CN113538484B - 一种深度细化的多重信息嵌套边缘检测方法 - Google Patents
一种深度细化的多重信息嵌套边缘检测方法 Download PDFInfo
- Publication number
- CN113538484B CN113538484B CN202110746455.8A CN202110746455A CN113538484B CN 113538484 B CN113538484 B CN 113538484B CN 202110746455 A CN202110746455 A CN 202110746455A CN 113538484 B CN113538484 B CN 113538484B
- Authority
- CN
- China
- Prior art keywords
- image
- convolution
- images
- information extraction
- combined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000003708 edge detection Methods 0.000 title claims abstract description 16
- 238000000605 extraction Methods 0.000 claims abstract description 100
- 230000004927 fusion Effects 0.000 claims abstract description 72
- 238000011176 pooling Methods 0.000 claims abstract description 23
- 230000006835 compression Effects 0.000 claims abstract description 16
- 238000007906 compression Methods 0.000 claims abstract description 16
- 238000013528 artificial neural network Methods 0.000 claims abstract description 8
- 238000007634 remodeling Methods 0.000 claims abstract description 4
- 230000004044 response Effects 0.000 claims description 30
- 230000004913 activation Effects 0.000 claims description 24
- 238000012545 processing Methods 0.000 claims description 20
- 238000005070 sampling Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 4
- 230000003044 adaptive effect Effects 0.000 claims description 3
- 238000001514 detection method Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 5
- 238000013135 deep learning Methods 0.000 description 4
- 238000012549 training Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/13—Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20221—Image fusion; Image merging
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110746455.8A CN113538484B (zh) | 2021-07-01 | 2021-07-01 | 一种深度细化的多重信息嵌套边缘检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110746455.8A CN113538484B (zh) | 2021-07-01 | 2021-07-01 | 一种深度细化的多重信息嵌套边缘检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113538484A CN113538484A (zh) | 2021-10-22 |
CN113538484B true CN113538484B (zh) | 2022-06-10 |
Family
ID=78097547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110746455.8A Active CN113538484B (zh) | 2021-07-01 | 2021-07-01 | 一种深度细化的多重信息嵌套边缘检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113538484B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114463360B (zh) * | 2021-10-27 | 2024-03-15 | 广西科技大学 | 一种基于仿生型特征增强网络的轮廓检测方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105740869A (zh) * | 2016-01-28 | 2016-07-06 | 北京工商大学 | 一种基于多尺度多分辨率的方形算子边缘提取方法及系统 |
CN107610140A (zh) * | 2017-08-07 | 2018-01-19 | 中国科学院自动化研究所 | 基于深度融合修正网络的精细边缘检测方法、装置 |
CN110706242A (zh) * | 2019-08-26 | 2020-01-17 | 浙江工业大学 | 一种基于深度残差网络的对象级边缘检测方法 |
CN111242138A (zh) * | 2020-01-11 | 2020-06-05 | 杭州电子科技大学 | 一种基于多尺度特征融合的rgbd显著性检测方法 |
CN111325762A (zh) * | 2020-01-21 | 2020-06-23 | 广西科技大学 | 基于密集连接解码网络的轮廓检测方法 |
CN112347859A (zh) * | 2020-10-15 | 2021-02-09 | 北京交通大学 | 一种光学遥感图像显著性目标检测方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8457437B2 (en) * | 2010-03-23 | 2013-06-04 | Raytheon Company | System and method for enhancing registered images using edge overlays |
US10410353B2 (en) * | 2017-05-18 | 2019-09-10 | Mitsubishi Electric Research Laboratories, Inc. | Multi-label semantic boundary detection system |
-
2021
- 2021-07-01 CN CN202110746455.8A patent/CN113538484B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105740869A (zh) * | 2016-01-28 | 2016-07-06 | 北京工商大学 | 一种基于多尺度多分辨率的方形算子边缘提取方法及系统 |
CN107610140A (zh) * | 2017-08-07 | 2018-01-19 | 中国科学院自动化研究所 | 基于深度融合修正网络的精细边缘检测方法、装置 |
CN110706242A (zh) * | 2019-08-26 | 2020-01-17 | 浙江工业大学 | 一种基于深度残差网络的对象级边缘检测方法 |
CN111242138A (zh) * | 2020-01-11 | 2020-06-05 | 杭州电子科技大学 | 一种基于多尺度特征融合的rgbd显著性检测方法 |
CN111325762A (zh) * | 2020-01-21 | 2020-06-23 | 广西科技大学 | 基于密集连接解码网络的轮廓检测方法 |
CN112347859A (zh) * | 2020-10-15 | 2021-02-09 | 北京交通大学 | 一种光学遥感图像显著性目标检测方法 |
Non-Patent Citations (5)
Title |
---|
Fast accurate contours for 3D shape recognition;M. U. Butt等;《2015 IEEE Intelligent Vehicles Symposium (IV)》;20150827;第832-838页 * |
Lateral refinement network for contour detection;Chuan Lin等;《Neurocomputing》;20200624;第409卷;第361-371页 * |
一种基于密集深度分离卷积的SAR图像水域分割算法;张金松;《雷达学报》;20190307;第8卷(第03期);第400-412页 * |
基于多层次感知网络的GF-2遥感影像建筑物提取;卢麒等;《国土资源遥感》;20210615;第33卷(第02期);第75-84页 * |
视觉仿生轮廓检测中多尺度融合方法研究;林川等;《计算机仿真》;20190415;第36卷(第04期);第362-368页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113538484A (zh) | 2021-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112116605B (zh) | 一种基于集成深度卷积神经网络的胰腺ct图像分割方法 | |
CN106875373B (zh) | 基于卷积神经网络剪枝算法的手机屏幕mura缺陷检测方法 | |
CN108256482B (zh) | 一种基于卷积神经网络进行分布学习的人脸年龄估计方法 | |
CN110827297A (zh) | 基于改进的条件生成对抗网络的绝缘子分割方法 | |
CN112435191B (zh) | 一种基于多个神经网络结构融合的低照度图像增强方法 | |
CN111145116A (zh) | 一种基于生成对抗网络的海面雨天图像样本增广方法 | |
CN107464217B (zh) | 一种图像处理方法及装置 | |
CN110223304B (zh) | 一种基于多路径聚合的图像分割方法、装置和计算机可读存储介质 | |
CN111325762B (zh) | 基于密集连接解码网络的轮廓检测方法 | |
CN109325513B (zh) | 一种基于海量单类单幅图像的图像分类网络训练方法 | |
CN111062432B (zh) | 一种语义上多模态图像生成的方法 | |
CN109872326B (zh) | 基于深度强化网络跳跃连接的轮廓检测方法 | |
CN113642445A (zh) | 一种基于全卷积神经网络的高光谱影像分类方法 | |
CN114742985A (zh) | 一种高光谱特征提取方法、装置及存储介质 | |
CN113066025A (zh) | 一种基于增量学习与特征、注意力传递的图像去雾方法 | |
CN113538484B (zh) | 一种深度细化的多重信息嵌套边缘检测方法 | |
CN113436198A (zh) | 一种协同图像超分辨率重建的遥感图像语义分割方法 | |
CN111160378A (zh) | 基于单张图像的多任务增强的深度估计系统 | |
CN111882516B (zh) | 一种基于视觉显著性和深度神经网络的图像质量评价方法 | |
CN110599495B (zh) | 一种基于语义信息挖掘的图像分割方法 | |
CN109410158A (zh) | 一种基于卷积神经网络的多焦点图像融合方法 | |
CN109949334B (zh) | 基于深度强化网络残差连接的轮廓检测方法 | |
CN109934835B (zh) | 基于深度强化网络邻接连接的轮廓检测方法 | |
CN109102457B (zh) | 一种基于卷积神经网络的智能化变色系统及方法 | |
CN111767842B (zh) | 基于迁移学习和自编码器数据增强的微表情种类判别方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20211022 Assignee: Liuzhou Wanyou Printing Co.,Ltd. Assignor: GUANGXI University OF SCIENCE AND TECHNOLOGY Contract record no.: X2023980054135 Denomination of invention: A Deep Refined Multi information Nested Edge Detection Method Granted publication date: 20220610 License type: Common License Record date: 20231225 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
OL01 | Intention to license declared | ||
OL01 | Intention to license declared | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20211022 Assignee: LIUZHOU DADI COMMUNICATION TECHNOLOGY CO.,LTD. Assignor: GUANGXI University OF SCIENCE AND TECHNOLOGY Contract record no.: X2024980019164 Denomination of invention: A Deep Refinement Multi Information Nested Edge Detection Method Granted publication date: 20220610 License type: Open License Record date: 20241018 |