[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN113753904B - A kind of porous silicon dioxide nano ring and preparation method thereof - Google Patents

A kind of porous silicon dioxide nano ring and preparation method thereof Download PDF

Info

Publication number
CN113753904B
CN113753904B CN202111181750.XA CN202111181750A CN113753904B CN 113753904 B CN113753904 B CN 113753904B CN 202111181750 A CN202111181750 A CN 202111181750A CN 113753904 B CN113753904 B CN 113753904B
Authority
CN
China
Prior art keywords
preparation
silicon dioxide
control agent
nanoring
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111181750.XA
Other languages
Chinese (zh)
Other versions
CN113753904A (en
Inventor
张建安
袁玉昆
吴明元
吴庆云
杨建军
刘久逸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN202111181750.XA priority Critical patent/CN113753904B/en
Publication of CN113753904A publication Critical patent/CN113753904A/en
Application granted granted Critical
Publication of CN113753904B publication Critical patent/CN113753904B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Silicon Compounds (AREA)

Abstract

The invention discloses a porous silicon dioxide nanoring and a preparation method thereof. The preparation method has the advantages of simple process, low cost and mild reaction conditions, can realize the controllable preparation of the porous silicon dioxide nanoring, and can be popularized for industrial production.

Description

一种多孔二氧化硅纳米环及其制备方法A kind of porous silicon dioxide nano ring and preparation method thereof

技术领域technical field

本发明属于纳米硅化合物技术领域,具体涉及一种多孔二氧化硅纳米环的制备方法,进一步涉及由该制备方法制备获得的多孔二氧化硅纳米环。The invention belongs to the technical field of nano-silicon compounds, and in particular relates to a method for preparing a porous silicon dioxide nano-ring, and further relates to a porous silicon dioxide nano-ring prepared by the preparation method.

背景技术Background technique

纳米二氧化硅材料已经在光学、电子学、生物医学、生物分离技术、生物传感技术以及催化反应等领域被广泛应用,其形貌多种多样,如纳米球、纳米片等,不同形貌的纳米二氧化硅往往具有不同的性质,尤其是一些特殊形貌的纳米结构。Nano-silica materials have been widely used in the fields of optics, electronics, biomedicine, bioseparation technology, biosensing technology, and catalytic reactions, and their shapes are various, such as nanospheres, nanosheets, etc., and different shapes Nano-silica often has different properties, especially some nanostructures with special shapes.

纳米环状二氧化硅由于其比表面积大、吸附能力强,可广泛应用于催化剂载体、药物载体等领域。但由于纳米环的形貌特殊,且没有合适的环状前驱体,使得多孔二氧化硅纳米环不能简单地通过化学方法合成。Due to its large specific surface area and strong adsorption capacity, nano-ring silica can be widely used in catalyst carriers, drug carriers and other fields. However, due to the special morphology of nanorings and the absence of suitable ring precursors, porous silica nanorings cannot be simply synthesized by chemical methods.

现有的二氧化硅纳米环主要是通过模板法制得:一种是将已合成的二氧化硅中空球分散在平面上形成阵列,然后进行离子蚀刻制备纳米环状二氧化硅,但这种方法需要离子刻蚀辅助手段,且产率低下(ACS Appl.Mater.Interfaces 2016,8,10451-10458);另一种是以小分子诱导二氧化硅纳米粒子组装成环状纳米粒子,但这种方法制备的纳米环力学性能不强,对实验参数要求高不宜进行调控,不易于工业化生产(Langmuir 2018,34,26,7751–7758)。Existing silica nanorings are mainly prepared by the template method: one is to disperse the synthesized silica hollow spheres on a plane to form an array, and then perform ion etching to prepare nanoannular silica, but this method Need ion etching auxiliary means, and the yield is low (ACS Appl. The mechanical properties of the nanorings prepared by this method are not strong, and the requirements for experimental parameters are high, so it is not suitable for regulation, and it is not easy for industrial production (Langmuir 2018, 34, 26, 7751–7758).

发明内容Contents of the invention

有鉴于此,本发明有必要提供一种多孔二氧化硅纳米环的制备方法,以阳离子表面活性剂作为模板,采用第一形貌控制剂和第二形貌控制剂调控二氧化硅的生长方向,从而制备得到多孔二氧化硅纳米环,该制备方法工艺简单、成本低廉且反应条件温和,可推广工业化生产。In view of this, it is necessary for the present invention to provide a method for preparing porous silica nanorings, using a cationic surfactant as a template, and using a first shape control agent and a second shape control agent to regulate the growth direction of silicon dioxide , so as to prepare porous silicon dioxide nano rings. The preparation method has simple process, low cost and mild reaction conditions, and can be popularized for industrial production.

为了实现上述目的,本发明采用以下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:

本发明提供了一种多孔二氧化硅纳米环的制备方法,包括下列步骤:The invention provides a kind of preparation method of porous silicon dioxide nanoring, comprises the following steps:

制备模板溶液,所述模板溶液为阳离子表面活性剂的水溶液;Prepare a template solution, the template solution is an aqueous solution of cationic surfactant;

提供第一形貌控制剂,将其与所述模板溶液充分混合,并调整体系pH值到2-13,获得具有层状胶束的第一胶束溶液;providing a first morphology control agent, fully mixing it with the template solution, and adjusting the pH value of the system to 2-13 to obtain a first micelle solution with lamellar micelles;

提供第二形貌控制剂,将其与所述第一胶束溶液充分混合,获得具有环状胶束的第二胶束溶液;providing a second shape control agent, fully mixing it with the first micellar solution to obtain a second micellar solution with ring-shaped micelles;

提供二氧化硅前驱体,将其与所述第二胶束溶液混合后,升温反应,获得多孔二氧化硅纳米环分散体;Provide a silicon dioxide precursor, mix it with the second micellar solution, and heat up to react to obtain a porous silicon dioxide nanoring dispersion;

纯化所述多孔二氧化硅纳米环分散体,获得多孔二氧化硅纳米环。The porous silica nanoring dispersion is purified to obtain porous silica nanorings.

进一步方案,所述模板溶液中,阳离子表面活性剂的添加量为0.25-2.5wt%;In a further scheme, in the template solution, the cationic surfactant is added in an amount of 0.25-2.5wt%;

所述阳离子表面活性剂选自阳离子乳化剂。The cationic surfactant is selected from cationic emulsifiers.

进一步方案,所述阳离子乳化剂选自烷基季铵盐、含杂原子的季铵盐、含苯环的季铵盐、含杂环的季铵盐、胺盐型阳离子乳化剂中的一种。In a further scheme, the cationic emulsifier is selected from one of alkyl quaternary ammonium salts, heteroatom-containing quaternary ammonium salts, benzene ring-containing quaternary ammonium salts, heterocyclic quaternary ammonium salts, and amine salt cationic emulsifiers .

进一步方案,所述第一形貌控制剂选自水溶性盐、水溶性有机酸、阴离子型乳化剂、阴离子型聚合物中的一种,其中,所述水溶性盐含有ClO4 -、Cl-、NO3 -、SO4 2-或SO3 2-,所述水溶性有机酸含有羧酸、磺酸、亚磺酸或硫羧酸官能团。In a further solution, the first shape control agent is selected from one of water-soluble salts, water-soluble organic acids, anionic emulsifiers, and anionic polymers, wherein the water-soluble salt contains ClO 4 - , Cl - , NO 3 - , SO 4 2- or SO 3 2- , the water-soluble organic acid contains carboxylic acid, sulfonic acid, sulfinic acid or thiocarboxylic acid functional group.

进一步方案,所述阴离子型乳化剂选自羧酸盐型、磺酸盐型、硫酸盐型中的一种;In a further scheme, the anionic emulsifier is selected from one of carboxylate, sulfonate, and sulfate;

所述阴离子型聚合物选自聚丙烯酸钠、聚甲基丙烯酸钠、聚苯乙烯磺酸钠、阴离子型水性聚氨酯、阴离子型聚丙烯酰胺中的一种。The anionic polymer is selected from one of sodium polyacrylate, sodium polymethacrylate, sodium polystyrene sulfonate, anionic water-based polyurethane, and anionic polyacrylamide.

进一步方案,所述体系的pH范围在8-11。In a further scheme, the pH range of the system is 8-11.

进一步方案,所述第二形貌控制剂为醇类物质,其用量为3-30wt%;In a further scheme, the second shape control agent is an alcohol substance, and its dosage is 3-30wt%;

所述醇类物质选自乙醇、乙二醇、丙三醇、一缩二乙二醇、含羟基的亲水高分子、含羟基的亲水小分子中的至少一种。The alcohols are selected from at least one of ethanol, ethylene glycol, glycerol, diethylene glycol, hydroxyl-containing hydrophilic macromolecules, and hydroxyl-containing hydrophilic small molecules.

进一步方案,所述二氧化硅前驱体选自硅酸钠、正硅酸甲酯、正硅酸乙酯、正硅酸丙酯、硅烷偶联剂中的一种或两种以上的混合。In a further solution, the silicon dioxide precursor is selected from one or a mixture of two or more of sodium silicate, methyl orthosilicate, ethyl orthosilicate, propyl orthosilicate, and a silane coupling agent.

进一步方案,所述升温反应的具体步骤为:于20-85℃搅拌反应1-36h。In a further scheme, the specific steps of the temperature rise reaction are: stirring the reaction at 20-85° C. for 1-36 hours.

本发明进一步提供了一种多孔二氧化硅纳米环,采用如前述任一项所述的制备方法制得,所述多孔二氧化硅纳米环为内径20-5000nm、外径500nm-10μm的多孔环。The present invention further provides a porous silica nanoring, which is prepared by the preparation method described in any one of the foregoing, wherein the porous silica nanoring is a porous ring with an inner diameter of 20-5000nm and an outer diameter of 500nm-10μm .

与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

本发明中的多孔二氧化硅纳米环的制备方法以阳离子表面活性剂作为模板,采用第一形貌控制剂和第二形貌控制剂,在模板溶液中调控二氧化硅的生长,可直接诱导多孔二氧化硅纳米环的生成。The preparation method of porous silica nanorings in the present invention uses cationic surfactants as templates, adopts the first shape control agent and the second shape control agent, regulates the growth of silicon dioxide in the template solution, and can directly induce Generation of porous silica nanorings.

采用的原料均为商品化化学试剂,可直接市售获得,成本低廉;通过简单的化学反应进行制备,工艺简单;在室温下即可反应,反应条件温和,易于实现工业化生产。The raw materials used are all commercial chemical reagents, which can be directly obtained from the market, and the cost is low; the preparation is carried out through a simple chemical reaction, and the process is simple; the reaction can be carried out at room temperature, the reaction condition is mild, and the industrial production is easy to realize.

此外,可通过调整二氧化硅前驱体和阳离子表面活性剂以及形貌控制剂的用量,对多孔二氧化硅纳米环的形貌进行调控,调控方式简单。In addition, the morphology of porous silica nanorings can be regulated by adjusting the amount of silica precursor, cationic surfactant and morphology control agent, and the regulation method is simple.

获得的多孔二氧化硅纳米环可广泛用于催化剂载体、药物载体、微波吸收或传感器能领域,前景广阔。The obtained porous silica nanorings can be widely used in the fields of catalyst carrier, drug carrier, microwave absorption or sensor energy, and have broad prospects.

附图说明Description of drawings

图1为本发明一较佳实施例中多孔二氧化硅纳米环的制备方法流程框图;Fig. 1 is a block diagram of the preparation method of porous silica nanorings in a preferred embodiment of the present invention;

图2为本发明实施例1所得的多孔二氧化硅纳米环的TEM图;Fig. 2 is the TEM figure of the porous silica nanoring of gained of embodiment 1 of the present invention;

图3为本发明实施例1所得的多孔二氧化硅纳米环的SEM图;Fig. 3 is the SEM picture of the porous silica nanoring of the embodiment of the present invention 1 gained;

图4为本发明实施例1所得的多孔二氧化硅纳米环的红外光谱图;Fig. 4 is the infrared spectrogram of the porous silica nano-rings obtained in Example 1 of the present invention;

图5为本发明实施例2所得的多孔二氧化硅纳米环的粒径分布图;Fig. 5 is the particle size distribution diagram of the porous silica nanorings obtained in Example 2 of the present invention;

图6为本发明实施例2所得的多孔二氧化硅纳米环的SEM图;Fig. 6 is the SEM picture of the porous silica nanoring of the embodiment of the present invention 2 gained;

图7为本发明实施例3所得的多孔二氧化硅纳米环的SEM图;Fig. 7 is the SEM figure of the porous silica nanoring that the embodiment of the present invention 3 gains;

图8为本发明实施例4所得的多孔二氧化硅纳米环的SEM图;Fig. 8 is the SEM figure of the porous silica nanoring of the embodiment 4 of the present invention gained;

图9为本发明实施例5所得的多孔二氧化硅纳米环的SEM图。Fig. 9 is an SEM image of the porous silica nanorings obtained in Example 5 of the present invention.

具体实施方式Detailed ways

为了便于理解本发明,下面将结合具体的实施例对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。In order to facilitate understanding of the present invention, the present invention will be described more fully below in conjunction with specific embodiments. However, the present invention can be embodied in many different forms and is not limited to the embodiments described herein. On the contrary, the purpose of providing these embodiments is to make the disclosure of the present invention more thorough and comprehensive.

除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field of the invention. The terminology used herein in the description of the present invention is only for the purpose of describing specific embodiments, and is not intended to limit the present invention.

本发明第一方面公开了一种多孔二氧化硅纳米环的制备方法,具体如图1中所示的,包括下列步骤:The first aspect of the present invention discloses a preparation method of porous silica nanorings, specifically as shown in Figure 1, comprising the following steps:

制备模板溶液,所述模板溶液为阳离子表面活性剂的水溶液;Prepare a template solution, the template solution is an aqueous solution of cationic surfactant;

提供第一形貌控制剂,将其与所述模板溶液充分混合,并调整体系pH为2-13,获得具有层状胶束的第一胶束溶液;providing a first morphology control agent, fully mixing it with the template solution, and adjusting the pH of the system to 2-13 to obtain a first micelle solution with lamellar micelles;

提供第二形貌控制剂,将其与所述第一胶束溶液充分混合,获得具有环状胶束的第二胶束溶液;providing a second shape control agent, fully mixing it with the first micellar solution to obtain a second micellar solution with ring-shaped micelles;

提供二氧化硅前驱体,将其与所述第二胶束溶液混合后,升温反应,获得多孔二氧化硅纳米环分散体;Provide a silicon dioxide precursor, mix it with the second micellar solution, and heat up to react to obtain a porous silicon dioxide nanoring dispersion;

纯化所述多孔二氧化硅纳米环分散体,获得多孔二氧化硅纳米环。The porous silica nanoring dispersion is purified to obtain porous silica nanorings.

本发明以阳离子表面活性剂作为模板,通过第一形貌控制剂和第二形貌控制剂在模板溶液中调控二氧化硅的生长方法,直接诱导二氧化硅前驱体,制成多孔二氧化硅纳米环。其中,模板溶液的制备没有特别的限定,将阳离子表面活性剂加入去离子水中溶解即可获得。In the present invention, the cationic surfactant is used as a template, and the growth method of silicon dioxide is regulated in the template solution by the first shape control agent and the second shape control agent, and the silicon dioxide precursor is directly induced to make porous silicon dioxide. nano ring. Wherein, the preparation of the template solution is not particularly limited, and can be obtained by dissolving a cationic surfactant in deionized water.

该制备方法中采用的原料均为商品化化学试剂,简单易得,且成本低廉,整个制备过程步骤简单,且反应条件温和。The raw materials used in the preparation method are all commercial chemical reagents, which are easy to obtain and low in cost, and the whole preparation process has simple steps and mild reaction conditions.

此外,该制备方法中,可通过调整阳离子表面活性剂、第一形貌控制剂、第二形貌控制剂、二氧化硅前驱体的用量或比例关系,调整纳米环的形貌和尺寸,故没有特别的限定,具体来说,可以通过增加阳离子表面活性剂和形貌控制剂的用量可以增加二氧化硅纳米环的尺寸;通过增加二氧化硅前躯体的用量可以增加环壁的厚度。在本发明的一个或多个实施例中,阳离子表面活性剂的用量为0.25-2.5wt%,第一形貌控制剂的用量为0.1-1.0wt%,第二形貌控制剂为3-30wt%,二氧化硅前驱体的用量为1-10wt%,前述用量均是以模板溶液中去离子水的用量为基准计量的。In addition, in this preparation method, the morphology and size of the nanorings can be adjusted by adjusting the amount or ratio of the cationic surfactant, the first shape control agent, the second shape control agent, and the silica precursor. There is no particular limitation. Specifically, the size of the silica nanoring can be increased by increasing the amount of cationic surfactant and morphology control agent; the thickness of the ring wall can be increased by increasing the amount of the precursor of silicon dioxide. In one or more embodiments of the present invention, the amount of the cationic surfactant is 0.25-2.5wt%, the amount of the first shape control agent is 0.1-1.0wt%, and the amount of the second shape control agent is 3-30wt%. %, the amount of silicon dioxide precursor is 1-10wt%, and the aforementioned amounts are all measured based on the amount of deionized water in the template solution.

阳离子表面活性剂cationic surfactant

本文中所述的阳离子表面活性剂指的是含氮的有机胺衍生物,具体为阳离子乳化剂,一般为采用阳离子活性剂模板法制备纳米二氧化硅的常规原料,没有特别的限定,可以选自烷基季铵盐、含杂原子(如氧原子、硫原子、氮原子)的季铵盐、含苯环的季铵盐、含杂环的季铵盐、胺盐型阳离子乳化剂中的一种,其中,烷基季铵盐可提及的实例有十二烷基三甲基溴化铵、十六烷基三甲基溴化铵、十八烷基三甲基氯化铵,含杂原子的季铵盐可提及的实例有十六烷基羟丙基二甲基氯化铵,含苯环的季铵盐可提及的实例有十八烷基二甲基苄基氯化铵、十二烷基二甲基苄基氯化铵,含杂环的季铵盐可提及的实例有十六烷基溴化吡啶,胺盐型阳离子乳化剂可提及的实例有松香胺,可以理解的是,本发明中的阳离子表面活性剂包括但不限于上述几种。The cationic surfactants described herein refer to nitrogen-containing organic amine derivatives, specifically cationic emulsifiers, which are generally conventional raw materials for preparing nano-silica by the cationic active agent template method, without special limitations, and can be selected From alkyl quaternary ammonium salts, quaternary ammonium salts containing heteroatoms (such as oxygen atoms, sulfur atoms, nitrogen atoms), quaternary ammonium salts containing benzene rings, quaternary ammonium salts containing heterocyclic rings, and amine salt cationic emulsifiers One, of which, examples of alkyl quaternary ammonium salts that may be mentioned are dodecyltrimethylammonium bromide, cetyltrimethylammonium bromide, octadecyltrimethylammonium chloride, containing Examples that may be mentioned of quaternary ammonium salts containing heteroatoms are cetyl hydroxypropyl dimethyl ammonium chloride, and examples of quaternary ammonium salts containing benzene rings are octadecyl dimethyl benzyl chloride Ammonium, dodecyldimethylbenzyl ammonium chloride, quaternary ammonium salts containing heterocyclic rings may be mentioned as cetylpyridinium bromide, cationic emulsifiers of the amine salt type may be mentioned as abietamine , it can be understood that the cationic surfactants in the present invention include but not limited to the above-mentioned several.

第一形貌控制剂first shape control agent

本文中所述的第一形貌控制剂,其作用是与阳离子表面活性剂相互作用,从而形成层状胶束,以调控二氧化硅的生长方向,故,该第一形貌控制剂的化学结构中应当至少包含一个能够与阳离子表面活性剂相互作用,以形成层状胶束化合物的官能团,具体可根据阳离子表面活性剂的种类进行调整。在本发明的一个或多个实施例中,所述第一形貌控制剂选自水溶性盐、水溶性有机酸、阴离子型乳化剂、阴离子型聚合物中的一种。其中,所述水溶性盐含有ClO4 -、Cl-、NO3 -、SO4 2-或SO3 2-,其具体可提及的实例有硫酸钠、亚硫酸钾或氯化铵;所述水溶性有机酸为含有羧酸、磺酸、亚磺酸或硫羧酸官能团并在水中有一定的溶解度的有机酸,具体可提及的实例有香草酸、柠檬酸;所述阴离子型乳化剂选自羧酸盐型、磺酸盐型、硫酸盐型中的一种,其中,羧酸盐型可以为油酸钠,磺酸盐型可以为十六烷基磺酸钠,硫酸盐型可以为十二烷基硫酸钠;所述阴离子型聚合物选自聚丙烯酸钠、聚甲基丙烯酸钠、聚苯乙烯磺酸钠、阴离子型水性聚氨酯、阴离子型聚丙烯酰胺中的一种。The first shape-controlling agent described herein acts to interact with cationic surfactants to form lamellar micelles to regulate the growth direction of silicon dioxide. Therefore, the chemical composition of the first shape-controlling agent The structure should contain at least one functional group capable of interacting with the cationic surfactant to form a lamellar micelle compound, which can be adjusted according to the type of the cationic surfactant. In one or more embodiments of the present invention, the first shape control agent is selected from one of water-soluble salts, water-soluble organic acids, anionic emulsifiers, and anionic polymers. Wherein, the water-soluble salt contains ClO 4 - , Cl - , NO 3 - , SO 4 2- or SO 3 2- , and specific examples thereof include sodium sulfate, potassium sulfite or ammonium chloride; Water-soluble organic acid is the organic acid that contains carboxylic acid, sulfonic acid, sulfinic acid or thiocarboxylic acid functional group and has certain solubility in water, and the specific examples that can be mentioned have vanillic acid, citric acid; The anionic emulsifier One selected from carboxylate type, sulfonate type, and sulfate type, wherein the carboxylate type can be sodium oleate, the sulfonate type can be sodium hexadecylsulfonate, and the sulfate type can be It is sodium lauryl sulfate; the anionic polymer is selected from one of sodium polyacrylate, sodium polymethacrylate, sodium polystyrene sulfonate, anionic water-based polyurethane, and anionic polyacrylamide.

第二形貌控制剂second shape control agent

本文中所述的第二形貌控制剂的作用是解离胶束中曲率小的部分,从而将层状胶束转换为环状胶束。故,第二形貌控制剂为含有-OH官能团的化合物,由于-OH官能团亲水,因此,其可以与阳离子表面活性剂作用,从而解离胶束中曲率小的部分。其具体可提及的实例包括但不限于乙醇、乙二醇、丙三醇、一缩二乙二醇、含羟基亲水高分子、亲水小分子中的一种或两种以上混合;优选的,考虑原料的易得以及成本,所述第二形貌控制剂选自乙醇、乙二醇中的至少一种,这主要是由于乙醇和乙二醇的结构简单,后期容易除去。The role of the second morphology-controlling agent described herein is to dissociate the less-curvature parts of the micelles, thereby converting lamellar micelles to annular micelles. Therefore, the second morphology control agent is a compound containing -OH functional group. Since the -OH functional group is hydrophilic, it can interact with the cationic surfactant to dissociate the small curvature part of the micelle. Specific examples that can be mentioned include but are not limited to ethanol, ethylene glycol, glycerol, diethylene glycol, hydroxyl-containing hydrophilic polymers, and a mixture of two or more of hydrophilic small molecules; preferably Yes, considering the availability and cost of raw materials, the second shape control agent is selected from at least one of ethanol and ethylene glycol. This is mainly because ethanol and ethylene glycol have simple structures and are easy to remove later.

二氧化硅前驱体Silica Precursor

本文中所述的二氧化硅前驱体可以通过水解、缩合等过程获得二氧化硅,其没有特别的限定,可以为本领域中的常规选择,具体可提及的实例包括但不限于硅酸钠、正硅酸甲酯、正硅酸乙酯、正硅酸丙酯、硅烷偶联剂中的一种或两种以上的混合。The silicon dioxide precursor described herein can obtain silicon dioxide through processes such as hydrolysis and condensation, which are not particularly limited and can be conventional choices in this field. Specific examples that can be mentioned include but are not limited to sodium silicate , methyl orthosilicate, ethyl orthosilicate, propyl orthosilicate, one or a mixture of two or more of silane coupling agents.

进一步方案,本发明中的反应在酸性或碱性条件下均可进行,但一般来说,由于pH值会影响二氧化硅前驱体的水解缩聚反应速率,因此,优选的,在该制备方法中,将体系调整为碱性,更优选的,其pH范围在8-11,从而获得较佳的水解缩聚反应的速率。其调节pH的步骤通过本领域中常规添加碱液的方式即可,在本发明的一个或多个实施例中,具体步骤为体系中加入有机碱或无机碱至pH为8-11后,搅拌3-24h,其中,所述有机碱具体可提及的实例包括但不限于乙二胺、三乙胺、三乙醇胺、四乙烯五胺、二乙烯三胺、三乙烯四胺、氨水、三羟甲基氨基甲烷、四羟乙基乙二胺、四羟丙基乙二胺、四乙基乙二胺、1,8-双二甲氨基奈、咪唑中的一种,所述无机碱具体可提及的实例包括但不限于氨水、氢氧化钠、氢氧化钾中的一种。In a further scheme, the reaction in the present invention can be carried out under acidic or alkaline conditions, but generally speaking, since the pH value can affect the hydrolysis and polycondensation reaction rate of the silica precursor, it is preferred that in the preparation method , adjust the system to be alkaline, more preferably, its pH range is 8-11, so as to obtain a better rate of hydrolysis polycondensation reaction. The step of adjusting the pH can be done by adding lye conventionally in the art. In one or more embodiments of the present invention, the specific steps are to add an organic base or an inorganic base to the system until the pH is 8-11, and then stir 3-24h, wherein, the specific examples of the organic base include but not limited to ethylenediamine, triethylamine, triethanolamine, tetraethylenepentamine, diethylenetriamine, triethylenetetramine, ammonia water, trihydroxy One of methylaminomethane, tetrahydroxyethylethylenediamine, tetrahydroxypropylethylenediamine, tetraethylethylenediamine, 1,8-bisdimethylaminonaphthalene, and imidazole, and the inorganic base can specifically be Examples mentioned include, but are not limited to, one of ammonia water, sodium hydroxide, and potassium hydroxide.

进一步方案,加入二氧化硅前驱体后,进行升温反应使得二氧化硅前驱体进行水解和缩合,其可以通过调整反应温度对反应速率进行调整,而具体的反应时间可根据添加的二氧化硅前驱体的量以及反应速率的快慢进行调整,在本发明的一个或多个实施例中,所述升温反应的具体步骤为:于20-85℃搅拌反应1-36h,优选的,反应温度为20-65℃,更优选的为30-50℃。In a further scheme, after adding the silicon dioxide precursor, a temperature rise reaction is carried out so that the silicon dioxide precursor is hydrolyzed and condensed, and the reaction rate can be adjusted by adjusting the reaction temperature, and the specific reaction time can be determined according to the added silicon dioxide precursor. In one or more embodiments of the present invention, the specific steps of the temperature rise reaction are: stir the reaction at 20-85°C for 1-36h, preferably, the reaction temperature is 20 -65°C, more preferably 30-50°C.

本发明第二方面提供了一种多孔二氧化硅纳米环,采用如本发明第一方面所述的制备方法制得,通过调整原料的用量和比例关系,可实现对多孔二氧化硅纳米环的形貌和尺寸的调控,在本发发明的一个或多个实施例中,所述多孔二氧化硅纳米环为内径20-5000nm、外径500nm-10μm的多孔环,即二氧化硅成环状结构,且在环上形成有多孔道结构。该纳米多孔环的形貌特殊,可广泛用于催化剂载体、药物载体、微波吸收和传感器等领域。The second aspect of the present invention provides a porous silica nanoring, which is prepared by the preparation method as described in the first aspect of the present invention. By adjusting the amount and proportion of raw materials, the porous silica nanoring can be realized. Morphology and size control, in one or more embodiments of the present invention, the porous silica nanoring is a porous ring with an inner diameter of 20-5000nm and an outer diameter of 500nm-10μm, that is, the silica is ring-shaped structure, and a multi-channel structure is formed on the ring. The nanoporous ring has a special shape and can be widely used in the fields of catalyst carrier, drug carrier, microwave absorption, sensor and the like.

下面结合具体的实施例对本发明的技术方案进行更加清楚完整的说明。The technical solutions of the present invention will be described more clearly and completely below in conjunction with specific embodiments.

实施例1Example 1

称取0.5g十六烷基三甲基溴化铵加入到200mL去离子水溶解,机械搅拌3h,形成均一的模板溶液;Weigh 0.5g cetyltrimethylammonium bromide and add it to 200mL deionized water to dissolve, and stir mechanically for 3h to form a uniform template solution;

向模板溶液中加入0.2g聚丙烯酸钠,用氨水调节体系pH=8,机械搅拌2h,充分溶解完毕后获得具有层状胶束的第一胶束溶液;Add 0.2 g of sodium polyacrylate to the template solution, adjust the pH of the system to 8 with ammonia water, stir mechanically for 2 hours, and obtain the first micellar solution with lamellar micelles after fully dissolving;

向第一胶束溶液中加入40mL乙醇搅拌10min,再加入2g正硅酸乙酯,升温到40℃后搅拌12h,获得多孔二氧化硅纳米环分散体;Add 40 mL of ethanol to the first micelle solution and stir for 10 min, then add 2 g of tetraethyl orthosilicate, heat up to 40° C. and stir for 12 h to obtain a porous silica nanoring dispersion;

将多孔二氧化硅纳米环分散体,提纯、喷雾干燥后,获得多孔二氧化硅纳米环。The porous silicon dioxide nano-ring dispersion is purified and spray-dried to obtain the porous silicon dioxide nano-ring.

实施例2Example 2

称取1.0g十六烷基三甲基氯化铵加入到200mL去离子水溶解,机械搅拌3h,形成均一的模板溶液;Weigh 1.0g of cetyltrimethylammonium chloride and add it to 200mL of deionized water to dissolve, and mechanically stir for 3h to form a uniform template solution;

向模板溶液中加入0.5g十二烷基硫酸钠,用三乙胺调节pH=9,机械搅拌2h,充分溶解完毕后获得具有层状胶束的第一胶束溶液;Add 0.5 g of sodium lauryl sulfate to the template solution, adjust the pH to 9 with triethylamine, stir mechanically for 2 hours, and obtain the first micellar solution with lamellar micelles after fully dissolving;

向第一胶束溶液中加入40mL乙二醇搅拌5min,再加入4g正硅酸甲酯,升温到20℃后搅拌12h,获得多孔二氧化硅纳米环分散体;Add 40mL of ethylene glycol to the first micellar solution and stir for 5min, then add 4g of methyl orthosilicate, heat up to 20°C and stir for 12h to obtain a porous silica nanoring dispersion;

将多孔二氧化硅纳米环分散体,提纯、喷雾干燥后,获得多孔二氧化硅纳米环。The porous silicon dioxide nano-ring dispersion is purified and spray-dried to obtain the porous silicon dioxide nano-ring.

实施例3Example 3

称取1.5g十二烷基二甲基苄基氯化铵加入到200mL去离子水溶解,机械搅拌3h,形成均一的模板溶液;Weigh 1.5g of dodecyldimethylbenzyl ammonium chloride and add it to 200mL of deionized water to dissolve, and mechanically stir for 3h to form a uniform template solution;

向模板溶液中加入1.0g阴离子聚丙烯酰胺,用氨水调节pH=9,机械搅拌2h,充分溶解完毕后获得具有层状胶束的第一胶束溶液;Add 1.0 g of anionic polyacrylamide to the template solution, adjust the pH to 9 with ammonia water, stir mechanically for 2 hours, and obtain the first micellar solution with lamellar micelles after fully dissolving;

向第一胶束溶液中加入20mL乙醇搅拌10min,再加入6g硅酸钠,升温到60℃后搅拌12h,获得多孔二氧化硅纳米环分散体;Add 20mL of ethanol to the first micelle solution and stir for 10min, then add 6g of sodium silicate, heat up to 60°C and stir for 12h to obtain a porous silica nanoring dispersion;

将多孔二氧化硅纳米环分散体,提纯、冷冻干燥后,获得多孔二氧化硅纳米环。The porous silicon dioxide nano ring dispersion is purified and freeze-dried to obtain the porous silicon dioxide nano ring.

实施例4Example 4

称取1.0g十六烷基三甲基氯化铵加入到200mL蒸馏水溶解,机械搅拌3h,形成均一的模板溶液;Weigh 1.0g of cetyltrimethylammonium chloride and add it to 200mL of distilled water to dissolve, and mechanically stir for 3h to form a uniform template solution;

向模板溶液中加入2.5g十二烷基硫酸钠,用三乙醇胺调节pH=10,机械搅拌2h,充分溶解完毕后获得具有层状胶束的第一胶束溶液;Add 2.5 g of sodium lauryl sulfate to the template solution, adjust the pH to 10 with triethanolamine, stir mechanically for 2 hours, and obtain the first micellar solution with lamellar micelles after fully dissolving;

向第一胶束溶液中加入60mL乙二醇搅拌10min,再加入10g 3-氨丙基三乙氧基硅烷,升温到65℃后搅拌1h,获得多孔二氧化硅纳米环分散体;Add 60 mL of ethylene glycol to the first micelle solution and stir for 10 min, then add 10 g of 3-aminopropyltriethoxysilane, heat up to 65°C and stir for 1 h to obtain a porous silica nanoring dispersion;

将得到的多孔二氧化硅纳米环分散体,提纯、喷雾干燥后,获得多孔二氧化硅纳米环。The obtained porous silicon dioxide nano ring dispersion is purified and spray-dried to obtain the porous silicon dioxide nano ring.

实施例5Example 5

称取5.0g十二烷基三甲基氯化铵加入到200mL去离子水溶解,机械搅拌3h,形成均一的模板溶液;Weigh 5.0g of dodecyltrimethylammonium chloride and add to 200mL of deionized water to dissolve, and mechanically stir for 3h to form a uniform template solution;

向模板溶液中加入2.0g聚苯乙烯磺酸钠,用氢氧化钠调节pH=11,机械搅拌2h,充分溶解完毕后获得具有层状胶束的第一胶束溶液;Add 2.0 g of sodium polystyrene sulfonate to the template solution, adjust the pH to 11 with sodium hydroxide, stir mechanically for 2 hours, and obtain the first micellar solution with lamellar micelles after fully dissolving;

向第一胶束溶液中加入5mL乙醇搅拌10min,再加入20g正硅酸乙酯,升温到60℃后搅拌36h,得到多孔二氧化硅纳米环分散体;Add 5 mL of ethanol to the first micelle solution and stir for 10 min, then add 20 g of tetraethyl orthosilicate, heat up to 60° C. and stir for 36 h to obtain a porous silica nanoring dispersion;

将多孔二氧化硅纳米环分散体,提纯、喷雾干燥后,获得多孔二氧化硅纳米环。The porous silica nano-ring dispersion is purified and spray-dried to obtain the porous silica nano-ring.

实施例6Example 6

称取5.0g十二烷基三甲基氯化铵加入到200mL去离子水溶解,机械搅拌3h,形成均一的模板溶液;Weigh 5.0g of dodecyltrimethylammonium chloride and add to 200mL of deionized water to dissolve, and mechanically stir for 3h to form a uniform template solution;

向模板溶液中加入2.0g聚苯乙烯磺酸钠,用氢氧化钠调节pH=11,机械搅拌2h,充分溶解完毕后获得具有层状胶束的第一胶束溶液;Add 2.0 g of sodium polystyrene sulfonate to the template solution, adjust the pH to 11 with sodium hydroxide, stir mechanically for 2 hours, and obtain the first micellar solution with lamellar micelles after fully dissolving;

向第一胶束溶液中加入80ml乙醇搅拌1h,再加入20g正硅酸乙酯,升温到40℃后搅拌10h,获得多孔二氧化硅纳米环分散体;Add 80ml of ethanol to the first micelle solution and stir for 1h, then add 20g of ethyl orthosilicate, heat up to 40°C and stir for 10h to obtain a porous silica nanoring dispersion;

将多孔二氧化硅纳米环分散体,提纯、喷雾干燥后,获得多孔二氧化硅纳米环。The porous silicon dioxide nano-ring dispersion is purified and spray-dried to obtain the porous silicon dioxide nano-ring.

测试例test case

将实施例1-6中制得的多孔二氧化硅纳米环分别进行相关表征,测试结果见说明书附图。The porous silica nanorings prepared in Examples 1-6 were respectively characterized, and the test results are shown in the accompanying drawings.

其中,图2是实施例1中的多孔二氧化硅纳米环的TEM图,从图中可以看出,二氧化硅为多孔结构,形貌呈环状,纳米环的环宽约为70nm;Wherein, Fig. 2 is the TEM picture of the porous silica nanoring in embodiment 1, as can be seen from the figure, silica is a porous structure, and the morphology is ring-shaped, and the ring width of the nanoring is about 70nm;

图3是实施例1中的多孔二氧化硅纳米环的SEM图,从图中可以看出,二氧化硅形貌呈环状;Fig. 3 is the SEM picture of the porous silica nano-ring in embodiment 1, as can be seen from the figure, the silica morphology is ring-shaped;

图4是实施例1中的多孔二氧化硅纳米环粉体的红外光谱图,其中,3419cm-1处的吸收峰是-OH伸缩振动峰和弯曲振动峰,1063cm-1处的强吸收峰是由Si-O-Si的振动引起的,归属于多孔二氧化硅纳米环的特征吸收峰,说明本实施例成功合成获得了纳米多孔二氧化硅纳米环。Fig. 4 is the infrared spectrogram of the porous silica nanoring powder in embodiment 1, wherein, the absorption peak at 3419cm -1 place is -OH stretching vibration peak and bending vibration peak, the strong absorption peak at 1063cm -1 place is The characteristic absorption peak attributed to the porous silica nanoring caused by the vibration of Si-O-Si indicates that the nanoporous silica nanoring was successfully synthesized in this example.

图5为实施例2中的多孔二氧化硅纳米环的粒径分布图,由于纳米环的形貌特殊,从结果中可以得到多孔二氧化硅纳米环的环宽及分布情况的信息,由图中可以看出,多孔二氧化硅纳米环的环宽峰值在72nm处,平均环宽为75nm左右;Fig. 5 is the particle size distribution figure of the porous silica nano-ring in embodiment 2, because the appearance of nano-ring is special, can obtain the ring width and the information of distribution situation of porous silica nano-ring from the result, by Fig. It can be seen that the ring width peak of the porous silica nanoring is at 72nm, and the average ring width is about 75nm;

图6为实施例2中的多孔二氧化硅纳米环的SEM图,从图中可以看出,二氧化硅形貌呈环状。FIG. 6 is an SEM image of the porous silica nanoring in Example 2. It can be seen from the figure that the silica has a ring shape.

图7、图8、图9分为实施例3、实施例4和实施例5中的多孔二氧化硅纳米环的SEM图,从图中可以看出,二氧化硅形貌皆呈环状,并且环的形状特征也有所差异。Fig. 7, Fig. 8, Fig. 9 are divided into the SEM figure of the porous silica nanoring in embodiment 3, embodiment 4 and embodiment 5, as can be seen from the figure, silica morphology is all ring-shaped, And the shape characteristics of the rings are also different.

其他平行实施方案Other parallel implementations

实施例7Example 7

本实施例采用同实施例1相同的实施方式,不同之处在于:阳离子表面活性剂为乳化性能更好的十八烷基二甲基苄基氯化铵。This example adopts the same implementation method as Example 1, except that the cationic surfactant is octadecyldimethylbenzyl ammonium chloride with better emulsifying properties.

实施例8Example 8

称取1g双十八烷基二甲基溴化铵加入到200mL去离子水溶解,机械搅拌3h,形成均一的模板溶液;Weigh 1g of dioctadecyldimethylammonium bromide and add it to 200mL of deionized water to dissolve, and stir mechanically for 3h to form a uniform template solution;

向模板溶液中加入0.2g聚丙烯酸钠,用氨水调节体系pH=8,机械搅拌2h,充分溶解完毕后获得具有层状胶束的第一胶束溶液;Add 0.2 g of sodium polyacrylate to the template solution, adjust the pH of the system to 8 with ammonia water, stir mechanically for 2 hours, and obtain the first micellar solution with lamellar micelles after fully dissolving;

向第一胶束溶液中加入40mL乙醇搅拌10min,再加入2g正硅酸乙酯,升温到40℃后搅拌12h,获得多孔二氧化硅纳米环分散体;Add 40 mL of ethanol to the first micelle solution and stir for 10 min, then add 2 g of tetraethyl orthosilicate, heat up to 40° C. and stir for 12 h to obtain a porous silica nanoring dispersion;

将多孔二氧化硅纳米环分散体,提纯、喷雾干燥后,获得多孔二氧化硅纳米环。The porous silicon dioxide nano-ring dispersion is purified and spray-dried to obtain the porous silicon dioxide nano-ring.

实施例9Example 9

称取0.5g十六烷基三甲基溴化铵加入到200mL蒸馏水溶解,机械搅拌3h,形成均一的模板溶液;Weigh 0.5g of cetyltrimethylammonium bromide and add it to 200mL of distilled water to dissolve, and mechanically stir for 3h to form a uniform template solution;

向模板溶液中加入2g硬脂酸钠,用三乙醇胺调节pH=10,机械搅拌2h,充分溶解完毕后获得具有层状胶束的第一胶束溶液;Add 2 g of sodium stearate to the template solution, adjust the pH to 10 with triethanolamine, stir mechanically for 2 hours, and obtain the first micellar solution with lamellar micelles after fully dissolving;

向第一胶束溶液中加入60mL乙二醇搅拌10min,再加入10g 3-氨丙基三乙氧基硅烷,升温到65℃后搅拌1h,获得多孔二氧化硅纳米环分散体;Add 60 mL of ethylene glycol to the first micelle solution and stir for 10 min, then add 10 g of 3-aminopropyltriethoxysilane, heat up to 65°C and stir for 1 h to obtain a porous silica nanoring dispersion;

将得到的多孔二氧化硅纳米环分散体,提纯、喷雾干燥后,获得多孔二氧化硅纳米环。The obtained porous silicon dioxide nano ring dispersion is purified and spray-dried to obtain the porous silicon dioxide nano ring.

实施例10Example 10

本实施例采用同实施例3相同的实施方式,不同之处在于:第一形貌控制剂为乳化性能更好的十二烷基苯磺钠。This example adopts the same implementation as Example 3, except that the first shape control agent is sodium dodecylbenzene sulfonate with better emulsifying performance.

实施例11Example 11

本实施例采用同实施例1相同的实施方式,不同之处在于:第一形貌控制剂为硫酸钠。This example adopts the same implementation method as Example 1, except that the first shape control agent is sodium sulfate.

实施例12Example 12

本实施例采用同实施例3相同的实施方式,不同之处在于:第一形貌控制剂为氯化铵。This example adopts the same implementation method as Example 3, except that the first shape control agent is ammonium chloride.

实施例13Example 13

本实施例采用同实施例1相同的实施方式,不同之处在于:第一形貌控制剂为香草酸。This example adopts the same implementation method as Example 1, except that the first shape control agent is vanillic acid.

实施例14Example 14

本实施例采用同实施例1相同的实施方式,不同之处在于:第一形貌控制剂为柠檬酸。This example adopts the same implementation method as Example 1, except that the first shape control agent is citric acid.

实施例15Example 15

本实施例采用同实施例1相同的实施方式,不同之处在于:第二形貌控制剂为丁醇。This example adopts the same implementation method as Example 1, except that the second shape control agent is butanol.

实施例16Example 16

本实施例采用同实施例4相同的实施方式,不同之处在于:第二形貌控制剂为丙三醇。This example adopts the same implementation method as Example 4, except that the second shape control agent is glycerol.

实施例17Example 17

本实施例采用同实施例6相同的实施方式,不同之处在于:第二形貌控制剂为一缩乙二醇。This example adopts the same implementation method as Example 6, except that the second shape control agent is ethylene glycol.

实施例18Example 18

本实施例采用同实施例1相同的实施方式,不同之处在于:第二形貌控制剂为异丙醇。This example adopts the same implementation method as Example 1, except that the second shape control agent is isopropanol.

实施例19Example 19

本实施例采用同实施例1相同的实施方式,不同之处在于:第二形貌控制剂为羟甲基纤维素。This example adopts the same implementation method as Example 1, except that the second shape control agent is hydroxymethyl cellulose.

实施例20Example 20

本实施例采用同实施例1相同的实施方式,不同之处在于:二氧化硅前驱体为甲基三乙氧基硅烷。This example adopts the same implementation method as Example 1, except that the silicon dioxide precursor is methyltriethoxysilane.

实施例21Example 21

本实施例采用同实施例1相同的实施方式,不同之处在于:二氧化硅前驱体为双-[γ-(三乙氧基硅)丙基]-二硫化物。This example adopts the same implementation method as Example 1, except that the silicon dioxide precursor is bis-[γ-(triethoxysilyl)propyl]-disulfide.

实施例22Example 22

本实施例采用同实施例1相同的实施方式,不同之处在于:二氧化硅前驱体为1,2-二(三乙氧基硅基)乙烷。This example adopts the same implementation method as Example 1, except that the silicon dioxide precursor is 1,2-bis(triethoxysilyl)ethane.

实施例23Example 23

本实施例采用同实施例2相同的实施方式,不同之处在于,升温反应的温度为20℃,反应时间为24h。This example adopts the same implementation method as Example 2, except that the temperature of the heating reaction is 20° C., and the reaction time is 24 hours.

实施例24Example 24

本实施例采用同实施例3相同的实施方式,不同之处在于,升温反应的温度为30℃,反应时间为6h。This example adopts the same implementation method as Example 3, except that the temperature of the heating reaction is 30° C., and the reaction time is 6 hours.

实施例25Example 25

本实施例采用同实施例4相同的实施方式,不同之处在于,升温反应的温度为50℃,反应时间为6h。This example adopts the same implementation method as Example 4, except that the temperature of the heating reaction is 50° C., and the reaction time is 6 hours.

实施例26Example 26

本实施例采用同实施例2相同的实施方式,不同之处在于,升温反应的温度为75℃,反应时间为6h。This example adopts the same implementation method as Example 2, except that the temperature of the heating reaction is 75° C., and the reaction time is 6 hours.

实施例27Example 27

本实施例采用同实施例6相同的实施方式,不同之处在于,升温反应的温度为85℃,反应时间为3h。This example adopts the same implementation method as Example 6, except that the temperature of the heating reaction is 85° C., and the reaction time is 3 hours.

经测试,实施例7-27均可制得具有纳米环结构的多孔二氧化硅。After testing, all of Examples 7-27 can produce porous silica with a nano-ring structure.

以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-mentioned embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the technical features in the above-mentioned embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, should be considered as within the scope of this specification.

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the patent scope of the invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.

Claims (11)

1.一种多孔二氧化硅纳米环的制备方法,其特征在于,包括下列步骤:1. a preparation method of porous silicon dioxide nano ring, is characterized in that, comprises the following steps: 制备模板溶液,所述模板溶液为阳离子表面活性剂的水溶液;Prepare a template solution, the template solution is an aqueous solution of cationic surfactant; 提供第一形貌控制剂,将其与所述模板溶液充分混合,并调整体系pH值到2-13,获得具有层状胶束的第一胶束溶液,所述第一形貌控制剂的化学结构中至少包括一个能够与阳离子表面活性剂相互作用,以形成层状胶束化合物的官能团;Provide the first morphology control agent, fully mix it with the template solution, and adjust the pH value of the system to 2-13 to obtain the first micellar solution with lamellar micelles, the first morphology control agent The chemical structure includes at least one functional group capable of interacting with cationic surfactants to form lamellar micellar compounds; 提供第二形貌控制剂,将其与所述第一胶束溶液充分混合,获得具有环状胶束的第二胶束溶液,所述第二形貌控制剂为含有-OH官能团的亲水化合物;Provide a second shape control agent, fully mix it with the first micellar solution to obtain a second micellar solution with ring micelles, the second shape control agent is a hydrophilic compound containing -OH functional group compound; 提供二氧化硅前驱体,将其与所述第二胶束溶液混合后,升温反应,获得多孔二氧化硅纳米环分散体;Provide a silicon dioxide precursor, mix it with the second micellar solution, and heat up to react to obtain a porous silicon dioxide nanoring dispersion; 纯化所述多孔二氧化硅纳米环分散体,获得多孔二氧化硅纳米环。The porous silica nanoring dispersion is purified to obtain porous silica nanorings. 2.如权利要求1所述的制备方法,其特征在于,所述模板溶液中,阳离子表面活性剂的添加量为0.25-2.5wt%;2. preparation method as claimed in claim 1, is characterized in that, in described template solution, the addition of cationic surfactant is 0.25-2.5wt%; 所述阳离子表面活性剂选自阳离子乳化剂。The cationic surfactant is selected from cationic emulsifiers. 3.如权利要求2所述的制备方法,其特征在于,所述阳离子乳化剂选自烷基季铵盐、含杂原子的季铵盐、含苯环的季铵盐、胺盐型阳离子乳化剂中的一种。3. preparation method as claimed in claim 2 is characterized in that, described cationic emulsifier is selected from alkyl quaternary ammonium salt, the quaternary ammonium salt containing heteroatom, the quaternary ammonium salt containing benzene ring, amine salt type cationic emulsification one of the agents. 4.如权利要求1所述的制备方法,其特征在于,所述第一形貌控制剂选自水溶性盐、水溶性有机酸、阴离子型乳化剂、阴离子型聚合物中的一种,其中,所述水溶性盐含有ClO4 -、Cl-、NO3 -、SO4 2-或SO3 2-,所述水溶性有机酸含有羧酸、磺酸、亚磺酸或硫羧酸官能团。4. The preparation method according to claim 1, wherein the first shape control agent is selected from one of water-soluble salts, water-soluble organic acids, anionic emulsifiers, and anionic polymers, wherein , the water-soluble salt contains ClO 4 , Cl , NO 3 , SO 4 2- or SO 3 2- , and the water-soluble organic acid contains carboxylic acid, sulfonic acid, sulfinic acid or thiocarboxylic acid functional group. 5.如权利要求4所述的制备方法,其特征在于,所述阴离子型乳化剂选自羧酸盐型、磺酸盐型、硫酸盐型中的一种;5. preparation method as claimed in claim 4, is characterized in that, described anionic emulsifier is selected from the one in carboxylate type, sulfonate type, sulfate type; 所述阴离子型聚合物选自聚丙烯酸钠、聚甲基丙烯酸钠、聚苯乙烯磺酸钠、阴离子型水性聚氨酯、阴离子型聚丙烯酰胺中的一种。The anionic polymer is selected from one of sodium polyacrylate, sodium polymethacrylate, sodium polystyrene sulfonate, anionic water-based polyurethane, and anionic polyacrylamide. 6.如权利要求1所述的制备方法,其特征在于,所述体系的pH范围在8-11。6. The preparation method according to claim 1, characterized in that, the pH range of the system is 8-11. 7.如权利要求1所述的制备方法,其特征在于,所述第二形貌控制剂为醇类物质,其用量为3-30wt%;7. The preparation method according to claim 1, wherein the second shape control agent is an alcohol substance, and its consumption is 3-30wt%; 所述醇类物质选自含羟基的亲水高分子、含羟基的亲水小分子中的至少一种。The alcohols are selected from at least one of hydroxyl-containing hydrophilic macromolecules and hydroxyl-containing hydrophilic small molecules. 8.如权利要求7所述的制备方法,其特征在于,所述含羟基的亲水小分子选自乙醇、乙二醇、丙三醇、一缩二乙二醇中的至少一种。8. The preparation method according to claim 7, characterized in that, said hydroxyl-containing hydrophilic small molecule is selected from at least one of ethanol, ethylene glycol, glycerol, and diethylene glycol. 9.如权利要求1所述的制备方法,其特征在于,所述二氧化硅前驱体选自硅酸钠、正硅酸甲酯、正硅酸乙酯、正硅酸丙酯、硅烷偶联剂中的一种或两种以上的混合。9. The preparation method according to claim 1, wherein the silica precursor is selected from sodium silicate, methyl orthosilicate, ethyl orthosilicate, propyl orthosilicate, silane coupling One or a mixture of two or more of the agents. 10.如权利要求1所述的制备方法,其特征在于,所述升温反应的具体步骤为:于20-85℃搅拌反应1-36h。10. The preparation method according to claim 1, characterized in that, the specific step of the heating reaction is: stirring and reacting at 20-85°C for 1-36h. 11.一种多孔二氧化硅纳米环,其特征在于,采用如权利要求1-10任一项所述的制备方法制得,所述多孔二氧化硅纳米环为内径20-5000nm、外径500nm-10μm的多孔环。11. A porous silica nanoring, characterized in that it is prepared by the preparation method according to any one of claims 1-10, and the porous silica nanoring has an inner diameter of 20-5000nm and an outer diameter of 500nm - 10 μm porous ring.
CN202111181750.XA 2021-10-11 2021-10-11 A kind of porous silicon dioxide nano ring and preparation method thereof Active CN113753904B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111181750.XA CN113753904B (en) 2021-10-11 2021-10-11 A kind of porous silicon dioxide nano ring and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111181750.XA CN113753904B (en) 2021-10-11 2021-10-11 A kind of porous silicon dioxide nano ring and preparation method thereof

Publications (2)

Publication Number Publication Date
CN113753904A CN113753904A (en) 2021-12-07
CN113753904B true CN113753904B (en) 2023-02-28

Family

ID=78799104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111181750.XA Active CN113753904B (en) 2021-10-11 2021-10-11 A kind of porous silicon dioxide nano ring and preparation method thereof

Country Status (1)

Country Link
CN (1) CN113753904B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108854871B (en) * 2017-05-11 2021-06-25 中国科学院化学研究所 A kind of cyclic colloid and preparation method thereof
CN108794774B (en) * 2018-06-04 2020-11-17 上海科技大学 Method for preparing nano porous material based on cyclic micelle multistage assembly
CN109019617A (en) * 2018-10-16 2018-12-18 安徽大学 Porous silicon dioxide nanosheet and preparation method thereof
US20220175978A1 (en) * 2019-04-15 2022-06-09 Cornell University Functionalized silica nanorings, methods of making same, and uses thereof
CN112296349B (en) * 2020-09-24 2022-04-01 河北工程大学 Preparation method of finger-ring-shaped Au nano ring
CN112225223B (en) * 2020-10-16 2023-07-25 北京化工大学 A kind of Si-O-C three-dimensional cross-linked structure nano ring, preparation method and application thereof

Also Published As

Publication number Publication date
CN113753904A (en) 2021-12-07

Similar Documents

Publication Publication Date Title
CN108190896B (en) Preparation method of ordered mesoporous nano-silica microspheres
CN114106276A (en) Preparation method of shape-controllable covalent organic framework material
CN114917847B (en) Silica microsphere and preparation method and application thereof
CN110498946A (en) Preparation method of porous polydopamine nanoparticles with controllable morphology
CN107955180A (en) A kind of method based on absorption driving force controllable preparation nuclear shell structure nano compound
CN109019617A (en) Porous silicon dioxide nanosheet and preparation method thereof
CN104909378A (en) Preparation method of monodisperse porous silicon dioxide microspheres
CN101348254B (en) A kind of preparation method of hollow nano silicon oxide ball
CN105031664A (en) Triple-hybrid yolk-shell structured mesoporous organic silica and preparation method thereof
CN101205423A (en) A kind of preparation method of hydrophobic nano silicon dioxide
CN114436272A (en) A kind of mesoporous silica nanosheet with high specific surface area and preparation method thereof
JP6256930B2 (en) Method for producing nano hollow particles comprising silica shell
CN113753904B (en) A kind of porous silicon dioxide nano ring and preparation method thereof
CN110775981B (en) Silica microspheres and manufacturing method thereof
CN105110343A (en) Method for rapid preparation of monodisperse ordered mesoporous silicon oxide hollow sphere
CN103896284A (en) Monodisperse silica nanoparticles and preparation method thereof
CN101792149A (en) Spherical silicon dioxide hollow material and preparation method thereof
CN105236417A (en) Spherical mesoporous silica with controllable particle size and preparation method of spherical mesoporous silica
CN105273216A (en) Three-dimensional wrinkle polylactic acid microballoons and preparation method and uses thereof
CN102806071A (en) Material for hollow nano organosilicon sphere and preparation method of material
CN110104654A (en) A kind of Janus type porous silica composite nanoparticle and preparation method thereof
CN113582188A (en) Preparation method of nano core-shell silica microspheres
CN102583404A (en) Mesoporous silicon dioxide nanometer particle and preparation method
CN104707653B (en) A kind of novel polystyrene sulfonate-oxidation silicon hybridization solid acid catalyst and preparation method
CN108190866B (en) A simple method for controlling the synthesis of sea urchin-like graphene balls by a water-in-oil emulsion method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant