种。
优选地,步骤S1中,所述热处理的具体过程为:将干燥后的石墨材料和还原剂混合,在氯气氛围下进行热处理。
进一步优选地,将干燥后的石墨材料和还原剂混合放入炉中,先向炉内通入氮气赶走炉内空气,然后再升高温度炉温,停止通入氮气,改为通入氯气进行热处理。在氯气气氛下杂质会生成气相或凝聚相的氯化物及络合物而逸出,从而提纯石墨材料。
优选地,步骤S1中,所述热处理的温度为1000-1200℃,热处理的时间为2-5h。
优选地,步骤S2中,所述石墨材料和改性硅粉质量比为(6-9):1。
优选地,步骤S2中,所述蒸馏为减压蒸馏。
优选地,步骤S2中,向所述石墨材料加入改性硅粉混合,得到混合粉末;所述混合粉末和所述聚酰亚胺的质量比为(98~90):(10~20)。
优选地,步骤S2中,所述含有聚酰亚胺的二甲基甲酰胺溶液中聚酰亚胺和二甲基甲酰胺的固液比为1:(8-12)g/ml。
优选地,步骤S2中,所述碳化处理的温度为500-800℃,碳化处理的时间为4-10h。
一种硅碳复合负极材料,是由所述的方法制备得到,所述硅碳复合负极材料在电压为0.01-2V,电流密度为100mA/g的条件下,首次嵌锂比容量为670-760mAh/g,首次脱锂比容量为530-610mAh/g,首效为80-81%,循环50次后容量保持率为95-97%。
一种电池,包括所述的硅碳复合负极材料。
相对于现有技术,本发明的有益效果如下:
1、本发明不仅采用酸浸的方式对回收的石墨负极粉进行提纯,还采用在氯气气氛下加入还原剂进行热处理对回收的石墨负极粉进行进一步提纯,提高了回收后石墨粉的纯度,再加入改性硅粉和含有聚酰亚胺的二甲基甲酰胺溶液,改性硅粉中硅烷偶联剂一端通过共价键的形式接枝在硅粉的表面,同时另一端与聚酰亚胺发生交联,因此硅烷偶联剂就可以在聚酰亚胺和硅粉表面之间起到桥梁作用,可以提高硅粉和聚酰亚胺的相容性和附着力,达到改善硅粉材料的机械性能从而提高硅碳复合材料的性能。
2、本发明以废旧锂离子电池的负极材料为原料,通过回收利用,合成硅碳复合材料,其方法成本低、效果明显,循环性能好,进一步使废弃资源得以利用,对环境保护和资源再利用起重大作用,并且有较好的产业化前景。
3、本发明的方法可使用的石墨原料种类多,对石墨原料来源的依赖性低,可使用一种或多种类型的回收石墨混合使用,进一步降低硅碳复合材料制造成本,提高废弃石墨的应用价值。
4、本发明的方法选用含有聚酰亚胺的二甲基甲酰胺溶液中聚酰亚胺是作为碳源,来源广泛;且聚酰亚胺由于存在氮元素,碳化聚酰亚胺之后的氮原子对碳原子进行掺杂,形成稳固的导电网络,增强了硅的导电性最终改善电池的循环性能。
5、采用本发明方法制备出的碳硅复合材料,其在电压为0.01-2V,电流密度为100mA/g的条件下,首次嵌锂比容量为670-760mAh/g,首次脱锂比容量为530-610mAh/g,首效为80-81%,循环50次后容量保持率为95-97%。其与商业石墨制备的硅碳复合材料性能相当,利用该材料可实现锂离子电池对高能量密度的要求。
附图说明
图1为本发明实施例1滤渣的XRD图;
图2为本发明实施例1滤渣的SEM图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备的硅碳复合材料,具体包括以下步骤:
S1.将废旧锂离子电池的外壳拆除,并分离正、负极片,收集多个电池的负极片,约500g待处理,将回收后的负极片进行破碎处理,破碎的转速为34000r/min,破碎时间为15min,再将破碎后的负极片于300目的筛网过筛,分离铜箔与石墨负极粉,得到石墨负极粉约380g。
S2.将380g石墨负极粉溶于5mol/L硫酸溶液中搅拌6h,所得溶液进行固液分离,除去残余的金属离子,收集固体沉淀物,用去离子水和无水乙醇反复洗涤固体沉淀物,直至滤液为中性(pH=7),在60℃下干燥12h后,得到约300g的石墨材料,将得到的石墨材料掺入0.5%(石墨材料质量的0.5%)的还原剂焦炭混合均匀后放入炉中,先向炉内通入氮气赶走炉内空气,然后再升高炉温,当温度达到300℃后停止通入氮气,改为通入氯气进行热处理,在氯气气氛下在900℃反应5h,得到240g提纯后的石墨材料。
S3.将硅烷偶联剂kh570(中文名称:γ-甲基丙烯酰氧基丙基三甲氧基硅烷;厂家:南京试剂)用pH=4的醋酸水溶液进行水解,取100g硅粉,加入200ml烧杯中,按照硅粉质量的1.2%添加水解后的kh570,超声分散5分钟,放入烘箱中在80℃下反应10h,得到改性硅粉。
S4.将上述S2得到的石墨材料加入S3步骤得到35g的改性硅粉中,得到混合物料,将35g聚酰亚胺溶解在350ml二甲基甲酰胺(DMF)中,至溶液透明无色残留物,加入混合物料,高速分散5h后,减压蒸馏除去DMF溶剂得到粉料。
S5.将步骤S4得到的粉料过300目筛,在氮气保护气氛下升温至600℃进行炭化处理,并保温6h,自然降温至室温,取出粉料,即得硅碳复合负极材料。
实施例2
本实施例制备的硅碳复合材料,具体包括以下步骤:
S1.将废旧锂离子电池的外壳拆除,并分离正、负极片,收集多个电池的负极片,约500g待处理,将回收后的负极片进行破碎处理,破碎的转速为34000r/min,破碎时间为15min,再将破碎后的负极片于300目的筛网过筛,分离铜箔与石墨负极粉,得到石墨负极粉约380g。
S2.将380g石墨负极粉溶于5mol/L硫酸溶液中搅拌4h,所得溶液进行固液分离,除去残余的金属离子,收集固体沉淀物,用去离子水和无水乙醇反复洗涤固体沉淀物,直至滤液为中性(pH=7),在70℃下干燥10h后,得到约300g的石墨材料,将得到的石墨材料掺入1%(石墨材料质量的1%)的还原剂焦炭混合均匀后放入炉中,先向炉内通入的氮气赶走炉内空气,然后再升高炉温,当温度达到300℃后停止通入氮气,改为通入氯气进行热处理,在氯气气氛下在1100℃反应3h,得到提纯后236.4g的石墨材料。
S3.将硅烷偶联剂kh560(γ-缩水甘油醚氧丙基三甲氧基硅烷)用pH=4的醋酸水溶液进行水解,取100g硅粉,加入200ml烧杯中,按照硅粉质量的1.6%添加水解后的kh560,超声分散8分钟,放入烘箱中在90℃下反应10h,得到改性硅粉。
S4.将上述S2得到的石墨材料加入S3步骤得到30g的改性硅粉中,得到混合物料,将30g聚酰亚胺溶解在350ml二甲基甲酰胺(DMF)中,至溶液透明无色残留物,加入混合物料,高速分散5h后,减压蒸馏除去DMF溶剂得到粉料。
S5.将步骤S4得到的粉料过300目筛,在氮气保护气氛下升温至800℃进行炭化处理,并保温4h,自然降温至室温,取出粉料,即得硅碳复合负极材料。
对比例1
本对比例制备了一种硅碳复合材料,与实施例1的区别主要在于缺少酸洗步骤,具体包括以下步骤:
S1.将废旧锂离子电池的外壳拆除,并分离正、负极片,收集多个电池的负极片,约500g待处理,将回收后的负极片进行破碎处理,破碎的转速为34000r/min,破碎时间为15min,再将破碎后的负极片于300目的筛网过筛,分离铜箔与石墨负极粉,得到石墨负极粉约380g。
S2.将得到的380g石墨材料掺入0.5%(石墨材料质量的0.5%)的焦炭混合均匀后放入炉中,先向炉内通入氮气赶走炉内空气,然后再升高炉温,当温度达到300℃后停止通入氮气,改为通入氯气进行热处理,在氯气气氛下在900℃反应5h,得到提纯后的石墨材料。
S3.将硅烷偶联剂kh570(中文名称:γ-甲基丙烯酰氧基丙基三甲氧基硅烷;厂家:南京试剂)用pH=4的醋酸水溶液进行水解,取100g硅粉,加入200ml烧杯中,按照硅粉质量的1.2%添加水解后的kh570,超声分散5分钟,放入烘箱中在80℃下反应10h,得到改性硅粉。
S4.将上述S2得到的石墨材料加入S3步骤得到的改性硅粉35g中,得到混合物料,将35g聚酰亚胺溶解在350ml二甲基甲酰胺(DMF)中,至溶液透明无色残留物,加入混合物料,高速分散5h后,减压蒸馏除去DMF溶剂得到粉料。
S5.将步骤S4得到的粉料过300目筛,在氮气保护气氛下升温至600℃进行炭化处理,并保温6h,自然降温至室温,取出粉料,即得硅碳复合负极材料。
对比例2
本对比例制备了一种硅碳复合材料,与实施例2的区别主要在于用商业石墨替代回收石墨材料,具体包括以下步骤:
S1.将硅烷偶联剂kh560用pH=4的醋酸水溶液进行水解,取100g硅粉,加入200ml烧杯中,按照硅粉质量的1.6%添加水解后的kh560,超声分散8分钟,放入烘箱中在90℃下反应8h,得到改性硅粉。
S2.取300g商业石墨粉加入上述步骤得到的改性硅粉30g,得到混合物料,将35g聚酰亚胺溶解在350ml二甲基甲酰胺(DMF)中,至溶液透明无色残留物,加入了混合物料,高速分散5h后,减压蒸馏除去DMF溶剂,得到粉料。
S3.将步骤S2得到的粉料过300目筛,在氮气保护气氛下升温至800℃,并保温4h,自然降温至室温,取出粉料,得到硅碳复合负极材料。
试验例
将实施例与对比例得到的硅碳复合负极材料进行扣式电池制作及电性测试,具体如下:
将实施例1-2和对比例1-2制得的硅碳复合负极材料、导电碳黑和聚偏氟乙烯按照92:2:6的质量比,加入适量的N-甲基吡咯烷酮并搅拌一定时间,制成负极浆料,并均匀地涂覆在铜箔上;在85℃下烘干若干时间后进行极片冲孔;将冲孔后的极片置于真空干燥箱中以100℃真空干燥12h;将极片,隔膜,锂片,电解液,正负极壳按一定的顺序在手套箱中完成CR2430扣式电池的组装;将组装后的电池静置3h,待测试。
电池测试条件:在室温25℃,充放电电压为0.01-2.0V,电流密度为100mA/g。测试结果如表1所示。
表1实施例和对比例的电化学性能对比表
Figure BDA0003222774650000071
从表1可知,实施例1-2制备出的复合材料的首次嵌锂比容量在670~750mAh/g,首次脱锂比容量在520~600mAh/g,首效为80~81%,循环50次后容量保持率为95~97%。其中,对比例1中与实施例1相比缺少酸洗步骤,制得的硅碳负极杂质含量高、容量低。对比例2由于原料采用商业石墨,最终制成的硅碳负极材料容量高和首效均较高,50圈后容量保持率达到96.2%,比实施例1使用回收石墨制备的硅碳复合负极材料的性能略高,不过性能优势不明显。本发明所用废旧锂离子电池负极回收制备硅碳负极的方法合成的硅碳负极材料性能较优。表明本发明方法利用废旧锂离子电池负极回收制备硅碳复合负极材料具有较大可行性。
图1为实施例1制备出的硅碳复合材料的SEM图,从图中可知,实施例1制备出的硅碳复合材料的纳米硅颗粒分散均匀。图2为实施例1、2与对比例1、2制备出的硅碳复合材料在100mA/g电流密度下的循环性能曲线图,从图中可知,实施例1制备出的硅碳复合材料的循环稳定性较好,50圈后容量保持率为95.9%,与使用商业石墨为原料的对比例2性能差异不明显,循环性能也较好,有较好的应用前景。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (7)

1.一种硅碳复合负极材料的制备方法,其特征在于,包括以下步骤:
S1.将石墨负极粉溶于酸溶液中,固液分离,取沉淀物并洗涤,干燥,加入还原剂,进行热处理,得到提纯后的石墨材料;所述热处理的具体过程为:将干燥后的石墨材料和还原剂混合,在氯气氛围下进行热处理;
S2.向所述石墨材料加入改性硅粉混合,再加入到含有聚酰亚胺的二甲基甲酰胺溶液中搅拌,蒸馏,再进行碳化处理,得到硅碳复合负极材料;
所述改性硅粉为硅烷偶联剂溶液改性的硅粉;所述硅烷偶联剂溶液是由醋酸水溶液水解硅烷偶联剂得到;所述硅烷偶联剂为γ-甲基丙烯酰氧基丙基三甲氧基硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷中的一种。
2.根据权利要求1所述的制备方法,其特征在于,所述硅粉和硅烷偶联剂溶液的质量比为100:(1-2)。
3.根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述石墨负极粉是由废旧锂离子电池进行拆分,破碎,过筛,即得。
4.根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述还原剂为焦炭、活性炭、炭黑中的至少一种。
5.根据权利要求1所述的制备方法,其特征在于,步骤S2中,向所述石墨材料加入改性硅粉混合,得到混合粉末;所述混合粉末和所述聚酰亚胺的质量比为(98~90):(10~20)。
6.一种硅碳复合负极材料,其特征在于,是由权利要求1-5任一项所述的制备方法制备得到,所述硅碳复合负极材料在电压为0.01-2V,电流密度为100mA/g的条件下,首次嵌锂比容量为670-760mAh/g,首次脱锂比容量为530-610mAh/g,首效为80-81%,循环50次后容量保持率为95-97%。
7.一种电池,其特征在于,包括权利要求6所述的硅碳复合负极材料。
CN202110962970.XA 2021-08-20 2021-08-20 一种硅碳复合负极材料及其制备方法和应用 Active CN113823780B (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202110962970.XA CN113823780B (zh) 2021-08-20 2021-08-20 一种硅碳复合负极材料及其制备方法和应用
HU2400069A HUP2400069A1 (hu) 2021-08-20 2022-05-12 Szilícium-szén kompozit anódanyag és elõállítási eljárása és alkalmazása
GB2310157.9A GB2617032A (en) 2021-08-20 2022-05-12 Silicon-carbon composite negative electrode material, preparation method therefor and application thereof
ES202390107A ES2981439A2 (es) 2021-08-20 2022-05-12 Material de anodo compuesto de silicio-carbono y metodo de preparacion y uso del mismo
DE112022000300.6T DE112022000300T5 (de) 2021-08-20 2022-05-12 Silicium-kohlenstoff-verbundanodenmaterial und herstellungsverfahren und verwendung davon
PCT/CN2022/092461 WO2023020042A1 (zh) 2021-08-20 2022-05-12 一种硅碳复合负极材料及其制备方法和应用
US18/372,711 US20240014382A1 (en) 2021-08-20 2023-09-26 Silicon-carbon composite anode material, and preparation method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110962970.XA CN113823780B (zh) 2021-08-20 2021-08-20 一种硅碳复合负极材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113823780A CN113823780A (zh) 2021-12-21
CN113823780B true CN113823780B (zh) 2023-04-11

Family

ID=78923126

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110962970.XA Active CN113823780B (zh) 2021-08-20 2021-08-20 一种硅碳复合负极材料及其制备方法和应用

Country Status (7)

Country Link
US (1) US20240014382A1 (zh)
CN (1) CN113823780B (zh)
DE (1) DE112022000300T5 (zh)
ES (1) ES2981439A2 (zh)
GB (1) GB2617032A (zh)
HU (1) HUP2400069A1 (zh)
WO (1) WO2023020042A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113823780B (zh) * 2021-08-20 2023-04-11 广东邦普循环科技有限公司 一种硅碳复合负极材料及其制备方法和应用
CN114335495A (zh) * 2021-12-28 2022-04-12 南昌航空大学 一种利用锂离子电池废弃石墨制备硅碳负极材料的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216961A (ja) * 2000-02-04 2001-08-10 Shin Etsu Chem Co Ltd リチウムイオン二次電池用ケイ素酸化物及びリチウムイオン二次電池
JP2015069878A (ja) * 2013-09-30 2015-04-13 凸版印刷株式会社 二次電池用電極活物質、二次電池用電極
CN106207142A (zh) * 2015-04-30 2016-12-07 深圳市比克电池有限公司 一种动力锂离子电池硅碳复合负极材料制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1040638C (zh) * 1994-05-13 1998-11-11 中国矿业大学北京研究生部 天然石墨高温氯化提纯工艺和所用的反应炉
JP2011011928A (ja) * 2009-06-30 2011-01-20 Nissan Motor Co Ltd 表面修飾シリコン粒子
CN102376944B (zh) * 2011-11-24 2013-04-24 深圳市贝特瑞新能源材料股份有限公司 制备锂离子电池用硅碳合金负极材料的方法
WO2014080629A1 (ja) * 2012-11-20 2014-05-30 昭和電工株式会社 リチウムイオン電池用負極材の製造方法
CN104752696A (zh) * 2015-01-22 2015-07-01 湖州创亚动力电池材料有限公司 一种石墨烯基硅碳复合负极材料的制备方法
CN107887666B (zh) * 2016-09-29 2018-09-25 中国科学院过程工程研究所 一种废旧锂离子电池负极材料的回收方法
CN108219104A (zh) * 2018-01-24 2018-06-29 西安交通大学 端硅氧烷基聚合物粘合剂及其制备方法和应用
CN108598389B (zh) * 2018-03-28 2020-10-27 华南师范大学 一种锂离子电池硅碳负极材料及其制备方法与应用
US11028242B2 (en) * 2019-06-03 2021-06-08 Enevate Corporation Modified silicon particles for silicon-carbon composite electrodes
CN110098443B (zh) * 2019-05-17 2021-08-27 浙江卡波恩新材料有限公司 一种碳包覆废旧锂电池负极材料的方法
CN112490416A (zh) * 2020-10-28 2021-03-12 浙江中科玖源新材料有限公司 一种硅碳复合薄膜及其制备方法和应用以及锂离子电池
CN112520719B (zh) * 2020-11-16 2022-10-18 湖北斯诺新材料科技有限公司 一种聚酰亚胺改性碳硅负极材料及其制备方法
CN112510175A (zh) * 2020-11-17 2021-03-16 阜阳申邦新材料技术有限公司 一种锂离子电池用硅碳负极材料及锂离子电池
CN112520732A (zh) * 2020-11-17 2021-03-19 阜阳申邦新材料技术有限公司 一种硅碳复合负极材料及其制备方法
CN113036255A (zh) * 2021-02-26 2021-06-25 广东邦普循环科技有限公司 利用废旧锂离子电池负极制备硅碳复合材料的方法和应用
CN113823780B (zh) * 2021-08-20 2023-04-11 广东邦普循环科技有限公司 一种硅碳复合负极材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216961A (ja) * 2000-02-04 2001-08-10 Shin Etsu Chem Co Ltd リチウムイオン二次電池用ケイ素酸化物及びリチウムイオン二次電池
JP2015069878A (ja) * 2013-09-30 2015-04-13 凸版印刷株式会社 二次電池用電極活物質、二次電池用電極
CN106207142A (zh) * 2015-04-30 2016-12-07 深圳市比克电池有限公司 一种动力锂离子电池硅碳复合负极材料制备方法

Also Published As

Publication number Publication date
ES2981439A2 (es) 2024-10-08
DE112022000300T5 (de) 2023-09-14
GB2617032A (en) 2023-09-27
WO2023020042A1 (zh) 2023-02-23
HUP2400069A1 (hu) 2024-06-28
CN113823780A (zh) 2021-12-21
GB202310157D0 (en) 2023-08-16
US20240014382A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
WO2022179292A1 (zh) 利用废旧锂离子电池负极制备硅碳复合材料的方法和应用
CN108550827B (zh) 一种三维多孔状硅碳负极材料的制备方法与应用
US20240014382A1 (en) Silicon-carbon composite anode material, and preparation method and use thereof
CN110660987B (zh) 硼掺杂空心硅球形颗粒/石墨化碳复合材料及其制备方法
CN109767928B (zh) 氟掺杂碳包覆氧化硅纳米颗粒@碳纳米管复合材料的合成方法及其应用
CN114229816A (zh) 一种从废旧磷酸铁锂电池中回收制备正极材料的方法
CN111960422A (zh) 一种二维硅纳米材料的制备方法及其应用
WO2022142582A1 (zh) 一种硅掺杂的石墨烯复合材料及其制备方法和应用
CN108155022B (zh) 使用微晶石墨材料的锂离子电容器的制备方法
CN115312736B (zh) 一种Si@TiN-沥青复合负极材料的制备方法
CN115050944B (zh) 一种三维纳米花结构的复合材料及其制备方法和应用
CN112151809B (zh) 一种柔性集流体及其制备方法和锂离子电池
GB2616099A (en) Precise fluorination and purification method for ginkgo leaf, and functional use of primary lithium battery
CN115548322A (zh) 一种改性的微晶石墨二次颗粒负极材料的制备方法和应用
CN110518194B (zh) 一种原位碳包覆制备核壳型硅/碳复合材料的方法及其应用
CN114497516A (zh) 一种卵黄-壳型碳包覆硅复合负极材料及制备方法
CN114843648A (zh) 一种锂离子电池废旧石墨负极材料的再生方法
CN114551872A (zh) 一种负极材料及其制备方法、电池负极、电池
CN113540449A (zh) 农作物秸秆分级处理制备环保可再生锌离子电池的方法
CN108461721B (zh) 一种石墨烯包覆硅复合材料及其制备方法和应用
CN116154152B (zh) 一种磷酸铁锂电池正极浆料及其制备方法
CN111697228B (zh) 一种氟插层石墨化碳材料的制备方法
CN118637610A (zh) 一种从废旧锂离子电池中回收制备微膨胀再生石墨的方法
CN112694121A (zh) 一种多孔碳微球原位复合纳米TiO2的制备方法和应用
CN116632204A (zh) 多巴胺包覆多孔硅交联海藻酸钠的材料、制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant