[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN113573891A - 气密性、透热性多层陶瓷复合管 - Google Patents

气密性、透热性多层陶瓷复合管 Download PDF

Info

Publication number
CN113573891A
CN113573891A CN202080021018.3A CN202080021018A CN113573891A CN 113573891 A CN113573891 A CN 113573891A CN 202080021018 A CN202080021018 A CN 202080021018A CN 113573891 A CN113573891 A CN 113573891A
Authority
CN
China
Prior art keywords
composite
tube
ceramic
layer
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080021018.3A
Other languages
English (en)
Inventor
G·科利欧斯
H·莱布
F·谢夫
B·邹厄斯
M·科恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN113573891A publication Critical patent/CN113573891A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0215Silicon carbide; Silicon nitride; Silicon oxycarbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/025Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/02Preparation, separation or purification of hydrogen cyanide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/02Preparation, separation or purification of hydrogen cyanide
    • C01C3/0208Preparation in gaseous phase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • C07C2/82Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/16Preventing or removing incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • C10G9/203Tube furnaces chemical composition of the tubes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • C10G9/36Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/10Rigid pipes of glass or ceramics, e.g. clay, clay tile, porcelain
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/14Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/06Surface irregularities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/363Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • C04B2237/586Forming a gradient in composition or in properties across the laminate or the joined articles by joining layers or articles of the same composition but having different densities
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/64Forming laminates or joined articles comprising grooves or cuts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • C04B2237/765Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc at least one member being a tube
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Toxicology (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明涉及一种传热系数>500W/m2/K的气密性多层复合管,其在其结构中在复合管壁的横截面上具有被氧化纤维复合陶瓷的外层包围的作为内层的无孔整体氧化物陶瓷,该外层具有5%<ε<50%的开孔孔隙率,并且其在复合管的内表面上具有多个面向复合管外壁的凹陷,以及该多层复合管在吸热反应中作为反应管、喷射管、火焰筒或旋转管的用途。

Description

气密性、透热性多层陶瓷复合管
描述
本发明涉及一种传热系数>500W/m2/K的气密性多层复合管或多层复合管的区段,包括至少两个层,其在其结构中在复合管壁的横截面上包括被氧化纤维复合陶瓷的外层包围的作为内层的无孔整体氧化物陶瓷,其中该外层具有大于5%且小于50%,优选大于10%且小于30%的开孔孔隙率ε(根据DIN EN 623-2),并且该复合管的内表面包括多个面向(orient toward)复合管外壁的凹陷。
吸热反应通常在化学工业中,例如在乙烷、丙烷、丁烷、石脑油和高沸点原油馏分的热裂解、天然气的重整、丙烷的脱氢、甲烷的脱氢芳构化以得到苯或烃类的热解中的增值链(value chain)开始时进行。这些反应是高度吸热的并在高温下进行,即500-1700℃的温度对于实现工业和经济上重要的产率是必需的。
例如烃类的热裂解(所谓的蒸汽裂化)包括在微正压和高温下进行的平行吸热裂解和脱氢反应。根据现有技术的标准工艺过程是乙烷、丙烷或石脑油(未加氢的直馏汽油)的蒸汽重整,以生产乙烯、丙烯和C4烯烃。这些产物被认为是化学工业中量最重要的前体之一。蒸汽裂化器是具有最大质量产量的化学装置之一。在现有技术中,该高度吸热的工艺过程在通过燃烧进行外部加热的管状盘管中进行。在所谓的裂解炉中,将数个平行管同时加热并在内部由原料/蒸汽混合物穿过。管壁的功能是将热流从外部热源传入反应体积,并将反应体积与周围热源密封分离,以保持两个空间之间的压差。固定床反应器的各管通常是圆柱形的,其中在整个管长度上具有不同或均匀的直径。还可将各管在炉内侧分割或组合。各管的材料通常是高度合金化的奥氏体离心铸造的。
工业裂解工艺过程在至多5巴正压的压力和至多1000℃的温度下进行,其中该值代表反应管出口处的产物气体温度。工业工艺过程尤其动力学受限。术语“动力学受限”应理解为是指反应气体在裂解管中的停留时间短,使得裂解和脱氢反应不能达到热力学平衡。
当使用金属反应器材料时,将最高外管壁温度限制于约1050-1100℃。
然而,由于许多原因,但特别是为了提供裂解反应所需的热量,尽管管内部具有焦炭沉积,较高的最高外管壁温度是希望的。热管壁上的焦炭沉积首先导致在操作过程中必须提高外管壁温度,以补偿焦炭的绝热作用。这导致了较高的燃烧输出和较高的能源消耗。其次,焦炭沉积导致在达到最高允许的外管壁温度时,必须停止使用炉且通过用空气火焰清洁而除焦。
>1100℃的管壁温度使得陶瓷材料,优选氧化物陶瓷的使用成为必要。陶瓷材料,尤其是氧化物陶瓷的优点是对1800℃的高耐热性,化学钝性,耐腐蚀性和高强度。陶瓷材料的最大缺点是其高脆性。该性能由断裂韧性KIC描述,后者例如对于金属根据DIN ENISO12737测定且对于整体陶瓷根据DIN EN ISO 15732测定。对于钢,韧性材料的代表,KIC
Figure BDA0003260990720000024
对于整体陶瓷,例如氧化锆(ZrO2)或刚玉(Al2O3),KIC
Figure BDA0003260990720000022
这使得整体陶瓷不适合压力>0.5巴的加压设备,因为这些材料不能确保标准“断裂之前开裂(crack before fracture)”,而是可能受到突然的无预兆断裂的影响。
包含嵌入氧化陶瓷的多孔基体中的氧化纤维的纤维复合陶瓷提供了一个替换方案。纤维复合陶瓷的开孔孔隙率ε通常可以呈5-50%的值。纤维复合陶瓷的优点是对1300℃或更大的高耐热性,高抗热冲击性以及假塑性形变和断裂行为。纤维复合陶瓷的断裂韧性可以达到
Figure BDA0003260990720000023
的值。作为其多孔结构的结果,纤维复合陶瓷与具有相同化学组成的整体陶瓷相比具有相对低的密度、相对低的弹性模量和相对低的导热性。表1包括用于测定这些参数的相关标准的列举。
表1:用于测定整体陶瓷和复合陶瓷的结构、机械和热物理参数的相关标准列举
Figure BDA0003260990720000021
Figure BDA0003260990720000031
1:根据DIN EN ISO 12737测定金属材料的断裂韧性。
2:M.Kuntz.陶瓷纤维复合材料的抗碎裂性.论文,Karlsruhe University,ShakerVerlag,1996。
导热性通过下列关系式定义:
导热性=密度×(比热容)×热扩散系数。
作为举例,表2包括基于氧化铝的整体陶瓷和纤维复合陶瓷的性能之间的对比。
表2:整体陶瓷和复合陶瓷的物理性能对比
Figure BDA0003260990720000032
纤维复合陶瓷的多孔结构的缺点是其不适合生产压力>0.5巴的高压设备。与具有相同化学组成的无孔整体陶瓷相比更差的导热性是另一缺点,即当要通过该材料的层传送热流时。
WO 2016/184776 A1公开了一种包括无孔整体氧化物陶瓷层和氧化纤维复合陶瓷层的多层复合管,其可用于生产在1-50巴的操作压力和至多1400℃的反应温度下操作的反应管并因此通过外部热源(通常为加热室)强力加热。
然而,在这些复合管的操作中,可能会在复合管内壁上形成不希望的固体沉积物,由此降低传热并因此将方法的效率降低至烘箱必须定期通过火焰清洁而除焦的程度。在极端情况下,甚至可能出现复合管内部中自由管截面的完全堵塞。例如在用蒸汽和/或二氧化碳重整烃类而生产合成气中,在通过热解烃类联产氢气和热解碳中,在由甲烷和氨或由丙烷和氨而生产氢氰酸中,在通过烃类的蒸汽裂化生产烯烃和/或甲烷的偶联以得到乙烯、乙炔和苯中,可由烃类的副反应形成固体碳而形成该类固体沉积物。将该类碳沉积物广泛称为焦炭。与其他工业焦炭一样,它们通过至少部分含烃物质在低氧或无氧环境中的高温处理而形成,其中低氧是指存在的氧气不足以完全燃烧而形成二氧化碳和蒸汽的环境。
在烃类的热蒸汽裂化的情况下,区分三种不同类型的焦炭,首先是所谓的催化焦炭,它在管表面的催化活性元素,特别是铁(Fe)和镍(Ni)上形成;其次是通过在气相中反应而不与管壁相互作用而形成的热解焦炭;第三是冷凝焦炭,它通过较高分子量烃类在400-600℃的温度下的冷凝而形成且尤其与高温区的出口区段有关。在反应管本身中,催化和热解结焦占主导。
早在20世纪60年代,就已经进行了预防焦炭的尝试。这些包括开发高度合金化的奥氏体金属离心铸造管,其据说在工艺条件下形成铬或铝氧化物的保护性层。第二开发路线是通过改善管内侧向工艺流体的传热来降低管壁温度。这些措施的目的是降低管壁内部的温度且减缓其中发生的催化结焦反应。
现有技术中公开了许多构思,以改善气体料流和管壁之间的传输性能。例如存在具有沿轴线延伸的肋条或插入的流动元件的管。
WO 2015/052066 A1描述了一种用于生产氰化氢的反应管,它包括插入的肋条状插入体。这据说提高时空产率。然而,这并不能有效地对抗管壁处不希望沉积物的风险。
WO 2017/007649 A1公开了一种具有凹陷的反应管。它公开了其一般性解释和多种材料实施方案,但没有说明具有>500W/m2/K的传热系数的多层复合管,该复合管在其结构中在复合管壁的横截面上包括由氧化纤维复合陶瓷外层(其具有5%<ε<50%的开孔孔隙率)包围的作为内层的无孔整体氧化物陶瓷。
熟知WO 2017/007649 A1的本领域技术人员也不会考虑在该类复合管中实施根据本发明的凹陷,这是因为有理由担心在无孔整体氧化物陶瓷中引入凹陷因此不再能确保所要求的组件强度。因此,有理由担心仅能通过增加壁厚才能达到所要求的强度,这会由于传热降低而抵消所引入的凹陷的优点。
本领域技术人员还有理由担心在该显现出高脆性的材料的情况下,引入凹陷会明显增加不希望裂缝形成的风险。
最后,本领域技术人员不会在陶瓷管中引入凹陷,因为这些阻止了催化焦炭的生长且因此尚未有理由通过单独降低热解结焦实现金属管熟知的高制造复杂性。
WO 2017/178551 A1同样描述了一种用于裂解反应的反应器,其中反应器管的内壁包括凹陷(权利要求1)。该文件还公开其一般性解释和多种材料实施方案,但没有说明具有>500W/m2/K的传热系数的多层复合管,该复合管在其结构中在复合管壁的横截面上包括由氧化纤维复合陶瓷外层(其具有5%<ε<50%的开孔孔隙率)包围的作为内层的无孔整体氧化物陶瓷。熟知WO2017/178551A1的本领域技术人员也不会考虑在该类复合管中实施凹陷,因为与熟知WO2017/007649类似,有理由担心强度不足、脆性过大和制造复杂性过大。
因此,本发明解决的问题是提供具有以下性能特性的反应管:(i)透热性(heat-permeable),传热系数
Figure BDA0003260990720000051
(ii)>1100℃的耐热性,(iii)耐受约5巴的压力/在至多约5巴的压力下稳定,(iv)对还原性气氛和氧分压为10-25巴至10巴的氧化性气氛的耐腐蚀性,(v)根据DIN EN 993-11的抗热冲击性,和(vi)对不期望的沉积物的化学惰性,特别是对由金属如铁和镍催化的反应管内壁上的结焦惰性,以及(vii)还改善了传热性,使得减少热解结焦。
这里公开了一种传热系数大于500W/m2/K的多层复合管,包括至少两个层,其在其结构中在复合管壁的横截面上包括被氧化纤维复合陶瓷的外层包围的作为内层的无孔整体氧化物陶瓷,其具有5%<ε<50%的开孔孔隙率并且其在复合管的内表面上包括多个面向复合管外壁的凹陷。
根据本发明的凹陷可以不规则或优选规则地排列在复合管的内壁上。
在管内壁的特定表面元件上引入的凹陷的优选数量受特定技术情况的影响。通常有利的是复合管的内表面以优选10-95%,特别优选50-90%的程度提供有根据本发明的凹陷。就凹陷而言,参考在管内部的表面上凹陷相应直接占据的面积比例。
凹陷的形状和深度在复合管的管内壁的长度上可以是相同或不同的。可能特别有利的是根据本发明的凹陷的形状应使得避免轮廓中的尖锐边缘而得到一个圆形的弯曲轮廓,例如在例如球状、卵状、球形、凹陷或水滴状凹陷的情况下。该类凹陷的可能形状的更具体的说明对本领域技术人员而言由WO 2017/178551 A1是显而易见的。
将根据本发明的凹陷施加于复合管的面向外部的管内壁,并且仅设置在由无孔整体氧化物陶瓷制成的复合管的最内层。
熟知WO 2017/007649 A1的本领域技术人员也不会考虑在该类复合管中实施根据本发明的凹陷,因为有理由担心在无孔整体氧化物陶瓷中引入凹陷使得所要求的组件强度会因此不再能得到保证。因此,有理由担心仅通过增加壁厚才能达到所要求强度,这会由于降低传热而抵消引入凹陷的优点。
本领域技术人员还有理由担心在该显现出高脆性的材料上引入凹陷会明显增加形成不希望的裂缝形成的风险。
最后,本领域技术人员不会在陶瓷管中引入凹陷,因为这些阻止了催化焦炭的生长且因此尚未有理由通过单独降低热解结焦实现金属管熟悉的高制造复杂性。
然而,令人惊讶地可在根据本发明的复合管中实现所要求的性能。特别有利的是根据本发明的凹陷的最大深度为0.5-2mm。如前所述,凹陷的深度可任选在复合管内变化。这对于精确调整在流动方向上变化的传热和结焦倾向而言的要求可能是特别有利的。在具体情况下,优选构造取决于特定的炉几何形状。
该类凹陷的可能形状的其他说明对本领域技术人员而言由WO 2017/178551 A1是显而易见的。
根据本发明的凹陷的引入可以以不同方式进行。它们可能优选有利的是在整体陶瓷管的生产过程中通过在挤压、铸造或压制的加工步骤之后以及在烧制之前引入软质材料而压印。凹陷可能有利的是在整体陶瓷管的生产过程中通过干压、湿压或等规压制的所谓的原形加工的步骤中压印,因为就生产工程而言,成型和因此凹陷的引入是简单的,而且可以在大几何自由度下进行。根据本发明的凹陷的压制优选在通过压制工艺过程进行原形加工过程中进行。
将根据本发明的凹陷压印至多层复合管尤其可以通过压制成型以在工艺工程方面简单而有效的方式生产。与例如通过离心铸造或挤压生产的金属材料相比,该材料有利地提供了在冷态下(烧制前)成型的选择而无需相减法(subtractive methods)。
在实验中,令人惊奇地发现根据本发明的多层复合管具有比基于金属材料的具有相同几何形状和结构的管宽的管内壁的温度分布。相对低的温度导致结焦在根据本发明的复合管中比在相当金属管中更有效地防止。这是本领域技术人员所未预期到的。
根据本发明的复合管中的两个层有利地通过机械或原子水平的连接而相互粘连。相关的机械连接例如是压力配合连接。用于本发明的相关原子水平的连接包括胶粘和烧结。所有连接类型都属于现有技术(W.Tochtermann,F.Bodenstein:Konstruktionselemente des Maschinenbaues,第1部分Grundlagen;Verbindungselemente;
Figure BDA0003260990720000071
Rohrleitungen undAbsperrvorrichtungen.Springer-Verlag,1979)。
多层复合管的壁有利地至少分区段包括两个层,即无孔整体氧化物陶瓷层和氧化纤维复合陶瓷层;即该多层复合管也可以是复合管段。这可包括例如分区或分成点且仅分区段包含两个层的复合管。然而,优选例如通过加热室经受>1100℃的外部温度的复合管的整个壁包括至少两个层,即无孔整体氧化物陶瓷层和氧化纤维复合陶瓷层。
例如通过加热室经受>1100℃的外部温度的多层复合管的管段有利地不含金属层。
内管有利地缠绕有氧化纤维复合陶瓷层。这两个层可以通过机械或原子水平的连接而相互连接以形成组件。该组件的性能由该氧化纤维复合陶瓷层的耐热性和形变行为决定。气密性由氧化物陶瓷的内管提供。当使用氧化物陶瓷内管时,管壁的内部具有高化学稳定性和耐磨性,对于氧化铝,硬度>14 000MPa,对于氧化锆,硬度>12 000MPa。
在1400℃下,氧化铝和氧化镁例如在10-25巴至10巴的整个氧气分压范围内是稳定的,而所有其他陶瓷材料经历还原和氧化之间的转变并因此腐蚀(Darken,L.S.,&Gurry,R.W.(1953).Physical chemistry of metals.McGraw-Hill)。
多层复合管的管内径有利地为10-1000mm,优选10-100mm,尤其是40-80mm。具有至少两个层的总壁厚有利地为0.5-50mm,优选1-30mm,尤其是2-20mm。氧化纤维复合陶瓷层的厚度有利地小于总壁厚的90%,优选小于50%,尤其是小于25%;该氧化纤维复合陶瓷层的厚度有利地为总壁厚的至少10%。该整体氧化物陶瓷层的厚度有利地为0.5-45mm,优选1-25mm,特别优选3-15mm。该氧化纤维复合陶瓷层的厚度有利地为0.5-5mm,优选0.5-3mm。
多层复合管的长度有利地为0.5-20m,优选1-10m,尤其是1.5-7m。可以通过弯头和/或收集器将多个该类管彼此连接,其中这些弯头和收集器还可任选地呈多层复合模制品的形式并且可以包括根据本发明的凹陷。
包括至少一个无孔整体氧化物陶瓷层和至少一个氧化纤维复合陶瓷层的所公开的多层复合管有利地具有5%<ε<50%,优选10%<ε<30%的开孔孔隙率。多层复合管特别有利地是气密的。术语“气密”应理解为是指根据DIN EN623-2的开孔孔隙率为0的实心体。允许的测量精度<0.3%。
无孔整体氧化物陶瓷的密度有利地大于氧化纤维复合陶瓷的密度。无孔整体氧化物陶瓷的密度有利地为
Figure BDA0003260990720000081
尤其是
Figure BDA0003260990720000082
例如对于莫来石(约70%氧化铝)为
Figure BDA0003260990720000083
或者对于纯度>99.7%的氧化铝为
Figure BDA0003260990720000085
纤维复合陶瓷层的密度为
Figure BDA0003260990720000084
复合结构中整体陶瓷和纤维复合陶瓷的密度之比有利地为1:1-3:1,尤其是1:1-2:1。
无孔整体氧化物陶瓷的材料依赖性弹性模量有利地大于氧化纤维复合陶瓷的弹性模量。无孔整体氧化物陶瓷的弹性模量有利地为100-500GPa,尤其是150-400GPa,例如对于莫来石(约70%氧化铝)为150GPa或者对于纯度>99.7%的氧化铝为380GPa。纤维复合陶瓷层的弹性模量为40-200GPa。这些值处于25℃下。复合结构中整体陶瓷与纤维复合陶瓷的弹性模量之比有利地为1:1-5:1,尤其是1:1-3:1。
无孔整体氧化物陶瓷的材料依赖性导热性有利地大于氧化纤维复合陶瓷的导热性。无孔整体氧化物陶瓷的导热性有利地为
Figure BDA0003260990720000091
尤其是
Figure BDA0003260990720000092
Figure BDA0003260990720000093
例如对于莫来石(约70%氧化铝)为
Figure BDA0003260990720000094
或者对于纯度>99.7%的氧化铝为
Figure BDA0003260990720000095
纤维复合陶瓷层的导热性为
Figure BDA0003260990720000096
优选
Figure BDA0003260990720000097
这些值处于25℃下。复合结构中整体陶瓷和纤维复合陶瓷的导热性之比有利地为1:1-10:1,尤其是1:1-5:1。
压力反应器设计用于下列压力范围:有利地0.1-100巴(abs),优选1-10巴(abs),更优选1.5-5巴(abs)。
反应室和加热室之间的压差有利地为0-100巴,优选0-10巴,更优选0-5巴。
根据本发明的多层复合管的传热系数有利地为
Figure BDA0003260990720000098
优选
Figure BDA0003260990720000099
更优选
Figure BDA00032609907200000910
尤其是
Figure BDA00032609907200000911
测定传热系数的程序对本领域熟练技术人员是已知的(第Cb章:
Figure BDA00032609907200000912
Figure BDA00032609907200000913
第8版,1997)。根据该定义:
Figure BDA00032609907200000914
其中
Figure BDA00032609907200000915
Figure BDA00032609907200000916
各符号具有下列含义:
Rw:多层圆柱形壁的传热阻力,
Figure BDA00032609907200000917
kloc:多层圆柱形壁的传热系数,
Figure BDA00032609907200000918
A:圆柱形壁面积,m2
λ:均匀层的导热性,
Figure BDA00032609907200000919
δ:均匀层的厚度,m,
n:多层圆柱形壁的层数,
指数:
1:圆柱形层的内侧,
2:圆柱形层的外侧,
m:平均面积。
根据本发明的多层复合管可以在其长度上具有可变横截面和可变壁厚。例如,该多层复合管可以在气体的流动方向上以漏斗状方式变宽或变窄。
在多层复合管的两端,可能有利地是密封外层的边界区域。密封端用作该复合管与气体输送金属导管、分配器、收集器或通过周围加热室壳体的通道的气密连接的过渡。
有用的无孔整体氧化物陶瓷包括本领域熟练技术人员已知的所有氧化陶瓷,尤其是类似于Informationszentrum Technische Keramik(IZTK):Brevier technischeKeramik.Fahner Verlag,Lauf(2003)中所述那些的氧化物陶瓷。优选包含至少99重量%Al2O3和/或莫来石的无孔整体氧化物陶瓷。有用的无孔陶瓷尤其包括HaldenwangerPythagoras 1800ZTM(莫来石),Alsint 99.7TM或Friatec
Figure BDA0003260990720000101
AL23(氧化铝)。
纤维复合材料的特征在于具有陶瓷颗粒的基体,其间嵌有作为缠绕体或纺织品的陶瓷纤维,尤其是长纤维。它们称为纤维增强陶瓷、复合陶瓷或纤维陶瓷。基体和纤维原则上可以由任何已知陶瓷材料构成且碳就此而言也作为陶瓷材料处理。
“氧化纤维复合陶瓷”应理解为是指具有氧化陶瓷颗粒且包含陶瓷、氧化和/或非氧化纤维的基体。
纤维和/或基体的优选氧化物是选自如下组的元素的氧化物:Be,Mg,Ca,Sr,Ba,稀土,Th,U,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Fe,Co,Ni,Zn,B,Al,Ga,Si,Ge,Sn,Li,Na,K,Rb,Cs,Re,Ru,Os,lr,Pt,Rh,Pd,Cu,Ag,Au,Cd,In,Tl,Pb,P,As,Sb,Bi,S,Se,Te以及这些氧化物的混合物。
混合物有利地适合作为纤维以及基体二者的材料。纤维和基体通常不需要由相同材料构成。
原则上不仅二元混合物而且三元和更高级混合物是合适且重要的。在混合物中,各成分可以以等摩尔量存在,但有利的混合物为具有显著不同浓度的单个组分的混合物直到且包括其中一种组分以<1%的浓度存在的掺杂的那些。
特别有利的混合物如下:氧化铝、氧化锆和氧化钇的二元和三元混合物(例如氧化锆增强的氧化铝);碳化硅和氧化铝的混合物;氧化铝和氧化镁的混合物(MgO尖晶石);氧化铝和氧化硅的混合物(莫来石);硅酸铝和硅酸镁的混合物;氧化铝、氧化硅和氧化镁的三元混合物(堇青石);滑石(硅酸镁);氧化锆增强的氧化铝;稳定化氧化锆(ZrO2);氧化镁(MgO)、氧化钙(CaO)或氧化钇(Y2O3)形式的稳定剂,所用其他稳定剂还任选地包括氧化铈(CeO2)、氧化钪(ScO3)或氧化镱(YbO3);以及钛酸铝(氧化铝和氧化钛的化学计量混合物);氮化硅和氧化铝(氧氮化硅铝SIALON)。
所用氧化锆增强的氧化铝有利的是具有10-20mol%ZrO2的Al2O3。ZrO2可有利地使用10-20mol%,优选16mol%CaO,10-20mol%,优选16mol%MgO,或者5-10mol%,优选8mol%Y2O3(“完全稳定化氧化锆”)或1-5mol%,优选4mol%Y2O3(“部分稳定化氧化锆”)稳定。有利的三元混合物例如是80%Al2O3,18.4%ZrO2和1.6%Y2O3
除了所述材料(混合物和单个组分)外,还可设想在氧化陶瓷基体中玄武岩、氮化硼、碳化钨、氮化铝、二氧化钛、钛酸钡、锆钛酸铅和/或碳化硼的纤维。
为了通过至少两个层获得所需增强,纤维增强碳的陶瓷的纤维可以径向圆周地和/或相互交叉地设置在无孔陶瓷的第一层上。
有用的纤维包括通过氧化、碳化、氮化纤维或C纤维和SiBCN纤维类别所涵盖的增强纤维。陶瓷复合材料的纤维更特别是氧化铝、莫来石、碳化硅、氧化锆和/或碳纤维。莫来石由氧化铝和氧化硅的固溶体构成。优选使用氧化物陶瓷(Al2O3,SiO2,莫来石)或非氧化物陶瓷(C,SiC)的纤维。
有利的是可使用耐蠕变纤维,即在至多1400℃的温度范围内在蠕变区中如果存在,在持续形变,即蠕变趋势中随时间增加最少的纤维。对于NEXTEL纤维,3M公司在70MPa的拉伸应力下1000小时之后对1%的永久伸长率标示了下列阈值温度:NEXTEL 440:875℃,NEXTEL550和NEXTEL 610:1010℃,NEXTEL 720:1120℃(参考文献:NextelTMCeramicTextiles Technical Notebook,3M,2004)。
纤维有利地具有10-12μm的直径。有利的是将它们交织,通常呈平织或缎纹组织,以得到织物片,编织以形成软管或者作为纤维束形式缠绕。为了生产该陶瓷复合体系,纤维束或编织物例如用包含稍后陶瓷基体的组分,有利的是Al2O3或莫来石的滑泥渗透(Schmücker,M.(2007),
Figure BDA0003260990720000121
oxidkeramische Werkstoffe,Materialwissenschaft und Werkstofftechnik,38(9),698-704)。在>700℃下的热处理最终产生包含陶瓷纤维和陶瓷基体的拉伸强度有利地>50MPa,优选>70MPa,进一步优选>100MPa,尤其是>120MPa的高强度复合结构。
所用陶瓷纤维复合材料优选为SiC/Al2O3、SiC/莫来石、C/Al2O3、C/莫来石、Al2O3/Al2O3、Al2O3/莫来石、莫来石/Al2O3和/或莫来石/莫来石。这里在斜杠之前的材料表示纤维类型且在斜杠之后的材料表示基体类型。陶瓷纤维复合结构所用的基体体系还可为硅氧烷,Si前体和宽范围的不同氧化物,例如包括氧化锆。陶瓷纤维复合材料优选包含至少99重量%Al2O3和/或莫来石。
在本发明中优选使用基于氧化物陶瓷纤维的纤维复合材料,例如3MTMNEXTELTM312、NEXTELTM440、NEXTELTM550、NEXTELTM610或NEXTELTM720。特别优选使用NEXTELTM610和/或NEXTELTM720。
基体具有的纤维填充水平(复合结构中纤维的体积比例)为20-40%;复合结构的总固体含量为50-80%。基于氧化陶瓷纤维的纤维复合陶瓷在氧化气体气氛和还原气体气氛中为化学稳定的(即在1200℃下在空气中储存15小时内没有重量变化(参考文献:NextelTMCeramic Textiles Technical Notebook,3M,2004))且直到1300℃以上是热稳定的。纤维复合陶瓷具有假塑性形变行为。它们因此耐热冲击且具有准韧性断裂特性。因此,在组件断裂之前有组件故障预兆。
纤维复合材料有利地具有大于5%至小于50%,优选大于10%至小于30%的开孔孔隙率ε;因此根据DIN 623-2中的定义它不是气密的。
纤维复合材料有利地具有至多1500℃,优选至多1400℃,更优选至多1300℃的长期使用温度。
纤维复合材料有利地具有>50MPa,优选>70MPa,更优选>100MPa,尤其是>120MPa的强度。
纤维复合材料有利地具有0.2-1%的弹性形变屈服点。
纤维复合材料有利地具有根据DIN EN 993-11的抗热冲击性。根据本发明的复合管的抗热冲击性通常大于50K/h,优选大于300K/h,特别优选大于500K/h。
根据本发明的凹陷优选具有0.5-2mm的深度。
根据本发明的复合管的内表面优选以基于复合管的总内表面面积优选为10-95%,特别优选50-90%的程度提供有凹陷。
在一个优选实施方案中,根据本发明的复合管中的凹陷具有横截面为圆形且具有2-30mm的(最大)直径的结构。
根据本发明的复合管的内层优选具有0.5-45mm,优选1-25mm,特别优选2-15mm的最小层厚。
纤维复合材料有利地具有4-8.5的热膨胀系数[ppm/K]。
纤维复合材料有利地具有
Figure BDA0003260990720000131
的导热性。
陶瓷纤维复合材料可以通过CVI(化学气相渗透)方法,热解,尤其是LPI(液体聚合物渗透)方法,或者通过化学反应如LSI(液体硅渗透)方法生产。
多层复合管两端或一端的密封可以以许多方式进行:
例如,可以通过外层或纤维复合陶瓷或无孔整体陶瓷的内层被聚合物、无孔陶瓷、热解碳和/或金属渗透或涂敷而实现密封。被密封区域用作密封表面。该方案可以直到<400℃的温度范围使用。该复合管有利地仅在与该金属连接件的边界区域中进行。“边界区域”是指在过渡到另一材料,优选金属材料之前的最后区段,具有的长度对应于该复合管内径的0.05-10倍,优选对应于内径的0.1-5倍,尤其是对应于内径的0.2-2倍。浸渍的厚度有利地对应于边界区域中该纤维复合陶瓷的总层厚。浸渍的方法对本领域熟练技术人员是已知的。
因此,本发明包括一种包括至少两个层,即无孔整体陶瓷层,优选氧化物陶瓷层,和纤维复合陶瓷层,优选氧化纤维复合陶瓷层的多层复合管,其中该复合管的外层在过渡到另一材料,优选金属材料之前在边界区域中用聚合物、无孔陶瓷、(热解)碳和/或金属材料浸渍或涂敷。
进行密封的另一可能方式有利地包括与多层复合管的边界区域连接金属套管,该套管使用搭接接头(5)分区段设置在内层和外层之间。金属套管有利地包括一种或多种下列材料:铬、钛、钼、镍钢47Ni、合金80Pt20Ir、合金1.3981、合金1.3917或三金属铜/Invar/铜。搭接接头(5)的长度与该复合管的内径之比有利地为0.05-10,优选0.1-5,尤其是0.2-2。在该区段中,金属套管借助本领域熟练技术人员已知的结合技术与内层的外侧气密结合(Informationszentrum Technische Keramik(IZTK):Brevier technische Keramik,Fahner Verlag,Lauf(2003))。该外层通过原子水平的连接与由金属构成的套管结合。该陶瓷搭接部分,即包括外层和金属套管的无内层区段的长度有利地0.05-10倍,优选0.1-5倍,尤其是0.2-2倍于该复合管的内径。
因此,本发明包括一种包括至少两个层,即无孔整体陶瓷内层,优选氧化物陶瓷内层,以及纤维复合陶瓷外层,优选氧化纤维复合陶瓷外层的多层复合管,其中复合管的内表面包括多个面向复合管外壁的凹陷,并且其中在复合管的末端设置了设置在内层和外层之间的区段中的金属套管。
因此,本发明包括一种连接件,包括至少一个在多层复合管的纵向上,即在反应物的流动方向上在具有至少两个陶瓷层的区段中搭接的气体输送金属导管,其中至少一个陶瓷层包括无孔整体陶瓷,优选氧化物陶瓷,并且至少一个其他陶瓷层包括纤维复合陶瓷,优选氧化纤维复合陶瓷。
因此,本发明包括一种在金属材料和陶瓷材料之间的过渡区域中的夹层结构,包括金属层,无孔整体陶瓷层,优选氧化物陶瓷层以及纤维复合陶瓷层,优选氧化物纤维复合陶瓷层。该金属层优选位于陶瓷内层和陶瓷外层之间。
本发明有利地包括一种连接件,其包括包括金属管,例如至少一个气体输送金属导管的第一管区,包括连接第一管区且包含纤维复合陶瓷外层和金属内层的第二管区,和连接第二管区且包括包括金属层、无孔整体陶瓷层和纤维复合陶瓷层的夹层结构的第三管区,和连接该第三管区且包括包括至少两个层,即无孔整体陶瓷层和纤维复合陶瓷层的多层复合管的第四管区。
该连接件的夹层结构有利地包括陶瓷内层、金属中间层和陶瓷外层。该纤维复合陶瓷有利地为陶瓷外层。该无孔整体陶瓷层有利地为内层。作为替换,该纤维复合陶瓷为陶瓷内层。作为替换,该无孔整体陶瓷层为外层。该纤维复合陶瓷优选为氧化的。该无孔整体陶瓷优选为氧化物陶瓷。
第一管区的长度大于该多层复合管的内径的0.05倍,优选大于0.1倍,尤其是大于0.2倍;第一管区的长度有利地小于该复合管总长度的50%。
第二管区的长度0.05-10倍,优选0.1-5倍,尤其是0.2-2倍于该多层复合管的内径。
第三管区的长度0.05-10倍,优选0.1-5倍,尤其是0.2-2倍于该复合管的内径。
在第三管区中,金属管,即该金属搭接部分的壁厚有利地0.01-0.5倍于总壁厚,优选0.03-0.3倍于总壁厚,尤其是0.05-0.1倍于总壁厚。
在第二管区中,该陶瓷搭接部分的壁厚有利地0.05-0.9倍于总壁厚,优选0.05-0.5倍于总壁厚,尤其是0.05-0.25倍于总壁厚。在该第二管区,套管的壁厚有利地0.05-0.9倍于总壁厚,优选0.05-0.5倍于总壁厚,尤其是0.05-0.025倍于总壁厚。
整体陶瓷层的厚度有利地为0.5-45mm,优选1-25mm,特别优选3-15mm。该氧化纤维复合陶瓷层的厚度有利地为0.5-5mm,优选0.5-3mm。
进行密封的另一可能方式有利地包括与多层复合管的末端连接的金属套管,套管的内外表面分区段结合于内层和外层。与内层的结合使用本领域熟练技术人员已知的结合技术气密进行(Informationszentrum Technische Keramik(IZTK):BreviertechnischeKeramik,Fahner Verlag,Lauf(2003))。与外层的连接为原子水平的连接。
本发明有利地包括一种连接件,其包括包括金属管,例如至少一个气体输送金属导管的第一管区,包括连接第一管区且包括陶瓷外层和金属内层的第二管区,和连接第二管区且包括包括金属内层、陶瓷中间层和陶瓷外层的夹层结构的第三管区,其中陶瓷层之一包括无孔整体陶瓷层且另一陶瓷层包括纤维复合陶瓷层,和连接第三管区且包括包括至少两个层,即无孔整体陶瓷层和纤维复合陶瓷层的多层复合管的第四管区。
纤维复合陶瓷有利地为陶瓷外层。无孔整体陶瓷层有利地为内层。作为替换,纤维复合陶瓷为陶瓷内层。作为替换,无孔整体陶瓷层为外层。纤维复合陶瓷优选为氧化的。无孔整体陶瓷优选为氧化物陶瓷。
第一管区的长度大于该多层复合管内径的0.05倍,优选大于0.1倍,尤其是大于0.2倍;第一管区的长度有利地小于复合管总长度的50%。
第二管区的长度0.05-10倍,优选0.1-5倍,尤其是0.2-2倍于多层复合管的内径。
第三管区的长度0.05-10倍,优选0.1-5倍,尤其是0.2-2倍于复合管的内径。
在第三管区,金属管,即金属搭接部分的壁厚有利地0.01-0.5倍于总壁厚,优选0.03-0.3倍于总壁厚,尤其是0.05-0.1倍于总壁厚。
在第二管区,陶瓷搭接部分的壁厚有利地0.1-0.95倍于总壁厚,优选0.5-0.95倍于总壁厚,尤其是0.8-0.95倍于总壁厚。在第二管区,套管的壁厚有利地0.05-0.9倍于总壁厚,优选0.05-0.5倍于总壁厚,尤其是0.05-0.2倍于总壁厚。
整体陶瓷层的厚度有利地为0.5-45mm,优选1-25mm,特别优选3-15mm。该氧化纤维复合陶瓷层的厚度有利地为0.5-5mm,优选0.5-3mm。
本发明有利地包括一种连接件,其包括包括金属管,例如至少一个气体输送金属导管的第一管区,包括连接第一管区且包括包括陶瓷内层、金属中间层和陶瓷外层的夹层结构的第二管区,其中陶瓷层之一包括无孔整体陶瓷层且另一陶瓷层包括纤维复合陶瓷层,和连接第二管区且包括包括至少两个层,即无孔整体陶瓷层和纤维复合陶瓷层的多层复合管的第三管区。
纤维复合陶瓷有利地为陶瓷内层。无孔整体陶瓷层有利地为外层。作为替换,纤维复合陶瓷为陶瓷外层。作为替换,无孔整体陶瓷层为内层。纤维复合陶瓷优选为氧化的。无孔整体陶瓷优选为氧化物陶瓷。
第二管区的长度0.05-10倍,优选0.1-5倍,尤其是0.2-2倍于该多层复合管的内径。
在第二管区,金属管,即金属搭接部分的壁厚有利地0.01-0.5倍于总壁厚,优选0.03-0.3倍于总壁厚,尤其是0.05-0.1倍于总壁厚。
在第二管区,陶瓷搭接部分的壁厚有利地0.1-0.95倍于总壁厚,优选0.5-0.95倍于总壁厚,尤其是0.8-0.95倍于总壁厚。在第二管区,套管的壁厚有利地0.05-0.9倍于总壁厚,优选0.05-0.5倍于总壁厚,尤其是0.05-0.2倍于总壁厚。
整体陶瓷层的厚度有利地为0.5-45mm,优选1-25mm,特别优选3-15mm。该氧化纤维复合陶瓷层的厚度有利地为0.5-5mm,优选0.5-3mm。
本发明有利地包括一种连接件,其包括包括金属管,例如至少一个气体输送金属导管的第一管区,包括连接第一管区且包括包括陶瓷内层、陶瓷中间层和金属外层的夹层结构的第二管区,其中陶瓷层之一包括无孔整体陶瓷层且另一陶瓷层包括纤维复合陶瓷层,和连接第二管区且包括包括至少两个层,即无孔整体陶瓷层和纤维复合陶瓷层的多层复合管的第三管区。
纤维复合陶瓷有利地为陶瓷内层。该无孔整体陶瓷层有利地为外层。作为替换,该纤维复合陶瓷为陶瓷外层。作为替换,该无孔整体陶瓷层为内层。该纤维复合陶瓷优选为氧化的。该无孔整体陶瓷优选为氧化物陶瓷。
第二管区的长度0.05-10倍,优选0.1-5倍,尤其是0.2-2倍于该多层复合管的内径。
在第二管区,该金属管,即该金属搭接部分的壁厚有利地0.01-0.5倍于总壁厚,优选0.03-0.3倍于总壁厚,尤其是0.05-0.1倍于总壁厚。
在第二管区,该陶瓷搭接部分的壁厚有利地0.1-0.95倍于总壁厚,优选0.5-0.95倍于总壁厚,尤其是0.8-0.95倍于总壁厚。在该第二管区,套管的壁厚有利地0.05-0.9倍于总壁厚,优选0.05-0.5倍于总壁厚,尤其是0.05-0.2倍于总壁厚。
整体陶瓷层的厚度有利地为0.5-45mm,优选1-25mm,特别优选2-15mm。该氧化纤维复合陶瓷层的厚度有利地为0.5-5mm,优选0.5-3mm。
多层复合管通常垂直设置,在一端以固定方式安装且在另一端松散安装。优选将其在下端以固定方式夹紧并且在上端沿轴向可移动地设置。以这种设置,该管可以在没有应力下经历热膨胀。
该解决方案的一个方案由两个同心管构成。内管有利地具有10-100mm,优选15-50mm,尤其是20-30mm的管内径。该内管有利地在两端敞开且该外管有利地在一端封闭。该外管有利地具有20-1000mm,优选50-800mm,尤其是100-500mm的管内径。在敞开的边界区域,有利地密封内外管的壁。主反应段有利地设置于内管和外管之间的环形空间中。可以将反应物引入该环形空间中并从内管取出产物料流,或者反之亦然。进料导管和出料导管的连接件设置于敞开管端。封闭管端可以松散地(没有任何定向)伸入加热空间中并在其中无阻碍地膨胀。这确保可能在轴向上不出现温度诱发的应力。该构造确保多层复合管需要仅在一端夹紧和以冷状态密封并且可以在封闭端经历无障碍的热膨胀。
因此,本发明包括一种用于吸热反应的双管反应器,其中该反应器包括两个传热系数>500W/m2/K且在每种情况下包括至少两个层,即无孔整体陶瓷层和纤维复合陶瓷层的多层复合管,其中一个复合管包围另一复合管以及内部复合管在两端敞开且外管在一端封闭。
该纤维复合陶瓷有利地为包括两个同心管的多层复合管的陶瓷外层。该无孔整体陶瓷层有利地为内层。作为替换,该纤维复合陶瓷为陶瓷内层。作为替换,该无孔整体陶瓷层为外层。该纤维复合陶瓷优选为氧化的。该无孔整体陶瓷优选为氧化物陶瓷。
双层结构使得由整体无孔陶瓷构成的管的气密性和耐热性与该纤维复合陶瓷的有利故障行为(“断裂之前开裂”)结合成为可能。
具有封闭边界区域的根据本发明的设备使得多层复合管在常规构造的外部设备上的气密连接成为可能。
根据本发明的陶瓷多层复合管有利地用于下列方法:
·通过使用蒸汽和/或CO2重整烃类生产合成气。
·通过烃类热解联产氢气和热解碳。
·由甲烷和氨(Degussa)或丙烷和氨制备氢氰酸。
·通过烃类(石脑油、乙烷、丙烷)的蒸汽裂化制备烯烃。
·偶联甲烷以得到乙烯、乙炔和苯。
根据本发明的陶瓷复合管有利地在下列应用中用作反应管:
·具有轴向温度控制的反应器,例如
ο流化床反应器,
ο管壳式反应器,
ο重整器和裂解炉。
·喷射管,火焰筒。
·逆流反应器。
·膜反应器。
·旋转管式炉用旋转管。
根据本发明的多层复合管的优点在下文通过对比实施例来显示。实施例1:具有凹陷的本发明多层复合管和不含凹陷的多层复合管上的温度分布的比较
通过数值模拟(CFD=计算流体动力学)测定蒸汽传导管中的温度分布。在该实施例中,模拟1米长的多层陶瓷复合管,其内径为0.047m且整体陶瓷的管壁厚度为4mm,纤维陶瓷的管壁厚度为1.5mm。
下表3显示了这里采用的管材料的性能。
材料数据,900℃ Al<sub>2</sub>O<sub>3</sub> 纤维陶瓷 金属管
ρ(密度,kg/m3) 2800 2900 7600
c<sub>p</sub>(比热容,J/kgK) 900 900 663
λ(导热系数,W/mK) 706.1*T’<sup>(-0.672)</sup> 58.9*T’<sup>(-0.479)</sup> 24
T’=局部温度,以℃计
除了具有本发明凹陷的管外,还模拟了具有相同结构而无凹陷的管。在具有凹陷的管中,模拟每个圆周段8个凹陷,其在每种情况半径为13.8mm且在凹陷中心之间的距离为12.5mm以轴向位移排列。
模拟中规定流体的入口温度为750℃,质量流量为8kg/s且外管壁温度恒定为950℃。
模拟结果显示在图1中。绘制了相对于管壁内部温度的频率分布(模拟中离散的表面元素量),左侧面板为具有凹陷的本发明管且右侧面板为无凹陷的相同结构的管。显然的是与无凹陷的管相比,凹陷整体降低平均管壁温度且由此减少结焦,而同时由于改善的传热,转移至流体料流的热流增加14%。该实施例还显示由于凹陷处的局部传热改善,管壁温度的分布变得较宽。这是特别有利的,因为该效果减少凹陷内部中的结焦,且因此即使在结焦工艺过程中也能保持凹陷的结构和改善的传热效果。
实施例2:具有凹陷的本发明多层复合管与具有凹陷的金属管(材料S+C
Figure BDA0003260990720000201
HT-E)的温度分布比较
在第二实施例中,将上述具有凹陷的本发明多层复合管与几何形状相同的具有凹陷的金属管进行比较。模拟的结果显示在图2中。绘制了相对于管壁内部温度的频率分布(模拟中离散的表面元素量),左侧面板为具有凹陷的本发明管且右侧面板为同样具有相同结构的凹陷的具有相同结构的金属管。正如图2所示,陶瓷管的温度分布较宽。这反映了陶瓷管的凹陷处(低温)和剩余的管壁表面区域(高温)之间温差较大。认为陶瓷管中较差的导热性导致了该较明显的温度散射。该结果是令人惊讶的且表明凹陷对陶瓷管比对金属管更有利,因为对陶瓷管而言,尤其减少凹陷处的焦炭形成且因此凹陷的积极作用保留更长时间。在金属管的情况下,凹陷会迅速被焦炭形成所填充。

Claims (17)

1.一种传热系数>500W/m2/K的多层复合管,包括至少两个层,其在其结构中在复合管壁的横截面上包括被氧化纤维复合陶瓷的外层包围的作为内层的零开孔孔隙率整体氧化物陶瓷,其中该外层具有5%<ε<50%,优选10%<ε<30%的开孔孔隙率ε,并且其在复合管的内表面上包括多个面向复合管外壁的凹陷。
2.根据权利要求1的复合管,其中复合管的根据DIN EN 993-11的抗热冲击性大于50K/h。
3.根据权利要求1-2中任一项的复合管,其中所述凹陷具有0.5-2mm的深度。
4.根据权利要求1-3中任一项的复合管,其中所述凹陷均匀地分布在复合管的内表面上。
5.根据权利要求1-4中任一项的复合管,其中所述凹陷非均匀分布在复合管的内表面上。
6.根据权利要求1-5中任一项的复合管,其中复合管的内表面以基于复合管的总内表面为10-95%的程度提供有凹陷。
7.根据权利要求1-6中任一项的复合管,其中凹陷是凹形的。
8.根据权利要求1-7中任一项的复合管,其中凹陷具有在横截面上是圆形的结构且具有2-30mm的直径。
9.根据权利要求1-8中任一项的复合管,其中复合管的总壁厚为0.5-50mm。
10.根据权利要求1-9中任一项的复合管,其中复合管的管内直径为10-1000mm。
11.根据权利要求1-10中任一项的复合管,其中所采用的氧化纤维复合陶瓷是SiC/Al2O3、SiC/莫来石、C/Al2O3、C/莫来石、Al2O3/Al2O3、Al2O3/莫来石、莫来石/Al2O3和/或莫来石/莫来石。
12.根据权利要求1-11中任一项的复合管,其中复合管含有两个层,即内层和外层,其中内层由无孔整体氧化物陶瓷构成且外层由氧化纤维复合陶瓷构成。
13.根据权利要求1-11中任一项的复合管,其中复合管具有如下结构,其中无孔整体氧化物陶瓷由氧化纤维复合陶瓷所覆盖。
14.根据权利要求1-13中任一项的复合管,其中内层具有0.5-45mm的最小层厚。
15.根据权利要求1-14中任一项的复合管在通过用蒸汽和/或二氧化碳使烃重整而生产合成气体、通过烃热解联产氢气和热解碳、由甲烷和氨或由丙烷和氨生产氢氰酸、通过烃的蒸汽裂化生产烯烃和/或甲烷偶联得到乙烯、乙炔和苯中的用途。
16.根据权利要求1-14中任一项的复合管在具有轴向温度控制的反应器、逆流反应器、膜反应器、喷射管、火焰筒和/或旋转管式炉用旋转管中作为反应管的用途。
17.一种生产根据权利要求1的多层复合管的方法,其中所述凹陷通过压制方法压印。
CN202080021018.3A 2019-03-15 2020-03-06 气密性、透热性多层陶瓷复合管 Pending CN113573891A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19163157 2019-03-15
EP19163157.1 2019-03-15
PCT/EP2020/056003 WO2020187607A1 (de) 2019-03-15 2020-03-06 Gasdichtes, wärmedurchlässiges, keramisches und mehrschichtiges verbundrohr

Publications (1)

Publication Number Publication Date
CN113573891A true CN113573891A (zh) 2021-10-29

Family

ID=65817918

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080021018.3A Pending CN113573891A (zh) 2019-03-15 2020-03-06 气密性、透热性多层陶瓷复合管

Country Status (7)

Country Link
US (1) US20220152584A1 (zh)
EP (1) EP3938206B1 (zh)
JP (1) JP2022525353A (zh)
KR (1) KR20210142142A (zh)
CN (1) CN113573891A (zh)
CA (1) CA3133519A1 (zh)
WO (1) WO2020187607A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024120969A1 (en) * 2022-12-05 2024-06-13 Basf Se A tube furnace for the use in a sintering and/or debinding process
WO2024124542A1 (en) * 2022-12-16 2024-06-20 Linde Gmbh Method for carry out a chemical reaction, use of a burner lance, and device for carrying out a chemical reaction

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053166A (ja) * 2001-08-20 2003-02-25 Nok Corp 多孔質セラミックス中空糸膜の緻密化方法
US20060062984A1 (en) * 2002-07-04 2006-03-23 Bodo Benitsch Multilayer composite
CN101019193A (zh) * 2004-06-07 2007-08-15 西屋电气有限责任公司 在核和化石发电厂中用于燃料安全壳屏蔽和其它应用的多层陶瓷管
CN101448636A (zh) * 2006-05-10 2009-06-03 申克碳化技术股份有限公司 耐压的流体加载的物体
CN107683384A (zh) * 2015-05-19 2018-02-09 巴斯夫欧洲公司 气密、导热的多层陶瓷复合管
CN107850241A (zh) * 2015-07-09 2018-03-27 沙特基础全球技术有限公司 烃裂化系统中结焦的最小化
US20190070579A1 (en) * 2016-04-12 2019-03-07 Basf Antwerren Nv Reactor for a cracking furnace

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105813725B (zh) 2013-10-11 2018-08-17 赢创德固赛有限公司 用于制备氰化氢的反应管和方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053166A (ja) * 2001-08-20 2003-02-25 Nok Corp 多孔質セラミックス中空糸膜の緻密化方法
US20060062984A1 (en) * 2002-07-04 2006-03-23 Bodo Benitsch Multilayer composite
CN101019193A (zh) * 2004-06-07 2007-08-15 西屋电气有限责任公司 在核和化石发电厂中用于燃料安全壳屏蔽和其它应用的多层陶瓷管
CN101448636A (zh) * 2006-05-10 2009-06-03 申克碳化技术股份有限公司 耐压的流体加载的物体
CN107683384A (zh) * 2015-05-19 2018-02-09 巴斯夫欧洲公司 气密、导热的多层陶瓷复合管
CN107850241A (zh) * 2015-07-09 2018-03-27 沙特基础全球技术有限公司 烃裂化系统中结焦的最小化
US20190070579A1 (en) * 2016-04-12 2019-03-07 Basf Antwerren Nv Reactor for a cracking furnace

Also Published As

Publication number Publication date
US20220152584A1 (en) 2022-05-19
EP3938206A1 (de) 2022-01-19
CA3133519A1 (en) 2020-09-24
JP2022525353A (ja) 2022-05-12
KR20210142142A (ko) 2021-11-24
WO2020187607A1 (de) 2020-09-24
EP3938206B1 (de) 2023-05-10

Similar Documents

Publication Publication Date Title
CN107683384B (zh) 气密、导热的多层陶瓷复合管
US9011620B2 (en) Double transition joint for the joining of ceramics to metals
JP5249924B2 (ja) 流体負荷可能な耐圧体
US6960333B2 (en) High performance heat exchangers
EP1454670B1 (en) Trichlorosilane production in apparatus comprising SiC parts
CN113573891A (zh) 气密性、透热性多层陶瓷复合管
CA2668468C (en) Collecting main for tubular cracking furnaces
AU2019316684B2 (en) Device comprising a pressure-bearing device shell and an interior scaffolding system
KR20030051833A (ko) 산업적 화학 장치용 원통형 튜브
WO2017060818A1 (en) Convection section having a decliner plate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination