CN113755978B - An automatic joint robot compliance device based on tension feedback - Google Patents
An automatic joint robot compliance device based on tension feedback Download PDFInfo
- Publication number
- CN113755978B CN113755978B CN202111097787.4A CN202111097787A CN113755978B CN 113755978 B CN113755978 B CN 113755978B CN 202111097787 A CN202111097787 A CN 202111097787A CN 113755978 B CN113755978 B CN 113755978B
- Authority
- CN
- China
- Prior art keywords
- robot
- yarn
- tension
- control
- piecing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 claims abstract description 44
- 230000008569 process Effects 0.000 claims abstract description 38
- 230000001133 acceleration Effects 0.000 claims description 13
- 238000007378 ring spinning Methods 0.000 claims description 13
- 230000007613 environmental effect Effects 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 9
- 238000004088 simulation Methods 0.000 claims description 9
- 238000013016 damping Methods 0.000 claims description 7
- 238000005070 sampling Methods 0.000 claims description 6
- 230000009916 joint effect Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 2
- 230000001276 controlling effect Effects 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 229920000742 Cotton Polymers 0.000 abstract description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009125 negative feedback regulation Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H15/00—Piecing arrangements ; Automatic end-finding, e.g. by suction and reverse package rotation; Devices for temporarily storing yarn during piecing
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H13/00—Other common constructional features, details or accessories
- D01H13/10—Tension devices
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Manipulator (AREA)
Abstract
本发明涉及一种基于张力反馈的自动接头机器人柔顺控制装置包括机器人、引纱装置、张力传感器及工控机,工控机运行有基于力跟踪导纳控制模型以及PID控制器实现的基于纱线张力反馈的机器人柔顺控制算法。本发明采用力跟踪导纳控制器建立机器人引纱接头时纱线张力与机器人运动学参数之间的动态关系,同时加入PID控制来提高力跟踪性能,使得在整个接头过程中纱线上的张力保持在期望张力值附近。本发明可有效防止细纱自动接头过程中纱线的断裂,提高接头成功率,同时为低强力高支纯棉纱的自动接头提供解了决方案。
The invention relates to an automatic piecing robot compliance control device based on tension feedback, comprising a robot, a yarn drawing device, a tension sensor and an industrial computer. The industrial computer runs a force tracking admittance control model and a PID controller based on yarn tension feedback. The robot compliance control algorithm. The present invention adopts the force tracking admittance controller to establish the dynamic relationship between the yarn tension and the robot kinematic parameters during the robot yarn piecing, and at the same time adds PID control to improve the force tracking performance, so that the tension on the yarn during the whole piecing process is improved. Keep it close to the desired tension value. The invention can effectively prevent yarn breakage during the automatic piecing of spun yarns, improve the success rate of piecing, and at the same time provides a solution for automatic piecing of low-strength and high-count pure cotton yarns.
Description
技术领域technical field
本发明涉及一种基于纱线张力反馈的自动接头机器人柔顺控制装置,属于细纱自动接头装置技术领域。The invention relates to an automatic piecing robot compliance control device based on yarn tension feedback, belonging to the technical field of spun yarn automatic piecing devices.
背景技术Background technique
传统环锭纺具有使用原料范围广、产品使用性好、可纺支数范围广及纱线强力好等优势,占全国纱线总产量的80%以上,而环锭纺细纱的断纱至今仍需要挡车工人手动完成接头,环锭纺细纱自动接头一直是国内外纺纱界追求的目标。经过纺纱界对自动接头机器人的需求和技术发展的驱动,国内外都已有较成熟的自动接头技术与装置。Traditional ring spinning has the advantages of a wide range of raw materials, good product usability, wide range of spinnable counts and good yarn strength, accounting for more than 80% of the total yarn output in the country. It is necessary to manually complete the piecing by the workers in the car, and the automatic piecing of ring-spun spun yarn has always been the goal pursued by the domestic and foreign spinning circles. Driven by the demand for automatic piecing robots in the spinning industry and the development of technology, there are relatively mature automatic piecing technologies and devices at home and abroad.
由于在断纱纱管上找头复杂,现有的接头方法主要是采用辅助纱引纱接头,例如中国专利CN112111817A中设计的“一种环锭细纱机自动接头方法”、中国专利CN105019077A中设计的“环锭细纱断头自动智能接头方法与装置”、中国专利CN113174668A中设计的“一种环锭纺细纱机自动接头装置及方法”等均使用备用纱卷绕在断纱纱管上,然后通过引纱装置牵引备用纱穿钢丝圈、绕气圈环、导纱钩并喂入前罗拉,而现有接头方法与装置普遍存在的问题有:Due to the complexity of finding the end on the broken yarn bobbin, the existing splicing methods mainly use auxiliary yarn feeding splices. "Automatic and intelligent piecing method and device for ring spinning yarn breakage", "an automatic piecing device and method for ring spinning spinning frame" designed in Chinese patent CN113174668A, etc., all use spare yarn to be wound on the broken yarn bobbin, and then pass through The yarn take-off device pulls the spare yarn through the traveler, the balloon ring, the yarn guide hook and feeds the front roller, and the common problems of the existing piecing methods and devices are:
(1)备用纱通过长管连接到引纱装置,在引纱过程中可能出现较大的摩擦阻力,而现有引纱装置的运动控制均为开环的位置控制,在没有张力反馈控制的情况下容易将纱线引断导致接头失败。(1) The spare yarn is connected to the yarn drawing device through a long tube, and a large frictional resistance may occur during the yarn drawing process. However, the motion control of the existing yarn drawing device is an open-loop position control. In this case, it is easy to break the yarn and cause the joint to fail.
(2)对于高支纯棉纱的自动接头,由于纱线强力较低导致在引纱过程中极易出现纱线张力大于强力而断裂的问题,现有自动接头技术和装置还没有解决此类问题的办法。(2) For the automatic piecing of high-count pure cotton yarn, the problem of yarn breakage due to the yarn tension being greater than the strength is very likely to occur during the yarn drawing process due to the low yarn strength. The existing automatic piecing technologies and devices have not solved this kind of problem. solution to the problem.
发明内容SUMMARY OF THE INVENTION
本发明的目的是:防止细纱自动接头过程中纱线的断裂,有效的提高接头成功率;同时为高支纯棉纱的自动接头提供解决方案。The purpose of the invention is to prevent the yarn breakage during the automatic piecing of spun yarns, effectively improve the success rate of piecing, and to provide a solution for the automatic piecing of high-count pure cotton yarns.
为了达到上述目的,本发明的技术方案是提供了一种基于张力反馈的自动接头机器人柔顺控制装置,其特征在于,包括机器人,机器人的末端设有引纱装置,引纱装置末端设有张力传感器,纱线穿过引纱装置并由其持握,机器人通过引纱装置牵引纱线完成整个环锭纺细纱自动接头工作;在整个环锭纺细纱自动接头过程中,通过张力传感器实时获取纱线的实际张力,并将其上传给工控机,工控机运行有基于力跟踪导纳控制模型以及PID控制器实现的基于纱线张力反馈的机器人柔顺控制算法,通过机器人柔顺控制算法建立了机器人引纱接头时,纱线的实际张力与机器人的运动学参数之间的动态关系,使得在整个环锭纺细纱自动接头过程中,纱线上的张力保持在期望张力值附近,其中:In order to achieve the above purpose, the technical solution of the present invention is to provide an automatic piecing robot compliance control device based on tension feedback, which is characterized in that it includes a robot, the end of the robot is provided with a yarn feeding device, and the end of the yarn feeding device is provided with a tension sensor , the yarn passes through the yarn feeding device and is held by it, and the robot pulls the yarn through the yarn feeding device to complete the automatic piecing of the ring spinning spun yarn; during the entire automatic piecing process of the ring spinning spun yarn, the yarn is obtained in real time through the tension sensor The actual tension is uploaded to the industrial computer. The industrial computer runs the robot compliance control algorithm based on the yarn tension feedback based on the force tracking admittance control model and the PID controller. The robot yarn delivery is established through the robot compliance control algorithm. During piecing, the dynamic relationship between the actual tension of the yarn and the kinematic parameters of the robot keeps the tension on the yarn close to the desired tension value during the entire automatic piecing process of the ring-spun spun yarn, where:
工控机接收到实际张力后,机器人柔顺控制算法采用力跟踪导纳控制模型获得机器人在笛卡尔空间的运动学参数,使用机器人逆运动学算法将该运动学参数转换为机器人的各个关节角;工控机将各个关节角发送给机器人,使得机器人运动到指定位置,完成机器人的运动控制,从而间接控制接头过程中的纱线张力保持在期望张力值附近,防止接头过程中纱线断裂导致的接头失败;在此过程中,机器人柔顺控制算法引入PID控制器来调节力跟踪导纳控制模型在环境变化时的动态和稳态张力跟踪性能。After the industrial computer receives the actual tension, the robot compliance control algorithm uses the force tracking admittance control model to obtain the kinematic parameters of the robot in the Cartesian space, and uses the robot inverse kinematics algorithm to convert the kinematic parameters into each joint angle of the robot; industrial control The machine sends each joint angle to the robot, so that the robot moves to the specified position and completes the motion control of the robot, thereby indirectly controlling the yarn tension during the piecing process to keep the desired tension value near the desired tension value, preventing the piecing failure caused by the yarn breakage during the piecing process. In this process, the robot compliance control algorithm introduces a PID controller to adjust the dynamic and steady-state tension tracking performance of the force tracking admittance control model when the environment changes.
优选地,所述机器人的运动学参数包括机器人末端的位姿、速度和加速度,则所述力跟踪导纳控制模型如下式(1)所示:Preferably, the kinematic parameters of the robot include the pose, velocity and acceleration of the robot end, then the force tracking admittance control model is shown in the following formula (1):
式(1)中,Md、Bd、Kd是预先确定的期望机器人惯性、期望阻尼和期望刚度矩阵,期望刚度矩阵的维数取决于机器人的自由度;Xd(t)、代表机器人完成接头动作的期望轨迹的位姿、速度、加速度;X(t)、代表机器人的实际运动位姿、速度、加速度;Fd(t)代表接头过程中的期望张力;Fe(t)代表接头过程中通过张力传感器测得的实际张力;In formula (1), M d , B d , K d are the predetermined expected robot inertia, expected damping and expected stiffness matrix, and the dimension of the expected stiffness matrix depends on the degree of freedom of the robot; X d (t), The pose, velocity, and acceleration representing the desired trajectory of the robot to complete the joint action; X(t), Represents the actual motion pose, velocity, and acceleration of the robot; F d (t) represents the expected tension in the joint process; F e (t) represents the actual tension measured by the tension sensor in the joint process;
为了便于在实际基于采样的控制系统中应用基于纱线张力反馈的机器人柔顺控制算法,将式(1)的微分方程写成如下式(2)所示的差分方程的形式In order to facilitate the application of the robot compliance control algorithm based on yarn tension feedback in the actual sampling-based control system, the differential equation of equation (1) is written in the form of the differential equation shown in equation (2) below
式(2)中,nT表示第n个控制周期,n=1,2,3…,T为采样频率,从而得到第n个控制周期的机器人接头过程中的加速度第n+1个控制周期的机器人接头过程中的速度以及第n+1个控制周期的机器人接头过程中的位姿X((n+1)T)。In formula (2), nT represents the nth control cycle, n=1, 2, 3..., T is the sampling frequency, so as to obtain the acceleration during the nth control cycle of the robot joint process Velocity during robot jointing in the n+1th control cycle And the pose X((n+1)T) during the robot joint process in the n+1th control cycle.
优选地,在所述力跟踪导纳控制模型达到稳态时,均为0,此时通过式(1)求得所述力跟踪导纳控制模型的参数Kd,再根据二阶系统的动态特性与系统仿真结果确定Md、Bd;Preferably, when the force tracking admittance control model reaches a steady state, are all 0, at this time, the parameter K d of the force tracking admittance control model is obtained by formula (1), and then M d and B d are determined according to the dynamic characteristics of the second-order system and the system simulation results;
随后基于计算得到的参数Kd、Md、Bd对所述力跟踪导纳控制模型进行仿真,根据仿真结果不断调节Md和Bd,最终选取力跟踪效果最好的Md和Bd的值;Then the force tracking admittance control model is simulated based on the calculated parameters K d , M d , B d , M d and B d are continuously adjusted according to the simulation results, and finally the M d and B d with the best force tracking effect are selected . the value of;
仿真时,用环境动力学模型模拟Fe(t),用下式(3)表达:During simulation, the environmental dynamics model is used to simulate Fe (t), which is expressed by the following formula (3):
式(3)中,Be表示引纱装置与纱线之间的阻尼系数;Xe(t)表示纱线的环境位置;表示纱线的环境速度;Ke表示纱线的纱线刚度。In formula (3), Be represents the damping coefficient between the yarn drawing device and the yarn; X e ( t) represents the environmental position of the yarn; represents the ambient velocity of the yarn; Ke represents the yarn stiffness of the yarn.
优选地,为提高力跟踪导纳控制模型对环境位置、刚度等因素变化时的张力跟踪鲁棒性,所述PID控制器用于调节力跟踪导纳控制模型在环境变时的动态和稳态张力跟踪性能,e(nT)=Fe(nT)-Fd(nT),连续控制系统的理想PID控制规律表示为下式(4):Preferably, in order to improve the robustness of tension tracking of the force tracking admittance control model to changes in environmental position, stiffness and other factors, the PID controller is used to adjust the dynamic and steady state tension of the force tracking admittance control model when the environment changes Tracking performance, e(nT)=F e (nT)-F d (nT), the ideal PID control law of the continuous control system is expressed as the following formula (4):
式(4)中,u(nT)表示第n个控制周期PID控制器传给力跟踪导纳控制模型的控制量;kp为PID控制的比例系数;Tt为积分时间常数;TD为微分时间常数;e(nT)为在第n个控制周期中实际张力与期望张力的偏差;In Equation (4), u(nT) represents the control amount passed by the PID controller to the force tracking admittance control model in the nth control cycle; k p is the proportional coefficient of PID control; T t is the integral time constant; T D is the differential Time constant; e(nT) is the deviation between the actual tension and the expected tension in the nth control cycle;
将式(4)所示的PID控制器写成如下式(5)所示的差分方程形式:The PID controller shown in Equation (4) is written in the form of the difference equation shown in Equation (5) below:
式(5)中,E(nT)表示在第n个控制周期时所有张力的偏差之和;ki、kd分别表示PID控制的积分系数、微分系数;Fe(nT)表示第n个控制周期接头过程中通过张力传感器测得的实际张力;Fd(nT)表示第n个控制周期接头过程中的期望张力。In formula (5), E(nT) represents the sum of the deviations of all tensions in the nth control cycle; k i and k d represent the integral coefficient and differential coefficient of PID control respectively; F e (nT) represents the nth The actual tension measured by the tension sensor during the splicing process of the control cycle; F d (nT) represents the desired tension during the splicing process of the nth control cycle.
本发明采用力跟踪导纳控制器建立机器人引纱接头时纱线张力与机器人运动学参数之间的动态关系,同时加入PID控制来提高力跟踪性能,使得在整个接头过程中纱线上的张力保持在期望张力值附近。本发明可有效防止细纱自动接头过程中纱线的断裂,提高接头成功率,同时为低强力高支纯棉纱的自动接头提供解了决方案。The invention adopts the force tracking admittance controller to establish the dynamic relationship between the yarn tension and the kinematic parameters of the robot during the robot yarn feeding and piecing, and at the same time adds PID control to improve the force tracking performance, so that the tension on the yarn during the whole piecing process is improved. Keep it close to the desired tension value. The invention can effectively prevent yarn breakage during the automatic piecing of spun yarns, improve the success rate of piecing, and at the same time provides a solution for automatic piecing of low-strength and high-count pure cotton yarns.
附图说明Description of drawings
图1为本发明实施例的控制流程图;Fig. 1 is the control flow chart of the embodiment of the present invention;
图2为本发明实施例的控制算法框图;2 is a block diagram of a control algorithm according to an embodiment of the present invention;
图3为本发明实施例的机械结构图。FIG. 3 is a mechanical structure diagram of an embodiment of the present invention.
具体实施方式Detailed ways
下面结合具体实施例进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。The present invention is further described below in conjunction with specific embodiments. It should be understood that these examples are only used to illustrate the present invention and not to limit the scope of the present invention. In addition, it should be understood that after reading the content taught by the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.
本发明提供的一种基于张力反馈的自动接头机器人柔顺控制装置包括机器人101、引纱装置102、张力传感器104及工控机。引纱装置102装配在机器人101末端,纱线103穿过引纱装置102并由引纱装置102持握。机器人101通过引纱装置102牵引纱线103完成整个环锭纺细纱自动接头工作。张力传感器104装配在引纱装置102末端,在整个环锭纺细纱自动接头过程中,通过张力传感器104实时获取纱线103的实际张力,并将其上传给工控机。A tension feedback-based automatic piecing robot compliance control device provided by the present invention includes a
本实施例中,机器人101采用工业级六轴机器人,以满足高精度多位姿的连续作业需求。引纱装置102采用单向喷嘴,通过控制通入的气流大小和方向可以实现对所述纱线103的牵引夹持。张力传感器104采用德国SCHMIDT公司的FS1-200-USB型张力传感器,最大量程为200cN,采样频率最高为200HZ。工控机采用intel酷睿i7处理器,实现对数据的实时处理反馈,并采用大容量硬盘,实现对原始数据和处理后数据的存储,便于后续的分析。In this embodiment, the
工控机运行有基于力跟踪导纳控制模型以及PID控制器实现的基于纱线张力反馈的机器人柔顺控制算法。工控机接收到实际张力后,机器人柔顺控制算法采用力跟踪导纳控制模型获得机器人101的运动学参数,基于该运动学参数计算得到机器人101的各个关节角。工控机将各个关节角发送给机器人101,使得机器人101运动到指定位姿,完成机器人101的运动控制,从而间接控制接头过程中的纱线张力保持在期望张力值附近,防止接头过程中纱线断裂导致的接头失败。The industrial computer runs the robot compliance control algorithm based on the yarn tension feedback based on the force tracking admittance control model and the PID controller. After the industrial computer receives the actual tension, the robot compliance control algorithm uses the force tracking admittance control model to obtain the kinematic parameters of the
在实际控制过程中,机器人柔顺控制算法利用张力传感器104对纱线103的纱线张力的跟踪性能可能会因为环境位置、刚度等因素的变化而变差,甚至出现张力跟踪失效导致纱线张力超过强力拉断纱线的情况。因此机器人柔顺控制算法引入PID控制器来调节力跟踪导纳控制模型在环境变时的动态和稳态张力跟踪性能。In the actual control process, the tracking performance of the yarn tension of the
本发明利用机器人柔顺控制算法建立了机器人101引纱接头时,纱线张力与机器人101的运动学参数之间的动态关系,使得在整个接头过程中纱线103上的张力保持在期望张力值附近。In the present invention, the robot compliant control algorithm is used to establish the dynamic relationship between the yarn tension and the kinematic parameters of the
本实施例中,机器人101的运动学参数包括机器人101末端的位姿、速度和加速度,则前文所述力跟踪导纳控制模型如下式(1)所示:In this embodiment, the kinematic parameters of the
式(1)中,Md、Bd、Kd是预先确定的期望机器人惯性、期望阻尼和期望刚度矩阵,期望刚度矩阵的维数取决于机器人101的自由度;Xd(t)、代表机器人101完成接头动作的期望轨迹的位姿、速度、加速度;X(t)、 代表机器人101的实际运动位姿、速度、加速度;Fd(t)代表接头过程中的期望张力;Fe(t)代表接头过程中通过张力传感器104测得的实际张力。In formula (1), M d , B d , K d are the predetermined expected robot inertia, expected damping and expected stiffness matrix, and the dimension of the expected stiffness matrix depends on the degrees of freedom of the
将式(1)进行拉氏变换得到下式(2):The formula (1) is Laplace transform to obtain the following formula (2):
由式(2)可以看出:在接头过程中,当纱线103实际张力Fe(t)与期望张力Fd(t)存在偏差ΔF时,将该偏差ΔF输入力跟踪导纳控制模型中即可得到机器人运动学参数X(s),通过改变机器人的运动学参数来减小力偏差ΔF。如此形成负反馈调节直到纱线的实际张力一直跟随期望纱线张力。It can be seen from equation (2) that in the piecing process, when there is a deviation ΔF between the actual tension Fe (t) of the yarn 103 and the expected tension F d ( t), the deviation ΔF is input into the force tracking admittance control model. The kinematic parameters X(s) of the robot can be obtained, and the force deviation ΔF can be reduced by changing the kinematic parameters of the robot. Negative feedback regulation is thus formed until the actual tension of the yarn follows the desired yarn tension.
为了建立如式(1)所示的力跟踪导纳控制模型,本实施例中,Md、Bd和Kd在仿真环境中计算得到。在仿真环境中Fe(t)用下式(3)表达:In order to establish the force tracking admittance control model shown in formula (1), in this embodiment, M d , B d and K d are calculated in the simulation environment. In the simulation environment, F e (t) is expressed by the following formula (3):
式(3)中,Be表示引纱装置102与纱线103之间的阻尼系数;Xe(t)表示纱线103的环境位置;表示纱线103的环境速度;Ke表示纱线103的纱线刚度。In formula (3), Be represents the damping coefficient between the yarn drawing device 102 and the yarn 103; X e ( t) represents the environmental position of the
在模拟的自动接头机器人柔顺控制装置达到稳态时,均为0,此时由式(1)可以求得力跟踪导纳控制模型的参数Kd,再根据二阶系统的动态特性确定Md、Bd,进而建立如式(1)所示的力跟踪导纳控制模型。When the simulated automatic joint robot compliance control device reaches a steady state, are all 0. At this time, the parameter K d of the force tracking admittance control model can be obtained from equation (1), and then M d and B d are determined according to the dynamic characteristics of the second-order system, and then the force shown in equation (1) is established. Tracking admittance control model.
为了能在实际的自动接头机器人柔顺控制装置中应用机器人柔顺控制算法,将式(1)的微分方程写成如下式(4)所示的差分方程的形式:In order to apply the robot compliance control algorithm in the actual automatic joint robot compliance control device, the differential equation of equation (1) is written in the form of the difference equation shown in the following equation (4):
式(4)中,nT表示第n个控制周期,n=1,2,3…,T为采样频率。In formula (4), nT represents the nth control cycle, n=1, 2, 3..., T is the sampling frequency.
PID控制器用于实现对实际张力与期望张力的偏差ΔF进行调节,ΔF=Fe(nT)-Fd(nT)。在工业过程中,连续控制系统的理想PID控制规律表示为下式(5):The PID controller is used to adjust the deviation ΔF between the actual tension and the desired tension, ΔF=F e (nT)-F d (nT). In the industrial process, the ideal PID control law of the continuous control system is expressed as the following formula (5):
式(5)中,u(nT)为PID控制器的输出信号;ko为比例增益,kp与比例度成倒数关系;Tt为积分时间常数;TD为微分时间常数;e(nT)为给定值r(nT)与测量值之差,给定值r(nT)为期望张力,测量值为实际张力。In the formula (5), u(nT) is the output signal of the PID controller; k o is the proportional gain, and k p has a reciprocal relationship with the proportionality; T t is the integral time constant; T D is the differential time constant; e(nT ) is the difference between the given value r(nT) and the measured value, the given value r(nT) is the expected tension, and the measured value is the actual tension.
同理将式(5)所示的PID控制器写成如下式(6)所示的差分方程形式:Similarly, the PID controller shown in Equation (5) is written into the differential equation form shown in Equation (6) below:
式(6)中,e(nT)表示在第n个控制周期中实际张力与期望张力的偏差;E(nT)表示在第n个控制周期时所有张力的偏差之和;kp、ki、kd分别表示PID控制的比例系数、积分系数、微分系数;u(nT)表示第n个控制周期PID控制器传给力跟踪导纳控制系统的控制量;Fe(nT)表示第n个控制周期接头过程中通过张力传感器测得的实际张力;Fd(nT)表示第n个控制周期接头过程中的期望张力。根据式(4)、式(5)式(6)编写程序完成基于纱线张力反馈的机器人柔顺控制,得到机器人运动学参数,包括机器人接头过程中的位姿Xd(t)、速度加速度 In formula (6), e(nT) represents the deviation between the actual tension and the expected tension in the nth control cycle; E(nT) represents the sum of the deviations of all tensions in the nth control cycle; k p , k i , k d represent the proportional coefficient, integral coefficient and differential coefficient of PID control respectively; u(nT) represents the control amount passed by the PID controller to the force tracking admittance control system in the nth control cycle; F e (nT) represents the nth The actual tension measured by the tension sensor during the splicing process of the control cycle; F d (nT) represents the desired tension during the splicing process of the nth control cycle. According to Equation (4), Equation (5) and Equation (6), a program is written to complete the robot compliance control based on yarn tension feedback, and the kinematic parameters of the robot are obtained, including the pose X d (t), the speed during the robot joint process acceleration
针对本实施例所采用的工业级六轴机器人,通过本领域技术人员所熟知的机器人逆运动学将力跟踪导纳控制模型输出的笛卡尔空间坐标转化为机器人各关节对应的角度θ1、θ2、θ3、θ4、θ5、θ6,并将这一组关节角发送给机器人完成机器人的运动控制,具体包括以下步骤:For the industrial-grade six-axis robot used in this embodiment, the Cartesian space coordinates output by the force tracking admittance control model are converted into the angles θ 1 , θ corresponding to each joint of the robot through the inverse kinematics of the robot known to those skilled in the art 2 , θ 3 , θ 4 , θ 5 , θ 6 , and send this group of joint angles to the robot to complete the motion control of the robot, which includes the following steps:
式(7)为机器人相邻两个关节的坐标变换矩阵:Equation (7) is the coordinate transformation matrix of two adjacent joints of the robot:
针对本实施例所采用的工业级六轴机器人,由式(7)依次得到机器人任意两个相邻连杆间的坐标变换矩阵如下式(8)所示:For the industrial-grade six-axis robot used in this embodiment, the coordinate transformation matrix between any two adjacent connecting rods of the robot is sequentially obtained from the formula (7), as shown in the following formula (8):
从而得到末端执行器坐标系与基坐标系之间的变换矩如式(9)所示:Thus, the transformation moment between the end effector coordinate system and the base coordinate system is obtained as shown in equation (9):
进而通过矩阵逆变换得到由力跟踪导纳控制器计算出的运动学参数所对应的各个关节角θ1、θ2、θ3、θ4、θ5、θ6,并将关节角度发送给机器人,机器人运动到指定位姿。Then, the joint angles θ 1 , θ 2 , θ 3 , θ 4 , θ 5 , θ 6 corresponding to the kinematic parameters calculated by the force tracking admittance controller are obtained through inverse matrix transformation, and the joint angles are sent to the robot. , the robot moves to the specified pose.
如图3所示,本发明实施例的一种基于张力反馈控制的环锭纺自动接头方法及装置的结构,包括机器人101、引纱装置102、纱线103、张力传感器104、工控机和基于纱线张力反馈的机器人柔顺控制算法;所述机器人101用于牵引所述纱线103完成整个环锭纺细纱自动接头工作;所述引纱装置102装配在所述机器人101末端,所述纱线103穿过所述引纱装置102并由所述引纱装置102持握;所述张力传感器104装配在所述引纱装置102末端,并用于将整个接头过程中实时获取的纱线张力数据上传给所述工控机;所述基于纱线张力反馈的机器人柔顺控制算法根据所述张力传感器104反馈的张力数据实时调节所述机器人101的运动学参数,所述机器人101的运动学参数包括机器人末端的位姿、速度和加速度。As shown in FIG. 3 , the structure of an automatic ring spinning piecing method and device based on tension feedback control according to an embodiment of the present invention includes a
根据环锭纺细纱机实际工作环境,对所述机器人101的自动接头动作进行设计得到所述机器人101接头动作的原始位置控制轨迹,将所述原始位置控制轨迹作为基于纱线张力反馈的机器人柔顺控制算法的参考轨迹;获取与所述机器人101交互的环境信息,包括纱线刚度ke、环境位置xe、所述引纱装置102与所述纱线103之间的阻尼系数be;待张力跟踪控制系统达到稳态时,求得力跟踪导纳控制模型的参数Kd,再根据二阶系统的动态特性,通过仿真、实验的方式确定Md、Bd,建立力跟踪导纳控制模型。According to the actual working environment of the ring spinning frame, the automatic piecing action of the
在接头过程中,基于纱线张力反馈的机器人柔顺控制算法根据所述张力传感器104实时获取所述纱线103的张力数据计算得到所述机器人101的运动学参数,经过机器人逆运动学算法得到每个控制周期内各关节角度,并发送给机器人101,所述机器人101根据运动学参数运动进行环锭纺自动接头工作;最后通过判断接头工作是否完成,如果未完成则继续执行,如果完成则程序退出,基于纱线张力反馈的柔顺控制接头机器人完成环锭纺自动接头工作。During the piecing process, the robot compliance control algorithm based on the yarn tension feedback calculates the kinematic parameters of the
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111097787.4A CN113755978B (en) | 2021-09-18 | 2021-09-18 | An automatic joint robot compliance device based on tension feedback |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111097787.4A CN113755978B (en) | 2021-09-18 | 2021-09-18 | An automatic joint robot compliance device based on tension feedback |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113755978A CN113755978A (en) | 2021-12-07 |
CN113755978B true CN113755978B (en) | 2022-09-16 |
Family
ID=78796409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111097787.4A Active CN113755978B (en) | 2021-09-18 | 2021-09-18 | An automatic joint robot compliance device based on tension feedback |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113755978B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114859736B (en) * | 2022-07-08 | 2022-09-06 | 南通永安纺织有限公司 | Tension self-adaptive control system of strand length measuring machine |
CN116281422B (en) * | 2023-05-18 | 2023-08-18 | 青岛宏大纺织机械有限责任公司 | Control method and system of tension controller of bobbin winder |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004277943A (en) * | 2003-03-17 | 2004-10-07 | Murata Mach Ltd | Spinning machine |
CN101006215A (en) * | 2004-08-19 | 2007-07-25 | 里特机械公司 | Textile machine and method for optimisation of piecing-up |
CN105019076A (en) * | 2015-07-10 | 2015-11-04 | 陈伟雄 | Method and device for automatically and intelligently piecing ring-spun yarn broken ends with guiding yarn |
CN108842239A (en) * | 2018-08-27 | 2018-11-20 | 国机智能技术研究院有限公司 | A kind of ring throstle automatic joint machine people and method |
CN111058130A (en) * | 2019-12-30 | 2020-04-24 | 卓郎(江苏)纺织机械有限公司 | Spinning machinery autonomous operation service robot |
CN111519293A (en) * | 2020-05-08 | 2020-08-11 | 东华大学 | Broken yarn and head finding device based on machine vision |
-
2021
- 2021-09-18 CN CN202111097787.4A patent/CN113755978B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004277943A (en) * | 2003-03-17 | 2004-10-07 | Murata Mach Ltd | Spinning machine |
CN101006215A (en) * | 2004-08-19 | 2007-07-25 | 里特机械公司 | Textile machine and method for optimisation of piecing-up |
CN105019076A (en) * | 2015-07-10 | 2015-11-04 | 陈伟雄 | Method and device for automatically and intelligently piecing ring-spun yarn broken ends with guiding yarn |
CN108842239A (en) * | 2018-08-27 | 2018-11-20 | 国机智能技术研究院有限公司 | A kind of ring throstle automatic joint machine people and method |
CN111058130A (en) * | 2019-12-30 | 2020-04-24 | 卓郎(江苏)纺织机械有限公司 | Spinning machinery autonomous operation service robot |
CN111519293A (en) * | 2020-05-08 | 2020-08-11 | 东华大学 | Broken yarn and head finding device based on machine vision |
Also Published As
Publication number | Publication date |
---|---|
CN113755978A (en) | 2021-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113755978B (en) | An automatic joint robot compliance device based on tension feedback | |
CN111360830B (en) | A vibration control method for a flexible manipulator based on cooperative tracking | |
CN112960477B (en) | A winding forming control method for real-time detection and dynamic tension adjustment | |
CN110552095B (en) | Yarn splicing device | |
CN107290956B (en) | A Position Control Method of Single Joint Flexible Manipulator Based on State Feedback | |
US11970357B1 (en) | Tension control method of multi-bundle winding equipment combined driving system | |
CN106945042A (en) | A kind of discrete S types curve speed control method of manipulator | |
CN104589344B (en) | A Boundary Control Method for Suppressing Vibration of Flexible Manipulator | |
CN111230882B (en) | Self-adaptive variable impedance control method of fruit sorting parallel robot clamping mechanism | |
CN109048901B (en) | Traction and teaching trajectory planning method and device based on virtual friction force | |
CN114952849B (en) | Robot track tracking controller design method based on reinforcement learning and dynamics feedforward fusion | |
CN114260896B (en) | Flexible force control method and system for cooperative robot | |
CN101734523A (en) | Control system of thread winding machine | |
CN105740525A (en) | Aerodynamic data processing method and aerodynamic data processing system for aircraft | |
CN109828468A (en) | A kind of control method for the non-linear robot system of magnetic hysteresis | |
CN107378987A (en) | A kind of six-bar linkage robot arm device of the adjustable free degree | |
CN105867135A (en) | Method for adaptive control over optical fiber winding tension | |
CN109048924A (en) | A kind of intelligent robot flexible job devices and methods therefor based on machine learning | |
CN208249550U (en) | A kind of tension control system for fly frame | |
CN105540339B (en) | A kind of automatic wire inlet system and method for air yarn cladding machine | |
CN110116928A (en) | A three-axis speed soft synchronous control method for film winding machine | |
CN107065784A (en) | Online multistage method of adjustment is realized in high-speed motion for Cartesian robot | |
CN115107035B (en) | Hybrid control method for monitoring robot single-joint artificial immune system | |
Chen et al. | Solution of geometrico-static problems and motion experiments for a suspended under-constrained parallel mechanism driven by two flexible cables | |
CN107598921B (en) | A kind of space smoothing method for controlling stopping applied to six axis robot arm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |