CN113257968B - A light emitting diode with a nitrogen polar face n-type electron blocking layer - Google Patents
A light emitting diode with a nitrogen polar face n-type electron blocking layer Download PDFInfo
- Publication number
- CN113257968B CN113257968B CN202110509350.0A CN202110509350A CN113257968B CN 113257968 B CN113257968 B CN 113257968B CN 202110509350 A CN202110509350 A CN 202110509350A CN 113257968 B CN113257968 B CN 113257968B
- Authority
- CN
- China
- Prior art keywords
- layer
- nitride
- type
- electron blocking
- nitrogen polar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims abstract description 96
- 230000000903 blocking effect Effects 0.000 title claims abstract description 49
- 229910052757 nitrogen Inorganic materials 0.000 title claims abstract description 48
- 150000004767 nitrides Chemical class 0.000 claims abstract description 117
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims description 39
- 229910002704 AlGaN Inorganic materials 0.000 claims description 34
- 229910002601 GaN Inorganic materials 0.000 claims description 23
- 230000004888 barrier function Effects 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 18
- 239000002131 composite material Substances 0.000 claims description 7
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000000059 patterning Methods 0.000 claims 1
- 238000002347 injection Methods 0.000 abstract description 8
- 239000007924 injection Substances 0.000 abstract description 8
- 230000006798 recombination Effects 0.000 abstract description 8
- 238000005215 recombination Methods 0.000 abstract description 8
- 230000010287 polarization Effects 0.000 description 14
- 230000005684 electric field Effects 0.000 description 10
- 230000007423 decrease Effects 0.000 description 5
- 239000000969 carrier Substances 0.000 description 4
- 230000002269 spontaneous effect Effects 0.000 description 4
- 230000005699 Stark effect Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005036 potential barrier Methods 0.000 description 2
- 230000005533 two-dimensional electron gas Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/817—Bodies characterised by the crystal structures or orientations, e.g. polycrystalline, amorphous or porous
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
- H10H20/8162—Current-blocking structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
Landscapes
- Led Devices (AREA)
Abstract
本发明公开了一种具有氮极性面n型电子阻挡层的发光二极管,由下至上依次包括衬底、氮极性氮化物层、极性反转氮化物层、n型氮化物欧姆接触层、n型氮极性面电子阻挡层、非掺杂超晶格结构层、多量子阱有源层、p型氮化物欧姆接触层。在n型氮化物欧姆接触层和p型氮化物欧姆接触层上分别设置n型电极和p型电极。本发明所提供的具有氮极性面的n型电子阻挡层,能够从空间上限制电子进入有源区的数量,并且由于移除了传统的p型掺杂电子阻挡层,所以能够增加了空穴的注入率,使空穴与电子注入有源区的数量保持在均衡的水平,可提高有源区电子与空穴辐射复合发光的概率,从而提高发光二极管的性能。
The invention discloses a light emitting diode with a nitrogen polar surface n-type electron blocking layer, which comprises a substrate, a nitrogen polar nitride layer, a polarity inversion nitride layer, and an n-type nitride ohmic contact layer in order from bottom to top , n-type nitrogen polar surface electron blocking layer, undoped superlattice structure layer, multiple quantum well active layer, p-type nitride ohmic contact layer. An n-type electrode and a p-type electrode are respectively provided on the n-type nitride ohmic contact layer and the p-type nitride ohmic contact layer. The n-type electron blocking layer with nitrogen polar face provided by the present invention can spatially limit the number of electrons entering the active region, and because the traditional p-type doped electron blocking layer is removed, it can increase the amount of electrons entering the active region. The injection rate of holes keeps the number of holes and electrons injected into the active region at a balanced level, which can improve the probability of electrons and holes in the active region radiating recombination light, thereby improving the performance of the light-emitting diode.
Description
技术领域technical field
本发明提供了一种具有氮极性面n型电子阻挡层的发光二极管(LED),属于半导体光电子材料和器件制造技术领域。The invention provides a light emitting diode (LED) with a nitrogen polar plane n-type electron blocking layer, which belongs to the technical field of semiconductor optoelectronic materials and device manufacturing.
背景技术Background technique
因为LED具有高效,节能,可靠性高,寿命长等优点,且在节能减排、环境保护方面相比于传统照明光源具有很大的优势,所以目前已经逐步取代荧光灯和白炽灯等传统照明方式。但是,研究表明,如图2所示,在大电流注入条件下LED的内量子效率快速下降,电子很容易克服量子阱的限制到达p区与空穴进行非辐射复合,是导致大电流密度工作条件下LED发光效率下降的一个主要因素,严重制约了LED的应用和发展。因此,降低电子的泄露率是提高LED的发光效率的重要途径之一。Because LED has the advantages of high efficiency, energy saving, high reliability and long life, and has great advantages over traditional lighting sources in terms of energy saving, emission reduction and environmental protection, it has gradually replaced traditional lighting methods such as fluorescent lamps and incandescent lamps. . However, studies have shown that, as shown in Figure 2, the internal quantum efficiency of the LED drops rapidly under the condition of high current injection, and electrons can easily overcome the limitation of quantum wells to reach the p region for non-radiative recombination with holes, which leads to high current density operation. A major factor in the decline of LED luminous efficiency under conditions has seriously restricted the application and development of LEDs. Therefore, reducing the leakage rate of electrons is one of the important ways to improve the luminous efficiency of LEDs.
由于电子具有比空穴更小的有效质量和更高的迁移率,并且LED中的电子浓度远大于空穴的浓度,所以多余的电子可以很容易地穿过多量子阱有源区进入p型区,造成严重的电流泄漏进而降低LED芯片的发光效率。为了在有效阻挡电子溢出的同时提高空穴的注入效率,科研工作者们尝试了诸多方法改进电子阻挡层结构,包括采用Al组分渐变的AlGaN电子阻挡层,p-AlGaN/GaN超晶格电子阻挡层以及复合极性面电子阻挡层等。然而这些电子阻挡层仍然无法令人满意地解决以下技术问题:1)传统的p型电子阻挡层在阻挡电子泄露的同时也降低了空穴注入效率,导致LED中的载流子的辐射复合效率与发光效率下降;2)多量子阱有源区与电子阻挡层的晶格失配一般较大,导致有源区内存在较强的极化电场,引起异质结界面的能带弯曲,电子和空穴的波函数在空间上发生分离,降低载流子的辐射复合效率,此即所谓的量子限制斯塔克效应;3)为提高空穴注入效率而使用氮极性面的p型电子阻挡层往往需要进行Mg元素的重掺杂来诱导极性反转,这会引起薄膜内Mg的掺杂聚集,从而导致晶体质量的恶化。因此,进一步改进设计和制备合适的电子阻挡层结构对于提高氮化镓基LED的发光效率具有重要的意义。Since electrons have a smaller effective mass and higher mobility than holes, and the concentration of electrons in LEDs is much greater than that of holes, the excess electrons can easily pass through the MW active region into p-type area, causing serious current leakage and reducing the luminous efficiency of the LED chip. In order to effectively block the overflow of electrons and improve the injection efficiency of holes, researchers have tried many methods to improve the structure of the electron blocking layer, including AlGaN electron blocking layers with graded Al composition, p-AlGaN/GaN superlattice electrons Blocking layer and composite polar surface electron blocking layer, etc. However, these electron blocking layers are still unable to satisfactorily solve the following technical problems: 1) The traditional p-type electron blocking layers can block electron leakage while reducing the hole injection efficiency, resulting in the radiative recombination efficiency of carriers in LEDs 2) The lattice mismatch between the active region of the multiple quantum well and the electron blocking layer is generally large, resulting in a strong polarization electric field in the active region, causing the energy band bending of the heterojunction interface, and the electron The wave function of the hole and the hole are separated in space, reducing the radiative recombination efficiency of carriers, which is the so-called quantum confinement Stark effect; 3) In order to improve the hole injection efficiency, the p-type electrons of the nitrogen polar surface are used The barrier layer often needs to be heavily doped with Mg element to induce polarity reversal, which can cause the doping aggregation of Mg in the film, resulting in the deterioration of crystal quality. Therefore, it is of great significance to further improve the design and preparation of a suitable electron blocking layer structure for improving the luminous efficiency of GaN-based LEDs.
发明内容SUMMARY OF THE INVENTION
发明目的:针对上述现有技术,提出一种具有氮极性面的n型电子阻挡层结构,提高LED的内量子效率,提升LED器件的发光效率。Purpose of the invention: In view of the above prior art, an n-type electron blocking layer structure with nitrogen polar surface is proposed to improve the internal quantum efficiency of LEDs and the luminous efficiency of LED devices.
技术方案:一种具有氮极性面n型电子阻挡层的发光二极管,包括由下而上依次设置的衬底101、氮极性面氮化物层102、极性反转氮化物层103、n型氮化物欧姆接触层104、n型氮极性面电子阻挡层106、非掺杂超晶格结构氮化物层107、多量子阱有源层108、p型氮化物欧姆接触层109,以及n型氮化物欧姆接触层104上设置的n型电极105和在p型氮化物欧姆接触层109上设置的p型电极110。Technical solution: a light emitting diode with a nitrogen polar surface n-type electron blocking layer, comprising a
进一步的,n型氮极性面电子阻挡层106的禁带宽度大于非掺杂超晶格结构氮化物层107中势垒层和多量子阱有源层108中势垒层的禁带宽度,且非掺杂超晶格结构氮化物层107中势垒层的禁带宽度大于多量子阱有源层108中势垒层的禁带宽度。Further, the forbidden band width of the n-type nitrogen polar surface
进一步的,氮极性面n型电子阻挡层106选用组分均匀或者渐变的AlGaN、InGaN三元氮化物材料或AlInGaN四元氮化物材料,厚度为1-20nm,使用Si元素进行n型掺杂,掺杂形成的电子浓度为1×1018~5×1019cm-3。Further, the nitrogen polar plane n-type
进一步的,非掺杂超晶格结构氮化物层107的重复周期数为2~20,禁带宽度沿生长方向线性递减,每个周期长度为2-10nm,选用AlGaN/AlInGaN超晶格结构以及由三元或者四元氮化物与AlGaN/AIlnGaN超晶格组成的复合型超晶格结构中的任一种。Further, the number of repetition periods of the undoped
进一步的,氮极性面氮化物层102为组分均匀的氮化镓或氮化铝材料。Further, the nitrogen polar
进一步的,极性反转氮化物层103的厚度为0.1~1μm,选用组分均匀的经过图形化处理的GaN、AlN二元氮化物材料。Further, the thickness of the polarity
进一步的,p型氮化物欧姆接触层109的厚度为20~500nm,选用组分均匀的p型GaN二元氮化物材料,或p型AlGaN、InGaN三元氮化物材料,或p型AlInGaN四元氮化物材料,或组分渐变的AlGaN、InGaN、AlInGaN氮化物材料;p型氮化物欧姆接触层109使用Mg元素进行p型掺杂,掺杂形成的空穴浓度为1×1016~1×1019cm-3。Further, the thickness of the p-type nitride
进一步的,多量子阱有源层108的重复周期数为3~10,每个周期的长度为3~15nm,选用组分均匀的GaN二元氮化物材料,或AlGaN、InGaN三元氮化物材料,或AlInGaN四元氮化物材料,或组分渐变的AlGaN、InGaN、AlInGaN氮化物材料构成多量子阱有源层。Further, the number of repeated cycles of the multi-quantum well
进一步的,n型氮化物欧姆接触层104的厚度为0.5~5μm,选用组分均匀的AlGaN三元氮化物层,或InAlGaN四元氮化物层,或者组分渐变的AlGaN、InAlGaN氮化物层,AlGaN/InAlGaN超晶格结构以及三元或者四元氮化物与AlGaN/InAlGaN超晶格组成的复合型结构中的任何一种;n型氮化物欧姆接触层104中的势垒层使用Si元素进行n型掺杂,掺杂形成的电子浓度为1×1017~1×1020cm-3。Further, the thickness of the n-type nitride
有益效果:与传统的具有p型电子阻挡层的LED相比,本发明提供的具有氮极性面的n型电子阻挡层的LED具有以下优点:Beneficial effects: Compared with the traditional LED with the p-type electron blocking layer, the LED with the n-type electron blocking layer provided by the present invention has the following advantages:
1)通过采用一种具有氮极性面的n型电子阻挡层结构,可以提供足够高的势垒,限制了电子进入有源区的数量,而且氮极性面能够提供与金属极性面的自发极化方向相反的电场,有助于抵消部分极化电场,因而从空间上限制了有源区电子的浓度。1) By adopting an n-type electron blocking layer structure with a nitrogen polar face, a sufficiently high potential barrier can be provided to limit the number of electrons entering the active region, and the nitrogen polar face can provide the The electric field with the opposite direction of spontaneous polarization helps to cancel the partial polarization electric field, thus spatially limiting the concentration of electrons in the active region.
2)氮极性面的自发极化电场方向与有源区的极化方向相反,有助于抵消部分极化电场,能够降低多量子阱有源区内的量子限制斯塔克效应,增加电子空穴的辐射复合几率,从而提高LED的内量子效率。2) The direction of the spontaneous polarization electric field of the nitrogen polar surface is opposite to the polarization direction of the active region, which helps to offset the partial polarization electric field, which can reduce the quantum confinement Stark effect in the active region of the multiple quantum well and increase the number of electrons. The radiative recombination probability of holes, thereby improving the internal quantum efficiency of the LED.
3)非掺杂氮化物超晶格结构层能够有效地降低n型电子阻挡层与多量子阱有源区之间的晶格失配,从而减小压电极化效应带来的极化电场,提高氮极性面n型电子阻挡层的有效势垒,降低异质结界面处的二维电子气密度,提高载流子的空间分布均匀性和重合率。3) The undoped nitride superlattice structure layer can effectively reduce the lattice mismatch between the n-type electron blocking layer and the multiple quantum well active region, thereby reducing the polarization electric field caused by the piezoelectric polarization effect , improve the effective barrier of the n-type electron blocking layer on the nitrogen polar surface, reduce the two-dimensional electron gas density at the interface of the heterojunction, and improve the spatial distribution uniformity and coincidence rate of carriers.
4)由于移除了传统LED结构中的p型电子阻挡层,所以可显著增加空穴向多量子阱有源区的注入效率,从而能够保证有源区内空穴与电子的浓度维持在均衡的水平,有利于提高电子和空穴的辐射复合效率。4) Since the p-type electron blocking layer in the traditional LED structure is removed, the injection efficiency of holes into the active region of the multi-quantum well can be significantly increased, thereby ensuring that the concentration of holes and electrons in the active region is maintained at equilibrium It is beneficial to improve the radiative recombination efficiency of electrons and holes.
附图说明Description of drawings
图1为本发明提供的一种具有氮极性面的n型电子阻挡层的LED断面结构示意图,其中:衬底101、氮极性面氮化物层102、极性反转氮化物层103、n型氮化物欧姆接触层104、n型电极105、n型氮极性面电子阻挡层106、非掺杂超晶格结构氮化物层107、多量子阱有源层108、p型氮化物欧姆接触层109、p型电极110;1 is a schematic cross-sectional structure diagram of an LED with an n-type electron blocking layer with a nitrogen polar plane provided by the present invention, wherein: a
图2为现有技术制备的LED断面结构示意图,其中:衬底201、氮化物成核层202、氮化物缓冲层203、n型氮化物欧姆接触层204、多量子阱有源区205、p型氮化物电子阻挡层206、p型氮化物空穴注入层207、氧化铟锡(ITO)导电层208、n型电极209和p型电极210。2 is a schematic cross-sectional structure diagram of an LED prepared by the prior art, wherein: a
具体实施方式Detailed ways
下面结合附图对本发明做更进一步的解释。The present invention will be further explained below in conjunction with the accompanying drawings.
如图1所示,一种具有氮极性面n型电子阻挡层的发光二极管,包括由下而上依次设置的衬底101、氮极性面氮化物层102、极性反转氮化物层103、n型氮化物欧姆接触层104、n型氮极性面电子阻挡层106、非掺杂超晶格结构氮化物层107、多量子阱有源层108、p型氮化物欧姆接触层109,以及n型氮化物欧姆接触层104上设置的n型电极105和在p型氮化物欧姆接触层109上设置的p型电极110。As shown in FIG. 1 , a light emitting diode with a nitrogen polar plane n-type electron blocking layer includes a
其中,氮极性面氮化物层102为组分均匀的氮化镓或氮化铝材料。极性反转氮化物层103的厚度为0.1~1μm,选用组分均匀的经过图形化处理的GaN、AlN二元氮化物材料。The nitrogen polar
n型氮化物欧姆接触层104的厚度为0.5~5μm,选用组分均匀的AlGaN三元氮化物层,或InAlGaN四元氮化物层,或者组分渐变的AlGaN、InAlGaN氮化物层,AlGaN/InAlGaN超晶格结构以及三元或者四元氮化物与AlGaN/InAlGaN超晶格组成的复合型结构中的任何一种;n型氮化物欧姆接触层104中的势垒层使用Si元素进行n型掺杂,掺杂形成的电子浓度为1×1017~1×1020cm-3。The thickness of the n-type nitride
n型氮极性面电子阻挡层106的禁带宽度大于非掺杂超晶格结构氮化物层107中势垒层和多量子阱有源层108中势垒层的禁带宽度,且非掺杂超晶格结构氮化物层107中势垒层的禁带宽度大于多量子阱有源层108中势垒层的禁带宽度。氮极性面n型电子阻挡层106选用组分均匀或者渐变的AlGaN、InGaN三元氮化物材料或AlInGaN四元氮化物材料,厚度为1-20nm,使用Si元素进行n型掺杂,掺杂形成的电子浓度为1×1018~5×1019cm-3。The forbidden band width of the n-type nitrogen polar surface
非掺杂超晶格结构氮化物层107的重复周期数为2~20,禁带宽度沿生长方向线性递减,每个周期长度为2-10nm,选用AlGaN/AlInGaN超晶格结构以及由三元或者四元氮化物与AlGaN/AIlnGaN超晶格组成的复合型超晶格结构中的任一种。The number of repetition periods of the non-doped
多量子阱有源层108的重复周期数为3~10,每个周期的长度为3~15nm,选用组分均匀的GaN二元氮化物材料,或AlGaN、InGaN三元氮化物材料,或AlInGaN四元氮化物材料,或组分渐变的AlGaN、InGaN、AlInGaN氮化物材料构成多量子阱有源层。The number of repetition periods of the multi-quantum well
p型氮化物欧姆接触层109的厚度为20~500nm,选用组分均匀的p型GaN二元氮化物材料,或p型AlGaN、InGaN三元氮化物材料,或p型AlInGaN四元氮化物材料,或组分渐变的AlGaN、InGaN、AlInGaN氮化物材料;p型氮化物欧姆接触层109使用Mg元素进行p型掺杂,掺杂形成的空穴浓度为1×1016~1×1019cm-3。The thickness of the p-type nitride
本实施例中,发光二极管由c面蓝宝石衬底101、氮极性面GaN层102、极性反转AlN层103、n型Al0.2Ga0.8N欧姆接触层104、n型氮极性面Al0.3Ga0.7N电子阻挡层106、非掺杂AlxGa1-xN/AlyGa1-yN超晶格结构氮化物层107、In0.2Ga0.8N/GaN多量子阱有源层108、p型GaN欧姆接触层109,以及在n型Al0.2Ga0.8N欧姆接触层104上设置的n型电极105以及在p型GaN欧姆接触层109上设置的p型电极110。In this embodiment, the light emitting diode is composed of a c-
氮极性面GaN层102的厚度为50nm,极性反转AlN层103的厚度为500nm,n型Al0.2Ga0.8N欧姆接触层104的厚度为2μm,n型氮极性面Al0.3Ga0.7N电子阻挡层106的厚度为20nm,非掺杂AlxGa1-xN/AlyGa1-yN超晶格结构107中AlxGa1-xN和AlyGa1-yN层的厚度分别为4nm和6nm,每个周期的长度为10nm,重复20个周期,总厚度为200nm,且x沿生长方向由0.3线性递减至0.05,y沿生长方向由0.25线性递减至0,In0.2Ga0.8N/GaN多量子阱有源层108中的In0.2Ga0.8N阱宽3nm,GaN势垒厚度7nm,周期长度为10nm,重复20个周期,总厚度为200nm,p型GaN欧姆接触层109的厚度为100nm。The thickness of the nitrogen polar
通过采用具有氮极性面的n型Al0.3Ga0.7N电子阻挡层结构,从空间上和时间上限制了电子进入有源区的数量。具体而言,n型氮极性面Al0.3Ga0.7N电子阻挡层能够提供足够高的势垒,以及与金属极性面自发极化方向相反的电场,从而可以控制电子在有源区的浓度;而且氮极性面的自发极化电场方向与有源区中的极化方向相反,有助于抵消部分极化电场,降低多量子阱有源区内的量子限制斯塔克效应,增加电子空穴的辐射复合几率,从而提高LED的内量子效率。同时,由于移除了传统LED结构中的p型电子阻挡层,所以可显著增加空穴向多量子阱有源区的注入效率,从而能够保证有源区内空穴与电子的浓度维持在均衡的水平,可提高电子和空穴的辐射复合效率。此外,采用非掺杂氮化物超晶格结构层能够有效地降低n型Al0.3Ga0.7N电子阻挡层与In0.2Ga0.8N/GaN多量子阱有源区之间的晶格失配,从而可以减小压电极化效应带来的极化电场,提高氮极性面n型Al0.3Ga0.7N电子阻挡层的有效势垒,降低异质结界面处的二维电子气密度,提高载流子的空间分布均匀性和重合率。By adopting an n-type Al 0.3 Ga 0.7 N electron blocking layer structure with nitrogen polar facets, the number of electrons entering the active region is spatially and temporally limited. Specifically, the n-type nitrogen polar plane Al 0.3 Ga 0.7 N electron blocking layer can provide a sufficiently high potential barrier and an electric field opposite to the spontaneous polarization direction of the metal polar plane, so that the concentration of electrons in the active region can be controlled ; and the direction of the spontaneous polarization electric field of the nitrogen polar surface is opposite to the polarization direction in the active region, which helps to offset part of the polarization electric field, reduce the quantum confinement Stark effect in the active region of the multiple quantum well, and increase the number of electrons. The radiative recombination probability of holes, thereby improving the internal quantum efficiency of the LED. At the same time, since the p-type electron blocking layer in the traditional LED structure is removed, the injection efficiency of holes into the active region of the multiple quantum well can be significantly increased, thereby ensuring that the concentration of holes and electrons in the active region is maintained at equilibrium can improve the radiative recombination efficiency of electrons and holes. In addition, the use of the undoped nitride superlattice structure layer can effectively reduce the lattice mismatch between the n-type Al 0.3 Ga 0.7 N electron blocking layer and the In 0.2 Ga 0.8 N/GaN multiple quantum well active region, thereby It can reduce the polarization electric field caused by the piezoelectric polarization effect, improve the effective barrier of the n-type Al 0.3 Ga 0.7 N electron blocking layer on the nitrogen polar plane, reduce the two-dimensional electron gas density at the interface of the heterojunction, and improve the load-carrying capacity. The spatial distribution uniformity and coincidence rate of the carriers.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can be made. It should be regarded as the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110509350.0A CN113257968B (en) | 2021-05-11 | 2021-05-11 | A light emitting diode with a nitrogen polar face n-type electron blocking layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110509350.0A CN113257968B (en) | 2021-05-11 | 2021-05-11 | A light emitting diode with a nitrogen polar face n-type electron blocking layer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113257968A CN113257968A (en) | 2021-08-13 |
CN113257968B true CN113257968B (en) | 2022-07-01 |
Family
ID=77222585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110509350.0A Active CN113257968B (en) | 2021-05-11 | 2021-05-11 | A light emitting diode with a nitrogen polar face n-type electron blocking layer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113257968B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115832136B (en) * | 2023-02-22 | 2023-06-06 | 江西兆驰半导体有限公司 | AlGaN-based ultraviolet light-emitting diode and preparation method thereof |
CN116111015B (en) * | 2023-04-11 | 2023-07-18 | 江西兆驰半导体有限公司 | Multiple quantum well light-emitting layer, light-emitting diode epitaxial wafer and preparation method of light-emitting diode epitaxial wafer |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105870283A (en) * | 2016-05-17 | 2016-08-17 | 东南大学 | Light-emitting diode with composite polar face electron blocking layer |
CN109346575A (en) * | 2018-09-03 | 2019-02-15 | 淮安澳洋顺昌光电技术有限公司 | A kind of light-emitting diode epitaxial wafer and preparation method thereof |
CN110970533A (en) * | 2019-12-30 | 2020-04-07 | 广东德力光电有限公司 | Purple light epitaxial structure of LED flip chip and preparation method thereof |
CN111599903A (en) * | 2020-06-23 | 2020-08-28 | 东南大学 | A UV LED with a polarization-doped composite polar plane electron blocking layer |
-
2021
- 2021-05-11 CN CN202110509350.0A patent/CN113257968B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105870283A (en) * | 2016-05-17 | 2016-08-17 | 东南大学 | Light-emitting diode with composite polar face electron blocking layer |
CN109346575A (en) * | 2018-09-03 | 2019-02-15 | 淮安澳洋顺昌光电技术有限公司 | A kind of light-emitting diode epitaxial wafer and preparation method thereof |
CN110970533A (en) * | 2019-12-30 | 2020-04-07 | 广东德力光电有限公司 | Purple light epitaxial structure of LED flip chip and preparation method thereof |
CN111599903A (en) * | 2020-06-23 | 2020-08-28 | 东南大学 | A UV LED with a polarization-doped composite polar plane electron blocking layer |
Non-Patent Citations (1)
Title |
---|
Effect of Polarization-Matched n-Type AlGaInN Electron-Blocking Layer on the Optoelectronic Properties of Blue InGaN Light-Emitting Diodes;Yun Li,et.al;《JOURNAL OF DISPLAY TECHNOLOGY》;20130212;第9卷(第4期);第244-248页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113257968A (en) | 2021-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103489975B (en) | A kind of nitrogen polar surface light emitting diode with tunnel junction structure | |
CN102738329B (en) | Group III nitride semiconductor light-emitting device | |
CN102144342B (en) | Nitride semiconductor light emitting device and semiconductor light emitting device | |
US9373750B2 (en) | Group III nitride semiconductor light-emitting device | |
CN111599902B (en) | Light-emitting diode with hole injection structure electron barrier layer | |
US20130228747A1 (en) | Nitride semiconductor light emitting device | |
CN111599903B (en) | Ultraviolet LED with polarization-doped composite polar surface electron barrier layer | |
JP3839799B2 (en) | Semiconductor light emitting device | |
CN107240627A (en) | A kind of UV LED with codope multi-quantum pit structure | |
CN103367581A (en) | Light emitting diode with electronic barrier layer structure | |
CN105870283A (en) | Light-emitting diode with composite polar face electron blocking layer | |
Chen et al. | High brightness green light emitting diodes with charge asymmetric resonance tunneling structure | |
CN107195746A (en) | A kind of light emitting diode with resonant tunneling structure electronic barrier layer | |
CN113257968B (en) | A light emitting diode with a nitrogen polar face n-type electron blocking layer | |
JP2001036196A (en) | Gallium nitride light emitting element with p-type dopant material diffusion preventing layer | |
JP2003204122A (en) | Nitride semiconductor element | |
CN111628059B (en) | AlGaN-based deep ultraviolet light-emitting diode device and preparation method thereof | |
CN104993028A (en) | Light-emitting diode epitaxial wafer | |
CN105977349B (en) | A kind of multiple-active-region light emitting diode with p-i-n tunnel knots | |
JP2004104088A (en) | Nitride semiconductor device | |
CN111326626A (en) | A semiconductor light-emitting device capable of improving hole transport capability | |
CN109671825B (en) | Polar semiconductor light-emitting diode | |
CN116682907B (en) | A multi-quantum well layer and deep ultraviolet light-emitting diode based on AlGaN | |
TWI559571B (en) | Nitride semiconductor structure and semiconductor light-emitting element | |
CN118676277B (en) | Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |