[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN113257968B - A light emitting diode with a nitrogen polar face n-type electron blocking layer - Google Patents

A light emitting diode with a nitrogen polar face n-type electron blocking layer Download PDF

Info

Publication number
CN113257968B
CN113257968B CN202110509350.0A CN202110509350A CN113257968B CN 113257968 B CN113257968 B CN 113257968B CN 202110509350 A CN202110509350 A CN 202110509350A CN 113257968 B CN113257968 B CN 113257968B
Authority
CN
China
Prior art keywords
layer
nitride
type
electron blocking
nitrogen polar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110509350.0A
Other languages
Chinese (zh)
Other versions
CN113257968A (en
Inventor
张�雄
徐珅禹
胡国华
崔一平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202110509350.0A priority Critical patent/CN113257968B/en
Publication of CN113257968A publication Critical patent/CN113257968A/en
Application granted granted Critical
Publication of CN113257968B publication Critical patent/CN113257968B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/817Bodies characterised by the crystal structures or orientations, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/811Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
    • H10H20/812Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/816Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
    • H10H20/8162Current-blocking structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/824Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
    • H10H20/825Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN

Landscapes

  • Led Devices (AREA)

Abstract

本发明公开了一种具有氮极性面n型电子阻挡层的发光二极管,由下至上依次包括衬底、氮极性氮化物层、极性反转氮化物层、n型氮化物欧姆接触层、n型氮极性面电子阻挡层、非掺杂超晶格结构层、多量子阱有源层、p型氮化物欧姆接触层。在n型氮化物欧姆接触层和p型氮化物欧姆接触层上分别设置n型电极和p型电极。本发明所提供的具有氮极性面的n型电子阻挡层,能够从空间上限制电子进入有源区的数量,并且由于移除了传统的p型掺杂电子阻挡层,所以能够增加了空穴的注入率,使空穴与电子注入有源区的数量保持在均衡的水平,可提高有源区电子与空穴辐射复合发光的概率,从而提高发光二极管的性能。

Figure 202110509350

The invention discloses a light emitting diode with a nitrogen polar surface n-type electron blocking layer, which comprises a substrate, a nitrogen polar nitride layer, a polarity inversion nitride layer, and an n-type nitride ohmic contact layer in order from bottom to top , n-type nitrogen polar surface electron blocking layer, undoped superlattice structure layer, multiple quantum well active layer, p-type nitride ohmic contact layer. An n-type electrode and a p-type electrode are respectively provided on the n-type nitride ohmic contact layer and the p-type nitride ohmic contact layer. The n-type electron blocking layer with nitrogen polar face provided by the present invention can spatially limit the number of electrons entering the active region, and because the traditional p-type doped electron blocking layer is removed, it can increase the amount of electrons entering the active region. The injection rate of holes keeps the number of holes and electrons injected into the active region at a balanced level, which can improve the probability of electrons and holes in the active region radiating recombination light, thereby improving the performance of the light-emitting diode.

Figure 202110509350

Description

一种具有氮极性面n型电子阻挡层的发光二极管A light-emitting diode with a nitrogen-polarized n-type electron blocking layer

技术领域technical field

本发明提供了一种具有氮极性面n型电子阻挡层的发光二极管(LED),属于半导体光电子材料和器件制造技术领域。The invention provides a light emitting diode (LED) with a nitrogen polar plane n-type electron blocking layer, which belongs to the technical field of semiconductor optoelectronic materials and device manufacturing.

背景技术Background technique

因为LED具有高效,节能,可靠性高,寿命长等优点,且在节能减排、环境保护方面相比于传统照明光源具有很大的优势,所以目前已经逐步取代荧光灯和白炽灯等传统照明方式。但是,研究表明,如图2所示,在大电流注入条件下LED的内量子效率快速下降,电子很容易克服量子阱的限制到达p区与空穴进行非辐射复合,是导致大电流密度工作条件下LED发光效率下降的一个主要因素,严重制约了LED的应用和发展。因此,降低电子的泄露率是提高LED的发光效率的重要途径之一。Because LED has the advantages of high efficiency, energy saving, high reliability and long life, and has great advantages over traditional lighting sources in terms of energy saving, emission reduction and environmental protection, it has gradually replaced traditional lighting methods such as fluorescent lamps and incandescent lamps. . However, studies have shown that, as shown in Figure 2, the internal quantum efficiency of the LED drops rapidly under the condition of high current injection, and electrons can easily overcome the limitation of quantum wells to reach the p region for non-radiative recombination with holes, which leads to high current density operation. A major factor in the decline of LED luminous efficiency under conditions has seriously restricted the application and development of LEDs. Therefore, reducing the leakage rate of electrons is one of the important ways to improve the luminous efficiency of LEDs.

由于电子具有比空穴更小的有效质量和更高的迁移率,并且LED中的电子浓度远大于空穴的浓度,所以多余的电子可以很容易地穿过多量子阱有源区进入p型区,造成严重的电流泄漏进而降低LED芯片的发光效率。为了在有效阻挡电子溢出的同时提高空穴的注入效率,科研工作者们尝试了诸多方法改进电子阻挡层结构,包括采用Al组分渐变的AlGaN电子阻挡层,p-AlGaN/GaN超晶格电子阻挡层以及复合极性面电子阻挡层等。然而这些电子阻挡层仍然无法令人满意地解决以下技术问题:1)传统的p型电子阻挡层在阻挡电子泄露的同时也降低了空穴注入效率,导致LED中的载流子的辐射复合效率与发光效率下降;2)多量子阱有源区与电子阻挡层的晶格失配一般较大,导致有源区内存在较强的极化电场,引起异质结界面的能带弯曲,电子和空穴的波函数在空间上发生分离,降低载流子的辐射复合效率,此即所谓的量子限制斯塔克效应;3)为提高空穴注入效率而使用氮极性面的p型电子阻挡层往往需要进行Mg元素的重掺杂来诱导极性反转,这会引起薄膜内Mg的掺杂聚集,从而导致晶体质量的恶化。因此,进一步改进设计和制备合适的电子阻挡层结构对于提高氮化镓基LED的发光效率具有重要的意义。Since electrons have a smaller effective mass and higher mobility than holes, and the concentration of electrons in LEDs is much greater than that of holes, the excess electrons can easily pass through the MW active region into p-type area, causing serious current leakage and reducing the luminous efficiency of the LED chip. In order to effectively block the overflow of electrons and improve the injection efficiency of holes, researchers have tried many methods to improve the structure of the electron blocking layer, including AlGaN electron blocking layers with graded Al composition, p-AlGaN/GaN superlattice electrons Blocking layer and composite polar surface electron blocking layer, etc. However, these electron blocking layers are still unable to satisfactorily solve the following technical problems: 1) The traditional p-type electron blocking layers can block electron leakage while reducing the hole injection efficiency, resulting in the radiative recombination efficiency of carriers in LEDs 2) The lattice mismatch between the active region of the multiple quantum well and the electron blocking layer is generally large, resulting in a strong polarization electric field in the active region, causing the energy band bending of the heterojunction interface, and the electron The wave function of the hole and the hole are separated in space, reducing the radiative recombination efficiency of carriers, which is the so-called quantum confinement Stark effect; 3) In order to improve the hole injection efficiency, the p-type electrons of the nitrogen polar surface are used The barrier layer often needs to be heavily doped with Mg element to induce polarity reversal, which can cause the doping aggregation of Mg in the film, resulting in the deterioration of crystal quality. Therefore, it is of great significance to further improve the design and preparation of a suitable electron blocking layer structure for improving the luminous efficiency of GaN-based LEDs.

发明内容SUMMARY OF THE INVENTION

发明目的:针对上述现有技术,提出一种具有氮极性面的n型电子阻挡层结构,提高LED的内量子效率,提升LED器件的发光效率。Purpose of the invention: In view of the above prior art, an n-type electron blocking layer structure with nitrogen polar surface is proposed to improve the internal quantum efficiency of LEDs and the luminous efficiency of LED devices.

技术方案:一种具有氮极性面n型电子阻挡层的发光二极管,包括由下而上依次设置的衬底101、氮极性面氮化物层102、极性反转氮化物层103、n型氮化物欧姆接触层104、n型氮极性面电子阻挡层106、非掺杂超晶格结构氮化物层107、多量子阱有源层108、p型氮化物欧姆接触层109,以及n型氮化物欧姆接触层104上设置的n型电极105和在p型氮化物欧姆接触层109上设置的p型电极110。Technical solution: a light emitting diode with a nitrogen polar surface n-type electron blocking layer, comprising a substrate 101, a nitrogen polar surface nitride layer 102, a polarity inversion nitride layer 103, n type nitride ohmic contact layer 104, n-type nitrogen polar surface electron blocking layer 106, undoped superlattice structure nitride layer 107, multiple quantum well active layer 108, p-type nitride ohmic contact layer 109, and n-type nitride ohmic contact layer 109 The n-type electrode 105 provided on the ohmic contact layer 104 of the nitride type and the p-type electrode 110 provided on the ohmic contact layer 109 of the p-type nitride.

进一步的,n型氮极性面电子阻挡层106的禁带宽度大于非掺杂超晶格结构氮化物层107中势垒层和多量子阱有源层108中势垒层的禁带宽度,且非掺杂超晶格结构氮化物层107中势垒层的禁带宽度大于多量子阱有源层108中势垒层的禁带宽度。Further, the forbidden band width of the n-type nitrogen polar surface electron blocking layer 106 is greater than the forbidden band width of the barrier layer in the undoped superlattice nitride layer 107 and the barrier layer in the multiple quantum well active layer 108, And the forbidden band width of the barrier layer in the undoped superlattice nitride layer 107 is larger than the forbidden band width of the barrier layer in the multiple quantum well active layer 108 .

进一步的,氮极性面n型电子阻挡层106选用组分均匀或者渐变的AlGaN、InGaN三元氮化物材料或AlInGaN四元氮化物材料,厚度为1-20nm,使用Si元素进行n型掺杂,掺杂形成的电子浓度为1×1018~5×1019cm-3Further, the nitrogen polar plane n-type electron blocking layer 106 is made of AlGaN, InGaN ternary nitride material or AlInGaN quaternary nitride material with uniform or graded composition, the thickness is 1-20nm, and Si element is used for n-type doping , the electron concentration formed by doping is 1×10 18 -5×10 19 cm -3 .

进一步的,非掺杂超晶格结构氮化物层107的重复周期数为2~20,禁带宽度沿生长方向线性递减,每个周期长度为2-10nm,选用AlGaN/AlInGaN超晶格结构以及由三元或者四元氮化物与AlGaN/AIlnGaN超晶格组成的复合型超晶格结构中的任一种。Further, the number of repetition periods of the undoped superlattice nitride layer 107 is 2-20, the forbidden band width decreases linearly along the growth direction, and the length of each period is 2-10 nm, and the AlGaN/AlInGaN superlattice structure and Any of the composite superlattice structures composed of ternary or quaternary nitrides and AlGaN/AIInGaN superlattices.

进一步的,氮极性面氮化物层102为组分均匀的氮化镓或氮化铝材料。Further, the nitrogen polar surface nitride layer 102 is made of gallium nitride or aluminum nitride material with uniform composition.

进一步的,极性反转氮化物层103的厚度为0.1~1μm,选用组分均匀的经过图形化处理的GaN、AlN二元氮化物材料。Further, the thickness of the polarity inversion nitride layer 103 is 0.1-1 μm, and a patterned GaN and AlN binary nitride material with uniform composition is selected.

进一步的,p型氮化物欧姆接触层109的厚度为20~500nm,选用组分均匀的p型GaN二元氮化物材料,或p型AlGaN、InGaN三元氮化物材料,或p型AlInGaN四元氮化物材料,或组分渐变的AlGaN、InGaN、AlInGaN氮化物材料;p型氮化物欧姆接触层109使用Mg元素进行p型掺杂,掺杂形成的空穴浓度为1×1016~1×1019cm-3Further, the thickness of the p-type nitride ohmic contact layer 109 is 20-500 nm, and a p-type GaN binary nitride material with uniform composition, or a p-type AlGaN, InGaN ternary nitride material, or a p-type AlInGaN quaternary material is selected. Nitride material, or AlGaN, InGaN, AlInGaN nitride material with graded composition; p-type nitride ohmic contact layer 109 is p-type doped with Mg element, and the hole concentration formed by doping is 1×10 16 ~1× 10 19 cm -3 .

进一步的,多量子阱有源层108的重复周期数为3~10,每个周期的长度为3~15nm,选用组分均匀的GaN二元氮化物材料,或AlGaN、InGaN三元氮化物材料,或AlInGaN四元氮化物材料,或组分渐变的AlGaN、InGaN、AlInGaN氮化物材料构成多量子阱有源层。Further, the number of repeated cycles of the multi-quantum well active layer 108 is 3-10, the length of each cycle is 3-15 nm, and a GaN binary nitride material with uniform composition, or an AlGaN, InGaN ternary nitride material is selected. , or AlInGaN quaternary nitride materials, or AlGaN, InGaN, and AlInGaN nitride materials with graded composition constitute the multiple quantum well active layer.

进一步的,n型氮化物欧姆接触层104的厚度为0.5~5μm,选用组分均匀的AlGaN三元氮化物层,或InAlGaN四元氮化物层,或者组分渐变的AlGaN、InAlGaN氮化物层,AlGaN/InAlGaN超晶格结构以及三元或者四元氮化物与AlGaN/InAlGaN超晶格组成的复合型结构中的任何一种;n型氮化物欧姆接触层104中的势垒层使用Si元素进行n型掺杂,掺杂形成的电子浓度为1×1017~1×1020cm-3Further, the thickness of the n-type nitride ohmic contact layer 104 is 0.5-5 μm, and an AlGaN ternary nitride layer with a uniform composition, or an InAlGaN quaternary nitride layer, or a graded AlGaN and InAlGaN nitride layer is selected. Any of the AlGaN/InAlGaN superlattice structure and the composite structure composed of ternary or quaternary nitride and AlGaN/InAlGaN superlattice; the barrier layer in the n-type nitride ohmic contact layer 104 is made of Si element. n-type doping, the electron concentration formed by doping is 1×10 17 to 1×10 20 cm -3 .

有益效果:与传统的具有p型电子阻挡层的LED相比,本发明提供的具有氮极性面的n型电子阻挡层的LED具有以下优点:Beneficial effects: Compared with the traditional LED with the p-type electron blocking layer, the LED with the n-type electron blocking layer provided by the present invention has the following advantages:

1)通过采用一种具有氮极性面的n型电子阻挡层结构,可以提供足够高的势垒,限制了电子进入有源区的数量,而且氮极性面能够提供与金属极性面的自发极化方向相反的电场,有助于抵消部分极化电场,因而从空间上限制了有源区电子的浓度。1) By adopting an n-type electron blocking layer structure with a nitrogen polar face, a sufficiently high potential barrier can be provided to limit the number of electrons entering the active region, and the nitrogen polar face can provide the The electric field with the opposite direction of spontaneous polarization helps to cancel the partial polarization electric field, thus spatially limiting the concentration of electrons in the active region.

2)氮极性面的自发极化电场方向与有源区的极化方向相反,有助于抵消部分极化电场,能够降低多量子阱有源区内的量子限制斯塔克效应,增加电子空穴的辐射复合几率,从而提高LED的内量子效率。2) The direction of the spontaneous polarization electric field of the nitrogen polar surface is opposite to the polarization direction of the active region, which helps to offset the partial polarization electric field, which can reduce the quantum confinement Stark effect in the active region of the multiple quantum well and increase the number of electrons. The radiative recombination probability of holes, thereby improving the internal quantum efficiency of the LED.

3)非掺杂氮化物超晶格结构层能够有效地降低n型电子阻挡层与多量子阱有源区之间的晶格失配,从而减小压电极化效应带来的极化电场,提高氮极性面n型电子阻挡层的有效势垒,降低异质结界面处的二维电子气密度,提高载流子的空间分布均匀性和重合率。3) The undoped nitride superlattice structure layer can effectively reduce the lattice mismatch between the n-type electron blocking layer and the multiple quantum well active region, thereby reducing the polarization electric field caused by the piezoelectric polarization effect , improve the effective barrier of the n-type electron blocking layer on the nitrogen polar surface, reduce the two-dimensional electron gas density at the interface of the heterojunction, and improve the spatial distribution uniformity and coincidence rate of carriers.

4)由于移除了传统LED结构中的p型电子阻挡层,所以可显著增加空穴向多量子阱有源区的注入效率,从而能够保证有源区内空穴与电子的浓度维持在均衡的水平,有利于提高电子和空穴的辐射复合效率。4) Since the p-type electron blocking layer in the traditional LED structure is removed, the injection efficiency of holes into the active region of the multi-quantum well can be significantly increased, thereby ensuring that the concentration of holes and electrons in the active region is maintained at equilibrium It is beneficial to improve the radiative recombination efficiency of electrons and holes.

附图说明Description of drawings

图1为本发明提供的一种具有氮极性面的n型电子阻挡层的LED断面结构示意图,其中:衬底101、氮极性面氮化物层102、极性反转氮化物层103、n型氮化物欧姆接触层104、n型电极105、n型氮极性面电子阻挡层106、非掺杂超晶格结构氮化物层107、多量子阱有源层108、p型氮化物欧姆接触层109、p型电极110;1 is a schematic cross-sectional structure diagram of an LED with an n-type electron blocking layer with a nitrogen polar plane provided by the present invention, wherein: a substrate 101, a nitrogen polar plane nitride layer 102, a polarity inversion nitride layer 103, n-type nitride ohmic contact layer 104, n-type electrode 105, n-type nitrogen polar surface electron blocking layer 106, undoped superlattice structure nitride layer 107, multiple quantum well active layer 108, p-type nitride ohmic layer Contact layer 109, p-type electrode 110;

图2为现有技术制备的LED断面结构示意图,其中:衬底201、氮化物成核层202、氮化物缓冲层203、n型氮化物欧姆接触层204、多量子阱有源区205、p型氮化物电子阻挡层206、p型氮化物空穴注入层207、氧化铟锡(ITO)导电层208、n型电极209和p型电极210。2 is a schematic cross-sectional structure diagram of an LED prepared by the prior art, wherein: a substrate 201, a nitride nucleation layer 202, a nitride buffer layer 203, an n-type nitride ohmic contact layer 204, a multiple quantum well active region 205, p Type nitride electron blocking layer 206 , p-type nitride hole injection layer 207 , indium tin oxide (ITO) conductive layer 208 , n-type electrode 209 and p-type electrode 210 .

具体实施方式Detailed ways

下面结合附图对本发明做更进一步的解释。The present invention will be further explained below in conjunction with the accompanying drawings.

如图1所示,一种具有氮极性面n型电子阻挡层的发光二极管,包括由下而上依次设置的衬底101、氮极性面氮化物层102、极性反转氮化物层103、n型氮化物欧姆接触层104、n型氮极性面电子阻挡层106、非掺杂超晶格结构氮化物层107、多量子阱有源层108、p型氮化物欧姆接触层109,以及n型氮化物欧姆接触层104上设置的n型电极105和在p型氮化物欧姆接触层109上设置的p型电极110。As shown in FIG. 1 , a light emitting diode with a nitrogen polar plane n-type electron blocking layer includes a substrate 101 , a nitrogen polar plane nitride layer 102 , and a polarity inversion nitride layer which are sequentially arranged from bottom to top 103, n-type nitride ohmic contact layer 104, n-type nitrogen polar surface electron blocking layer 106, undoped superlattice structure nitride layer 107, multiple quantum well active layer 108, p-type nitride ohmic contact layer 109 , and the n-type electrode 105 provided on the n-type nitride ohmic contact layer 104 and the p-type electrode 110 provided on the p-type nitride ohmic contact layer 109 .

其中,氮极性面氮化物层102为组分均匀的氮化镓或氮化铝材料。极性反转氮化物层103的厚度为0.1~1μm,选用组分均匀的经过图形化处理的GaN、AlN二元氮化物材料。The nitrogen polar surface nitride layer 102 is made of gallium nitride or aluminum nitride material with uniform composition. The thickness of the polarity-reversed nitride layer 103 is 0.1-1 μm, and a patterned GaN and AlN binary nitride material with uniform composition is selected.

n型氮化物欧姆接触层104的厚度为0.5~5μm,选用组分均匀的AlGaN三元氮化物层,或InAlGaN四元氮化物层,或者组分渐变的AlGaN、InAlGaN氮化物层,AlGaN/InAlGaN超晶格结构以及三元或者四元氮化物与AlGaN/InAlGaN超晶格组成的复合型结构中的任何一种;n型氮化物欧姆接触层104中的势垒层使用Si元素进行n型掺杂,掺杂形成的电子浓度为1×1017~1×1020cm-3The thickness of the n-type nitride ohmic contact layer 104 is 0.5-5 μm, and an AlGaN ternary nitride layer with uniform composition, or an InAlGaN quaternary nitride layer, or a graded AlGaN, InAlGaN nitride layer, AlGaN/InAlGaN layer is selected. Any one of the superlattice structure and the composite structure composed of ternary or quaternary nitride and AlGaN/InAlGaN superlattice; the barrier layer in the n-type nitride ohmic contact layer 104 is n-type doped with Si element The electron concentration formed by doping is 1×10 17 -1×10 20 cm -3 .

n型氮极性面电子阻挡层106的禁带宽度大于非掺杂超晶格结构氮化物层107中势垒层和多量子阱有源层108中势垒层的禁带宽度,且非掺杂超晶格结构氮化物层107中势垒层的禁带宽度大于多量子阱有源层108中势垒层的禁带宽度。氮极性面n型电子阻挡层106选用组分均匀或者渐变的AlGaN、InGaN三元氮化物材料或AlInGaN四元氮化物材料,厚度为1-20nm,使用Si元素进行n型掺杂,掺杂形成的电子浓度为1×1018~5×1019cm-3The forbidden band width of the n-type nitrogen polar surface electron blocking layer 106 is larger than the forbidden band width of the barrier layer in the undoped superlattice nitride layer 107 and the barrier layer in the multiple quantum well active layer 108, and the undoped The forbidden band width of the barrier layer in the hetero-superlattice structure nitride layer 107 is larger than the forbidden band width of the barrier layer in the multiple quantum well active layer 108 . Nitrogen polar plane n-type electron blocking layer 106 is selected from AlGaN, InGaN ternary nitride material or AlInGaN quaternary nitride material with uniform or graded composition, the thickness is 1-20nm, and Si element is used for n-type doping, doping The resulting electron concentration is 1×10 18 to 5×10 19 cm −3 .

非掺杂超晶格结构氮化物层107的重复周期数为2~20,禁带宽度沿生长方向线性递减,每个周期长度为2-10nm,选用AlGaN/AlInGaN超晶格结构以及由三元或者四元氮化物与AlGaN/AIlnGaN超晶格组成的复合型超晶格结构中的任一种。The number of repetition periods of the non-doped superlattice nitride layer 107 is 2-20, the forbidden band width decreases linearly along the growth direction, and the length of each period is 2-10 nm. AlGaN/AlInGaN superlattice structure and ternary Or any one of the composite superlattice structure composed of quaternary nitride and AlGaN/AIInGaN superlattice.

多量子阱有源层108的重复周期数为3~10,每个周期的长度为3~15nm,选用组分均匀的GaN二元氮化物材料,或AlGaN、InGaN三元氮化物材料,或AlInGaN四元氮化物材料,或组分渐变的AlGaN、InGaN、AlInGaN氮化物材料构成多量子阱有源层。The number of repetition periods of the multi-quantum well active layer 108 is 3-10, the length of each period is 3-15 nm, and a GaN binary nitride material with uniform composition, or an AlGaN, InGaN ternary nitride material, or AlInGaN is selected. Quaternary nitride materials, or AlGaN, InGaN, and AlInGaN nitride materials with graded composition constitute the multiple quantum well active layer.

p型氮化物欧姆接触层109的厚度为20~500nm,选用组分均匀的p型GaN二元氮化物材料,或p型AlGaN、InGaN三元氮化物材料,或p型AlInGaN四元氮化物材料,或组分渐变的AlGaN、InGaN、AlInGaN氮化物材料;p型氮化物欧姆接触层109使用Mg元素进行p型掺杂,掺杂形成的空穴浓度为1×1016~1×1019cm-3The thickness of the p-type nitride ohmic contact layer 109 is 20-500 nm, and a p-type GaN binary nitride material with uniform composition, or a p-type AlGaN, InGaN ternary nitride material, or a p-type AlInGaN quaternary nitride material is selected. , or AlGaN, InGaN, AlInGaN nitride materials with graded composition; the p-type nitride ohmic contact layer 109 is p-type doped with Mg element, and the hole concentration formed by doping is 1×10 16 ~1×10 19 cm -3 .

本实施例中,发光二极管由c面蓝宝石衬底101、氮极性面GaN层102、极性反转AlN层103、n型Al0.2Ga0.8N欧姆接触层104、n型氮极性面Al0.3Ga0.7N电子阻挡层106、非掺杂AlxGa1-xN/AlyGa1-yN超晶格结构氮化物层107、In0.2Ga0.8N/GaN多量子阱有源层108、p型GaN欧姆接触层109,以及在n型Al0.2Ga0.8N欧姆接触层104上设置的n型电极105以及在p型GaN欧姆接触层109上设置的p型电极110。In this embodiment, the light emitting diode is composed of a c-plane sapphire substrate 101, a nitrogen polar plane GaN layer 102, a polarity inversion AlN layer 103, an n-type Al 0.2 Ga 0.8 N ohmic contact layer 104, and an n-type nitrogen polar plane Al 0.3 Ga 0.7 N electron blocking layer 106 , undoped Al x Ga 1-x N/A y Ga 1-y N superlattice nitride layer 107 , In 0.2 Ga 0.8 N/GaN multiple quantum well active layer 108 , a p-type GaN ohmic contact layer 109 , and an n-type electrode 105 provided on the n-type Al 0.2 Ga 0.8 N ohmic contact layer 104 and a p-type electrode 110 provided on the p-type GaN ohmic contact layer 109 .

氮极性面GaN层102的厚度为50nm,极性反转AlN层103的厚度为500nm,n型Al0.2Ga0.8N欧姆接触层104的厚度为2μm,n型氮极性面Al0.3Ga0.7N电子阻挡层106的厚度为20nm,非掺杂AlxGa1-xN/AlyGa1-yN超晶格结构107中AlxGa1-xN和AlyGa1-yN层的厚度分别为4nm和6nm,每个周期的长度为10nm,重复20个周期,总厚度为200nm,且x沿生长方向由0.3线性递减至0.05,y沿生长方向由0.25线性递减至0,In0.2Ga0.8N/GaN多量子阱有源层108中的In0.2Ga0.8N阱宽3nm,GaN势垒厚度7nm,周期长度为10nm,重复20个周期,总厚度为200nm,p型GaN欧姆接触层109的厚度为100nm。The thickness of the nitrogen polar plane GaN layer 102 is 50 nm, the thickness of the polarity inversion AlN layer 103 is 500 nm, the thickness of the n-type Al 0.2 Ga 0.8 N ohmic contact layer 104 is 2 μm, and the thickness of the n-type nitrogen polar plane Al 0.3 Ga 0.7 The thickness of the N electron blocking layer 106 is 20 nm, the AlxGa1 - xN and AlyGa1 - yN layers in the undoped AlxGa1 - xN / AlyGa1 -yN superlattice structure 107 The thicknesses are 4nm and 6nm respectively, the length of each cycle is 10nm, repeated 20 cycles, the total thickness is 200nm, and x decreases linearly from 0.3 to 0.05 along the growth direction, y decreases linearly from 0.25 to 0 along the growth direction, In The In 0.2 Ga 0.8 N well in the 0.2 Ga 0.8 N/GaN multiple quantum well active layer 108 has a width of 3 nm, a GaN barrier thickness of 7 nm, a period length of 10 nm, repeated 20 cycles, a total thickness of 200 nm, and p-type GaN ohmic contact The thickness of layer 109 is 100 nm.

通过采用具有氮极性面的n型Al0.3Ga0.7N电子阻挡层结构,从空间上和时间上限制了电子进入有源区的数量。具体而言,n型氮极性面Al0.3Ga0.7N电子阻挡层能够提供足够高的势垒,以及与金属极性面自发极化方向相反的电场,从而可以控制电子在有源区的浓度;而且氮极性面的自发极化电场方向与有源区中的极化方向相反,有助于抵消部分极化电场,降低多量子阱有源区内的量子限制斯塔克效应,增加电子空穴的辐射复合几率,从而提高LED的内量子效率。同时,由于移除了传统LED结构中的p型电子阻挡层,所以可显著增加空穴向多量子阱有源区的注入效率,从而能够保证有源区内空穴与电子的浓度维持在均衡的水平,可提高电子和空穴的辐射复合效率。此外,采用非掺杂氮化物超晶格结构层能够有效地降低n型Al0.3Ga0.7N电子阻挡层与In0.2Ga0.8N/GaN多量子阱有源区之间的晶格失配,从而可以减小压电极化效应带来的极化电场,提高氮极性面n型Al0.3Ga0.7N电子阻挡层的有效势垒,降低异质结界面处的二维电子气密度,提高载流子的空间分布均匀性和重合率。By adopting an n-type Al 0.3 Ga 0.7 N electron blocking layer structure with nitrogen polar facets, the number of electrons entering the active region is spatially and temporally limited. Specifically, the n-type nitrogen polar plane Al 0.3 Ga 0.7 N electron blocking layer can provide a sufficiently high potential barrier and an electric field opposite to the spontaneous polarization direction of the metal polar plane, so that the concentration of electrons in the active region can be controlled ; and the direction of the spontaneous polarization electric field of the nitrogen polar surface is opposite to the polarization direction in the active region, which helps to offset part of the polarization electric field, reduce the quantum confinement Stark effect in the active region of the multiple quantum well, and increase the number of electrons. The radiative recombination probability of holes, thereby improving the internal quantum efficiency of the LED. At the same time, since the p-type electron blocking layer in the traditional LED structure is removed, the injection efficiency of holes into the active region of the multiple quantum well can be significantly increased, thereby ensuring that the concentration of holes and electrons in the active region is maintained at equilibrium can improve the radiative recombination efficiency of electrons and holes. In addition, the use of the undoped nitride superlattice structure layer can effectively reduce the lattice mismatch between the n-type Al 0.3 Ga 0.7 N electron blocking layer and the In 0.2 Ga 0.8 N/GaN multiple quantum well active region, thereby It can reduce the polarization electric field caused by the piezoelectric polarization effect, improve the effective barrier of the n-type Al 0.3 Ga 0.7 N electron blocking layer on the nitrogen polar plane, reduce the two-dimensional electron gas density at the interface of the heterojunction, and improve the load-carrying capacity. The spatial distribution uniformity and coincidence rate of the carriers.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can be made. It should be regarded as the protection scope of the present invention.

Claims (8)

1. A light emitting diode with a nitrogen polar surface n-type electron blocking layer is characterized in that: the N-type nitride-based multi-quantum-well substrate comprises a substrate (101), a nitrogen polar surface nitride layer (102), a polarity reversal nitride layer (103), an n-type nitride ohmic contact layer (104), an n-type nitrogen polar surface electron barrier layer (106), a non-doped superlattice structure nitride layer (107), a multi-quantum-well active layer (108), a p-type nitride ohmic contact layer (109) which are sequentially arranged from bottom to top, an n-type electrode (105) arranged on the n-type nitride ohmic contact layer (104) and a p-type electrode (110) arranged on the p-type nitride ohmic contact layer (109);
the forbidden band width of the n-type nitrogen polar surface electron blocking layer (106) is larger than the forbidden band width of the barrier layer in the non-doped superlattice structure nitride layer (107) and the forbidden band width of the barrier layer in the multi-quantum well active layer (108), and the forbidden band width of the barrier layer in the non-doped superlattice structure nitride layer (107) is larger than the forbidden band width of the barrier layer in the multi-quantum well active layer (108).
2. The light emitting diode with a nitrogen polar face n-type electron blocking layer as claimed in claim 1, wherein: the n-type electron blocking layer (106) with the nitrogen polar surface is made of AlGaN, InGaN ternary nitride material or AlInGaN quaternary nitride material with uniform or gradually changed components, the thickness is 1-20nm, Si is used for n-type doping, and the concentration of electrons formed by doping is 1 multiplied by 1018~5×1019cm-3
3. The light emitting diode with a nitrogen polar face n-type electron blocking layer as claimed in claim 1, wherein: the number of repetition cycles of the undoped superlattice nitride layer (107) is 2-20, the forbidden bandwidth is linearly decreased along the growth direction, the length of each cycle is 2-10nm, and any one of an AlGaN/AlInGaN superlattice structure and a composite superlattice structure consisting of ternary or quaternary nitride and AlGaN/AIlnGaN superlattice is selected.
4. The light-emitting diode having a nitrogen polar plane n-type electron blocking layer according to any one of claims 1 to 3, wherein: the nitrogen polar face nitride layer (102) is a gallium nitride or aluminum nitride material with uniform composition.
5. The light-emitting diode having a nitrogen polar plane n-type electron blocking layer according to any one of claims 1 to 3, wherein: the thickness of the polarity reversal nitride layer (103) is 0.1-1 μm, and a GaN and AlN binary nitride material with uniform components and subjected to patterning treatment is selected.
6. The light-emitting diode having a nitrogen polar plane n-type electron blocking layer according to any one of claims 1 to 3, wherein: the thickness of the p-type nitride ohmic contact layer (109) is 20-500 nm, and a p-type GaN binary nitride material with uniform components or p-type AlGaN and InGaN ternary nitride material is selectedThe material, or p-type AlInGaN quaternary nitride material, or AlGaN, InGaN, AlInGaN nitride material with gradually changed components; the p-type nitride ohmic contact layer (109) is p-doped with Mg element to form holes with a concentration of 1X 1016~1×1019cm-3
7. A light emitting diode having a nitrogen polar face n-type electron blocking layer according to any one of claims 1 to 3, wherein: the number of repetition cycles of the multiple quantum well active layer (108) is 3-10, the length of each cycle is 3-15 nm, and a GaN binary nitride material with uniform components, or an AlGaN and InGaN ternary nitride material, or an AlInGaN quaternary nitride material, or an AlGaN, InGaN and AlInGaN nitride material with gradually changed components is selected to form the multiple quantum well active layer.
8. The light-emitting diode having a nitrogen polar plane n-type electron blocking layer according to any one of claims 1 to 3, wherein: the thickness of the n-type nitride ohmic contact layer (104) is 0.5-5 mu m, and any one of an AlGaN ternary nitride layer with uniform components, an InAlGaN quaternary nitride layer, an AlGaN/InAlGaN superlattice structure with gradually changed components, an InAlGaN/InAlGaN quaternary nitride layer and a composite structure consisting of ternary or quaternary nitride and AlGaN/InAlGaN superlattice is selected; the barrier layer in the n-type nitride ohmic contact layer (104) is n-doped with Si element to form an electron concentration of 1 x 1017~1×1020cm-3
CN202110509350.0A 2021-05-11 2021-05-11 A light emitting diode with a nitrogen polar face n-type electron blocking layer Active CN113257968B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110509350.0A CN113257968B (en) 2021-05-11 2021-05-11 A light emitting diode with a nitrogen polar face n-type electron blocking layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110509350.0A CN113257968B (en) 2021-05-11 2021-05-11 A light emitting diode with a nitrogen polar face n-type electron blocking layer

Publications (2)

Publication Number Publication Date
CN113257968A CN113257968A (en) 2021-08-13
CN113257968B true CN113257968B (en) 2022-07-01

Family

ID=77222585

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110509350.0A Active CN113257968B (en) 2021-05-11 2021-05-11 A light emitting diode with a nitrogen polar face n-type electron blocking layer

Country Status (1)

Country Link
CN (1) CN113257968B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115832136B (en) * 2023-02-22 2023-06-06 江西兆驰半导体有限公司 AlGaN-based ultraviolet light-emitting diode and preparation method thereof
CN116111015B (en) * 2023-04-11 2023-07-18 江西兆驰半导体有限公司 Multiple quantum well light-emitting layer, light-emitting diode epitaxial wafer and preparation method of light-emitting diode epitaxial wafer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870283A (en) * 2016-05-17 2016-08-17 东南大学 Light-emitting diode with composite polar face electron blocking layer
CN109346575A (en) * 2018-09-03 2019-02-15 淮安澳洋顺昌光电技术有限公司 A kind of light-emitting diode epitaxial wafer and preparation method thereof
CN110970533A (en) * 2019-12-30 2020-04-07 广东德力光电有限公司 Purple light epitaxial structure of LED flip chip and preparation method thereof
CN111599903A (en) * 2020-06-23 2020-08-28 东南大学 A UV LED with a polarization-doped composite polar plane electron blocking layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870283A (en) * 2016-05-17 2016-08-17 东南大学 Light-emitting diode with composite polar face electron blocking layer
CN109346575A (en) * 2018-09-03 2019-02-15 淮安澳洋顺昌光电技术有限公司 A kind of light-emitting diode epitaxial wafer and preparation method thereof
CN110970533A (en) * 2019-12-30 2020-04-07 广东德力光电有限公司 Purple light epitaxial structure of LED flip chip and preparation method thereof
CN111599903A (en) * 2020-06-23 2020-08-28 东南大学 A UV LED with a polarization-doped composite polar plane electron blocking layer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Effect of Polarization-Matched n-Type AlGaInN Electron-Blocking Layer on the Optoelectronic Properties of Blue InGaN Light-Emitting Diodes;Yun Li,et.al;《JOURNAL OF DISPLAY TECHNOLOGY》;20130212;第9卷(第4期);第244-248页 *

Also Published As

Publication number Publication date
CN113257968A (en) 2021-08-13

Similar Documents

Publication Publication Date Title
CN103489975B (en) A kind of nitrogen polar surface light emitting diode with tunnel junction structure
CN102738329B (en) Group III nitride semiconductor light-emitting device
CN102144342B (en) Nitride semiconductor light emitting device and semiconductor light emitting device
US9373750B2 (en) Group III nitride semiconductor light-emitting device
CN111599902B (en) Light-emitting diode with hole injection structure electron barrier layer
US20130228747A1 (en) Nitride semiconductor light emitting device
CN111599903B (en) Ultraviolet LED with polarization-doped composite polar surface electron barrier layer
JP3839799B2 (en) Semiconductor light emitting device
CN107240627A (en) A kind of UV LED with codope multi-quantum pit structure
CN103367581A (en) Light emitting diode with electronic barrier layer structure
CN105870283A (en) Light-emitting diode with composite polar face electron blocking layer
Chen et al. High brightness green light emitting diodes with charge asymmetric resonance tunneling structure
CN107195746A (en) A kind of light emitting diode with resonant tunneling structure electronic barrier layer
CN113257968B (en) A light emitting diode with a nitrogen polar face n-type electron blocking layer
JP2001036196A (en) Gallium nitride light emitting element with p-type dopant material diffusion preventing layer
JP2003204122A (en) Nitride semiconductor element
CN111628059B (en) AlGaN-based deep ultraviolet light-emitting diode device and preparation method thereof
CN104993028A (en) Light-emitting diode epitaxial wafer
CN105977349B (en) A kind of multiple-active-region light emitting diode with p-i-n tunnel knots
JP2004104088A (en) Nitride semiconductor device
CN111326626A (en) A semiconductor light-emitting device capable of improving hole transport capability
CN109671825B (en) Polar semiconductor light-emitting diode
CN116682907B (en) A multi-quantum well layer and deep ultraviolet light-emitting diode based on AlGaN
TWI559571B (en) Nitride semiconductor structure and semiconductor light-emitting element
CN118676277B (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant