CN113762466B - 电力物联网流量分类方法及装置 - Google Patents
电力物联网流量分类方法及装置 Download PDFInfo
- Publication number
- CN113762466B CN113762466B CN202110882758.2A CN202110882758A CN113762466B CN 113762466 B CN113762466 B CN 113762466B CN 202110882758 A CN202110882758 A CN 202110882758A CN 113762466 B CN113762466 B CN 113762466B
- Authority
- CN
- China
- Prior art keywords
- domain data
- target
- data
- classifier
- source domain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 76
- 230000002457 bidirectional effect Effects 0.000 claims abstract description 76
- 238000012549 training Methods 0.000 claims abstract description 59
- 230000006870 function Effects 0.000 claims description 89
- 125000004122 cyclic group Chemical group 0.000 claims description 19
- 238000004590 computer program Methods 0.000 claims description 9
- 102100026278 Cysteine sulfinic acid decarboxylase Human genes 0.000 claims description 7
- 108010064775 protein C activator peptide Proteins 0.000 claims description 7
- 238000004422 calculation algorithm Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 230000000007 visual effect Effects 0.000 claims description 5
- 238000005065 mining Methods 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims 2
- 241001522296 Erithacus rubecula Species 0.000 claims 1
- 230000006855 networking Effects 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 10
- 230000008569 process Effects 0.000 description 14
- 238000009826 distribution Methods 0.000 description 10
- 238000013526 transfer learning Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000013145 classification model Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 238000002372 labelling Methods 0.000 description 5
- 238000013508 migration Methods 0.000 description 5
- 230000005012 migration Effects 0.000 description 5
- 230000006978 adaptation Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000012850 discrimination method Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/047—Probabilistic or stochastic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Y—INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
- G16Y10/00—Economic sectors
- G16Y10/35—Utilities, e.g. electricity, gas or water
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Y—INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
- G16Y10/00—Economic sectors
- G16Y10/75—Information technology; Communication
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Y—INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
- G16Y40/00—IoT characterised by the purpose of the information processing
- G16Y40/20—Analytics; Diagnosis
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0876—Network utilisation, e.g. volume of load or congestion level
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Business, Economics & Management (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Development Economics (AREA)
- Accounting & Taxation (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Economics (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Business, Economics & Management (AREA)
- Environmental & Geological Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Probability & Statistics with Applications (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
准确率 | 精确率 | 召回值 | F1分数 |
76.82% | 72.19% | 78.12% | 75.04% |
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110882758.2A CN113762466B (zh) | 2021-08-02 | 2021-08-02 | 电力物联网流量分类方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110882758.2A CN113762466B (zh) | 2021-08-02 | 2021-08-02 | 电力物联网流量分类方法及装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113762466A CN113762466A (zh) | 2021-12-07 |
CN113762466B true CN113762466B (zh) | 2023-06-20 |
Family
ID=78788349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110882758.2A Active CN113762466B (zh) | 2021-08-02 | 2021-08-02 | 电力物联网流量分类方法及装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113762466B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115062685A (zh) * | 2022-04-29 | 2022-09-16 | 北京邮电大学深圳研究院 | 一种故障诊断方法、装置、电子设备及存储介质 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108256561A (zh) * | 2017-12-29 | 2018-07-06 | 中山大学 | 一种基于对抗学习的多源域适应迁移方法及系统 |
CN108460415A (zh) * | 2018-02-28 | 2018-08-28 | 国信优易数据有限公司 | 伪标签生成模型训练方法及伪标签生成方法 |
CN109614980A (zh) * | 2018-10-16 | 2019-04-12 | 杭州电子科技大学 | 一种基于半监督广域迁移度量学习的小样本目标识别方法 |
CN109753992A (zh) * | 2018-12-10 | 2019-05-14 | 南京师范大学 | 基于条件生成对抗网络的无监督域适应图像分类方法 |
CN110427875A (zh) * | 2019-07-31 | 2019-11-08 | 天津大学 | 基于深度迁移学习和极限学习机的红外图像目标检测方法 |
US10839269B1 (en) * | 2020-03-20 | 2020-11-17 | King Abdulaziz University | System for fast and accurate visual domain adaptation |
EP3767536A1 (en) * | 2019-07-17 | 2021-01-20 | Naver Corporation | Latent code for unsupervised domain adaptation |
CN112348284A (zh) * | 2020-11-25 | 2021-02-09 | 新智数字科技有限公司 | 一种电力负荷预测方法、装置、可读介质及电子设备 |
CN113052243A (zh) * | 2021-03-30 | 2021-06-29 | 浙江工业大学 | 基于CycleGAN和条件分布自适应的目标检测方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200130177A1 (en) * | 2018-10-29 | 2020-04-30 | Hrl Laboratories, Llc | Systems and methods for few-shot transfer learning |
-
2021
- 2021-08-02 CN CN202110882758.2A patent/CN113762466B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108256561A (zh) * | 2017-12-29 | 2018-07-06 | 中山大学 | 一种基于对抗学习的多源域适应迁移方法及系统 |
CN108460415A (zh) * | 2018-02-28 | 2018-08-28 | 国信优易数据有限公司 | 伪标签生成模型训练方法及伪标签生成方法 |
CN109614980A (zh) * | 2018-10-16 | 2019-04-12 | 杭州电子科技大学 | 一种基于半监督广域迁移度量学习的小样本目标识别方法 |
CN109753992A (zh) * | 2018-12-10 | 2019-05-14 | 南京师范大学 | 基于条件生成对抗网络的无监督域适应图像分类方法 |
EP3767536A1 (en) * | 2019-07-17 | 2021-01-20 | Naver Corporation | Latent code for unsupervised domain adaptation |
CN110427875A (zh) * | 2019-07-31 | 2019-11-08 | 天津大学 | 基于深度迁移学习和极限学习机的红外图像目标检测方法 |
US10839269B1 (en) * | 2020-03-20 | 2020-11-17 | King Abdulaziz University | System for fast and accurate visual domain adaptation |
CN112348284A (zh) * | 2020-11-25 | 2021-02-09 | 新智数字科技有限公司 | 一种电力负荷预测方法、装置、可读介质及电子设备 |
CN113052243A (zh) * | 2021-03-30 | 2021-06-29 | 浙江工业大学 | 基于CycleGAN和条件分布自适应的目标检测方法 |
Non-Patent Citations (1)
Title |
---|
一种基于样本选择和在线字典学习的域适应图像分类算法;张旭;刘韬;杜跃;;苏州市职业大学学报(第02期);17-22 * |
Also Published As
Publication number | Publication date |
---|---|
CN113762466A (zh) | 2021-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jacob et al. | Facial action unit detection with transformers | |
Yu et al. | Deep-learning-empowered breast cancer auxiliary diagnosis for 5GB remote E-health | |
Jauro et al. | Deep learning architectures in emerging cloud computing architectures: Recent development, challenges and next research trend | |
van Berlo et al. | Towards federated unsupervised representation learning | |
EP3767536A1 (en) | Latent code for unsupervised domain adaptation | |
US20220222925A1 (en) | Artificial intelligence-based image processing method and apparatus, device, and storage medium | |
Huang et al. | Multivariate time series early classification using multi-domain deep neural network | |
CN114693624B (zh) | 一种图像检测方法、装置、设备及可读存储介质 | |
He et al. | MTAD‐TF: Multivariate Time Series Anomaly Detection Using the Combination of Temporal Pattern and Feature Pattern | |
CN109977832B (zh) | 一种图像处理方法、装置及存储介质 | |
Cheng et al. | Online power system event detection via bidirectional generative adversarial networks | |
CN115861462B (zh) | 图像生成模型的训练方法、装置、电子设备及存储介质 | |
CN112927266B (zh) | 基于不确定性引导训练的弱监督时域动作定位方法及系统 | |
CN113762466B (zh) | 电力物联网流量分类方法及装置 | |
Wang et al. | Classification of skin lesions with generative adversarial networks and improved MobileNetV2 | |
Niu et al. | Boundary-aware RGBD salient object detection with cross-modal feature sampling | |
Zhang et al. | A deep contrastive learning approach to extremely-sparse disaster damage assessment in social sensing | |
CN114550291A (zh) | 一种步态特征提取方法、装置及设备 | |
He et al. | Few-shot fault diagnosis of turnout switch machine based on flexible semi-supervised meta-learning network | |
Zeng et al. | Cloud-GAN: Cloud Generation Adversarial Networks for anomaly detection | |
Hu et al. | Crowd R-CNN: An object detection model utilizing crowdsourced labels | |
CN116243680A (zh) | 一种黑盒域适应的工业设备诊断方法、系统及存储介质 | |
Zhang et al. | Chronic wounds image generator based on deep convolutional generative adversarial networks | |
Yasmin et al. | Impact of fuzziness for skin lesion classification with transformer-based model | |
Jin et al. | Foveation for segmentation of mega-pixel histology images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 450052 building C, office area, No.87, Songshan South Road, Erqi District, Zhengzhou City, Henan Province Patentee after: State Grid Henan Electric Power Company Information and Communication Branch Country or region after: China Patentee after: BEIJING VECTINFO TECHNOLOGIES CO.,LTD. Patentee after: STATE GRID CORPORATION OF CHINA Patentee after: Beijing University of Posts and Telecommunications Address before: No. 87, Songshan Road, 27 District, Zhengzhou City, Henan Province Patentee before: INFORMATION AND COMMUNICATION COMPANY OF STATE GRID HENAN ELECTRIC POWER COMPANY Country or region before: China Patentee before: BEIJING VECTINFO TECHNOLOGIES CO.,LTD. Patentee before: STATE GRID CORPORATION OF CHINA Patentee before: Beijing University of Posts and Telecommunications |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240426 Address after: 450052 building C, office area, No.87, Songshan South Road, Erqi District, Zhengzhou City, Henan Province Patentee after: State Grid Henan Electric Power Company Information and Communication Branch Country or region after: China Patentee after: STATE GRID CORPORATION OF CHINA Patentee after: Beijing University of Posts and Telecommunications Address before: 450052 building C, office area, No.87, Songshan South Road, Erqi District, Zhengzhou City, Henan Province Patentee before: State Grid Henan Electric Power Company Information and Communication Branch Country or region before: China Patentee before: BEIJING VECTINFO TECHNOLOGIES CO.,LTD. Patentee before: STATE GRID CORPORATION OF CHINA Patentee before: Beijing University of Posts and Telecommunications |