[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN113204236A - 一种智能体路径跟踪控制方法 - Google Patents

一种智能体路径跟踪控制方法 Download PDF

Info

Publication number
CN113204236A
CN113204236A CN202110402508.4A CN202110402508A CN113204236A CN 113204236 A CN113204236 A CN 113204236A CN 202110402508 A CN202110402508 A CN 202110402508A CN 113204236 A CN113204236 A CN 113204236A
Authority
CN
China
Prior art keywords
path
point
agent
target
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110402508.4A
Other languages
English (en)
Other versions
CN113204236B (zh
Inventor
陈建魁
张松
李益群
岳晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202110402508.4A priority Critical patent/CN113204236B/zh
Publication of CN113204236A publication Critical patent/CN113204236A/zh
Application granted granted Critical
Publication of CN113204236B publication Critical patent/CN113204236B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种智能体路径跟踪控制方法,属于路径跟踪控制领域,包括:在当前控制周期识别智能体在目标路径曲线(包括路径方程和参考路径点序列)上需经过的弯曲路径段;计算预瞄距离ld,将智能体之前与其相距ld的参考路径点定位为目标参考路径点,并计算偏差权重距离Δl;若Δl<lmin,速度差值Δvr<Δvrmax且转角差值Δδf<Δδfmax,则利用模型预测控制算法获得控制转角量δ2;否则,利用纯跟踪算法获得控制转角量δ1;根据智能体的横向位置偏差eld计算转角修正量Δδ,对所获得的控制转角量进行修正,得到控制转角量δ,并发送至智能体,实现路径跟踪;lmin、Δvrmax和Δδfmax均为阈值。本发明能够使智能体可以在不同曲率的曲线道路上运动,实现高稳定性、高精度的路径跟踪。

Description

一种智能体路径跟踪控制方法
技术领域
本发明属于路径跟踪控制领域,更具体地,涉及一种智能体路径跟踪控制方法。
背景技术
移动智能体的路径跟踪技术广泛应用于自主AGV、智能驾驶车辆和无人机等多个领域。在工业工况协同作业的过程中存在避障绕行和换道曲线运动等场景,单一的控制方案往往无法同时满足智能体对曲线路径跟踪精度和行驶稳定性的要求,当存在一定初始位置偏差的情况下,智能体会存在难以收敛的航向误差。目前,国内外学者们在智能体曲线路径跟踪稳定性方面开展了大量的研究工作。
路径跟踪控制本质是一个多约束条件下的优化问题,模型预测控制 (ModelPredictive Control,MPC)能够显示地考虑系统的约束条件,在自动驾驶领域应用越来越广泛。但传统的MPC控制策略中参数均为常量,在跟踪曲线道路时,智能体跟踪稳定性和实时性较差。
现有技术中已经开展了一些基于模型预测算法的路径跟踪控制的研究,通过优化控制器参数以及结合模糊逻辑等其他控制策略等方法均能对跟踪效果有一定改善,但当存在一定初始偏差情况下智能体行驶在较大曲率变化的复杂弯道时,行驶的稳定性与路径跟踪精度难以很好的兼顾。
发明内容
针对现有技术的缺陷和改进需求,本发明提供了一种智能体路径跟踪控制方法,其目的在于,采用模型预测控制算法为主、纯跟踪算法为辅的混合控制方法,并综合考虑距离偏差、速度差值和转角差值设定切换条件,使智能体可以在不同曲率的曲线道路上运动,实现高稳定性、高精度的路径跟踪。
为实现上述目的,按照本发明的一个方面,提供了一种智能体路径跟踪控制方法,包括:
在当前控制周期,识别智能体在目标路径曲线上需经过的弯曲路径段;目标路径曲线包括路径方程f(x)和参考路径点序列;
计算预瞄距离ld,将智能体之前与其相距ld的参考路径点定位为当前控制周期的目标参考路径点,基于定位结果计算偏差权重距离Δl;
若Δl<lmin,Δvr<Δvrmax且Δδf<Δδfmax,则利用模型预测控制算法获得控制转角量δ2,作为待修正控制转角量;否则,利用纯跟踪算法获得控制转角量δ1,作为待修正控制转角量;
根据智能体与目标参考路径点之间的横向位置偏差eld计算转角修正量Δδ,对待修正控制转角量进行修正,得到控制转角量δ,并发送至智能体,以使智能体在当前控制周期沿目标路径移动,实现路径跟踪;
其中,偏差权重距离Δl用于衡量智能体与目标路径曲线之间的距离;Δvr和Δδf分别表示智能体的速度差值和前轮转角差值;lmin表示横向跟踪误差阈值,Δvrmax表示速度差值阈值,Δδfmax表示转角差值阈值。
本发明所提供的智能体路径跟踪控制方法,是一种混合控制方法,其以模型预测控制算法为主、纯跟踪算法为辅,综合考虑了智能体当前位置与目标路径曲线之间的距离、速度差值和前轮转角差值设定切换条件,具体来说,在三项指标均低于相应阈值时,由于智能体对目标路径具有较强的跟踪能力,此时切换至模型预测控制算法,能够在路径跟踪的同时,有效提高跟踪精度和稳定性;在任一项指标较高时,表明智能体已经或即将失去对目标路径的跟踪能力,此时切换至纯跟踪算法,能够使智能体快速收敛至目标路径附近。本发明在模型预测控制算法和纯跟踪算法所得出的控制转角量的基础上,基于横向位置偏差eld计算转角修正量Δδ对控制转角量进行修正,能够进一步路径跟踪的精度。总体而言,本发明能够使智能体可以在不同曲率的曲线道路上运动,实现高稳定性、高精度的路径跟踪。
进一步地,用于计算预瞄距离的预瞄模型表达式为:
Figure BDA0003020951680000031
其中,Ky表示弯曲路径段的曲率阈值,其绝对值越大,路径方程f(x) 相对于预瞄方向的曲率越大;ld表示预瞄距离,V表示智能体的当前速度, C为常数,kp和ki分别为比例系数和积分系数;m和m'均为正整数。
纯跟踪算法的计算需要以预瞄距离作为输入参数;本发明所提出的预瞄模型中建立了预瞄距离与速度和路径曲率之间的关系方程,能够适应于不同曲线道路对车速和预瞄距离调整的需求,提高了纯跟踪算法跟踪控制过程的收敛速度和运动稳定性。根据智能体实际的运动特性,通过调整m 和m'的取值,能够使预瞄距离与速度之间相应呈现出线性或非线性关系。
进一步地,曲率阈值Ky按照如下方式获取:
获得参考路径点序列中当前离智能体最近的参考路径点 P0(x0+lpre1,f(x0+lpre1)),从参考路径点P0前方的点(x0+lpre2,f(x0+lpre2))处开始,识别三个等间距的点PA(xPA,yPA)、PB(xPB,yPB)和PC(xPC,yPC),三个点所对应的侧向误差分别为s0、s1和s2
在智能体的纵向上预瞄一段路程,该路程的起点、中点和终点分别是 PA *(xPA,0),PB *(xPB,0)和PC *(xPC,0);
按照如下计算公式计算曲率阈值Ky
Figure BDA0003020951680000032
其中,lpre1和lpre2是预瞄区域中两段不同的距离,且lpre2≤lpre1
进一步地,模型预测控制算法中的预测时域由粒子群优化算法确定。
本发明在每个控制周期采用粒子群优化算法确定模型预测控制算法的预测时域,能够保证智能体在跟踪曲线道路时,仍然具有较好的跟踪稳定性和实时性。
进一步地,粒子群优化算法中,第k次迭代的惯性权重因子ωk为:
Figure BDA0003020951680000041
其中,Nmax为转折迭代次数,Na为最大迭代次数,η为临时参数,ωmax和ωmin分别为惯性权重因子的最大值和最小值。
本发明在利用粒子群优化算法确定模型预测控制算法的预测时域时,惯性权重的线性变化过程分为两个部分,在达到转折迭代次数之前,更偏向于局部寻优;在转折迭代次数之后,则偏向于全局寻优,由此能够使所确定的预测时域自适应路径曲率的变化情况,进一步提高模型预测控制算法求解的速度和精度。
进一步地,偏差权重距离Δl的获取方式包括:
沿目标路径曲线,在参考路径点序列中从目标参考路径点开始向前、向后分别等间距采样n个参考路径点,连同目标参考路径点一起共得到 2n+1个参考路径点;
在局部坐标系下,按照如下公式计算偏差权重距离Δl:
Figure 1
其中,j表示2n+1个参考路径点中的参考路径点编号,(xrj,yrj)表示第j 个参考路径点的坐标;(x0,y0)表示智能体当前的坐标。
本发明在目标参考路径点周围(包括前向和后向)采样得到多个参考路径点,以采样得到的各参考路径点与智能体当前的距离均值作为偏差权重距离Δl,使得所计算的偏差权重距离Δl能够准确反映智能体与目标路径曲线之间的距离。
进一步地,转角修正量Δδ的计算公式为:
Δδ=Kp·eld+Ki·∫elddt+Kd·deld/dt;
其中,Kp、Ki和Kd分别表示PID控制中的比例系数、积分系数和微分系数。
本发明将智能体与目标参考路径点之间的横向位置偏差作为优化行为的反馈信息,通过PID控制方法计算转角修正量,具有较高的计算速度,且计算得到的转角修正量精度较高。
进一步地,智能体与目标参考路径点之间的横向位置偏差eld为:
Figure BDA0003020951680000051
其中,(Xr(k+1),Yr(k+1))为目标参考路径点在全局坐标系下的坐标,(X0, Y0)为智能体当前在全局坐标系下的坐标,
Figure BDA0003020951680000052
为目标参考路径点在全局坐标系下的期望航向。
进一步地,本发明提供的智能体控制方法,还包括:
按照Vref=min((1-e-K/c)·Vmax,Vs)实时计算目标控制速度Vref,并实时判断智能体是否通过了当前的弯曲路径段;K表示弯曲路径段的曲率;Vmax表示限制最大速度,
Figure BDA0003020951680000053
g表示重力加速度,μ表示摩擦系数;Vs为根据Sigmod规划曲线计算出的速度;c为与智能体运动性能相关的系数,与智能体受路径曲率变化的影响程度正相关;
若智能体当前未通过弯曲路径段,则根据目标控制速度Vref使智能体执行减速;否则,根据速度Vs控制智能体的速度。
本发明在路径跟踪的同时,会实时根据路径曲率确定目标控制速度Vref,并根据智能体的运动状态相应控制智能体的速度,由此能够进一步保证智能体运动的稳定性;智能体速度的控制结果会影响模型预测控制算法和纯跟踪算法的输出结果,进一步提高路径跟踪的精度。
进一步地,弯曲路径段的曲率K按照如下计算公式计算:
Figure BDA0003020951680000061
其中,
Figure BDA0003020951680000062
Figure BDA0003020951680000063
S和E分别为弯曲路径段的起点和终点,O'为弯曲路径段上除端点外的一个点,(xS,yS)、(xE,yE)和(xO',yO')分别表示起点S、终点E和点O'的在局部坐标系下的坐标,且xO'=(xS+xE)/2。
进一步地,识别智能体在目标路径曲线上需经过的弯曲路径段,包括:
(S1)以参考路径点序列中当前离智能体最近的参考路径点P0为起点,沿目标路径曲线向前搜索N个参考路径点Pk(xPk,yPk),k=1,2,...,N,得到路径点集,将参考路径点P0作为采样起点;
(S2)从采样起点开始,在路径点集中等间隔采样3个参考路径点P1'、 P2'和P3',计算直线段P1'P2'和P2'P3'之间的夹角α,若α<α0,则将参考路径点P2'作为弯曲路径点的起点,并转入步骤(S4);否则,转入步骤(S3);
(S3)将采样起点沿目标路径曲线滑动第一预设距离后,将当前的参考路径点作为新的采样起点,并转入步骤(S2);
(S4)将采样起点沿目标路径曲线滑动第二预设距离后,将当前的参考路径点作为新的采样起点;
(S5)从采样起点开始,在路径点集中等间隔采样3个参考路径点P1'、 P2'和P3',计算直线段P1'P2'和P2'P3'之间的夹角α,若α≥α0,则将参考路径点P2'作为弯曲路径的终点,并转入步骤(S7);否则,转入步骤(S6);
(S6)将采样起点沿目标路径曲线滑动第三预设距离后,将当前的参考路径点作为新的采样起点,并转入步骤(S5);
(S7)将目标路径曲线上,由所识别的起点和终点所限定的路径段识别为当前控制周期内的弯曲路径段;
其中,α0为预设的标准角度。
本发明,根据三个采样点间连线的夹角识别弯曲路径段的起点和终点,首先识别弯曲路径段的起点,将夹角较大时,对应的顶点作为弯曲路径段的起点;之后识别弯曲路径的终点,将夹角较小时,对应的顶点作为弯曲路径段的终点;按照这种方式,可以准确识别出对应控制周期内的弯曲路径段。
进一步地,步骤(S1)中,搜索得到的N个参考路径点Pk(xPk,yPk)均在预测距离Dp内;
预测距离Dp的计算公式为:
Dp=r·Np·Vref·([10(1+e-ξ·K′)+rev]);
其中,r为修正系数,Np为模型预测算法中的预测时域,Vref为目标控制速度,K'为上一控制周期的弯曲路径段的曲率,ξ为调整因子;rev为调整量,rev<1;[]表示取整。
本发明在识别当前控制周期内的弯曲路径段时,根据当前的控制目标速度、当前的预测时域以及上一控制周期的弯曲路径段的曲率计算当前控制周期的预测距离,该预测距离能够较为准确地反映当前控制周期内弯曲路径段所覆盖的范围,仅在该预测距离内搜索参考路径点,能够在当前控制周期不存在弯曲路径段时,及时终止参考路径点的处理,从而避免无效的计算,有效提高计算效率。
进一步地,目标路径曲线的获取方式包括:
生成智能体的路径曲线,包括路径方程和原始的参考路径点序列;
过滤掉原始的参考路径点序列中的毛刺点后,对剩余的参考路径点进行插值处理,得到新的参考路径点序列;
利用新的参考路径点拟合得到新的路径方程;
由新的参考路径点序列和新的路径方程构成智能体的目标路径曲线。
本发明通过对原始的参考路径点序列依次进行滤除毛刺点和插值的处理,能够得到更为密集的参考路径点序列,由该更为密集的参考路径点序列拟合得到的路径方程更为平滑,有利于提高路径跟踪的稳定性。
按照本发明的另一个方面,提供了一种计算机可读存储介质,包括存储的计算机程序;计算机程序被处理器执行时,控制计算机可读存储介质所在设备执行本发明提供的智能体路径跟踪控制方法。
总体而言,通过本发明所构思的以上技术方案,能够取得以下有益效果:
(1)本发明所提供的智能体路径跟踪控制方法,以模型预测控制算法为主、纯跟踪算法为辅,综合考虑了智能体当前位置与目标路径曲线之间的距离、速度差值和前轮转角差值设定切换条件,并基于智能体的横向位置偏差计算得到的转角修正量对控制转角量进行修正,能够实时、准确地捕捉智能体对目标路径的跟踪能力,并切换至相应的跟踪算法,充分发挥两种跟踪算法之间的互补性,使曲线运动的智能体不仅具有较高的跟踪精度,还保证了较好的行驶稳定性,尤其适用于需要经常发生换道曲线运动的移动对象实时路径跟踪的应用场合。
(2)本发明所提出的预瞄模型中,建立了预瞄距离与车速和道路曲率之间的关系方程,适应于不同曲线道路对车速和预瞄距离调整的需求,提高了纯跟踪控制算法跟踪控制过程的收敛速度和运动稳定性。
(3)本发明中在每个控制周期采用粒子群优化算法确定模型预测控制算法的预测时域,能够保证智能体在跟踪曲线道路时,仍然具有较好的跟踪稳定性和实时性;在其优选方案中,在利用粒子群优化算法确定模型预测控制算法的预测时域时,惯性权重的线性变化过程分为两个部分,在达到转折迭代次数之前,更偏向于局部寻优,在转折迭代次数之后,则偏向于全局寻优,由此能够使所确定的预测时域自适应路径曲率的变化情况,进一步提高模型预测控制算法求解的速度和精度。
附图说明
图1为本发明实施例提供的智能体路径跟踪控制方法流程图;
图2为本发明实施例提供的智能体路径跟踪控制方法示意图;
图3为本发明实施例提供的采用多点预瞄确定本控制周期曲线段路径的始终点判断流程图;
图4为本发明实施例提供的识别当前控制周期内的弯曲路径段的示意图;
图5为本发明实施例提供的采用多点预瞄进行路径曲率阈值计算的流程图;
图6为本发明实施例提供的采用路径模拟函数与智能体对称中心方向所形成预瞄距离与路径之间的位置关系图;
图7为本发明实施例提供的智能体路径跟踪各状态量标注及受力分析示意图;
图8为本发明实施例提供的通过粒子群算法对预测时域进行整定的流程示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
在本发明中,本发明及附图中的术语“第一”、“第二”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在智能体的路径跟踪中,当存在一定初始偏差情况下或者智能体行驶在较大曲率变化的复杂弯道时,行驶的稳定性与路径跟踪精度难以很好地兼顾,为了解决该技术问题,本发明提供了一种智能体路径跟踪控制方法,其整体思路在于:挖掘智能体在路径跟踪中的运动特性,采用以模型预测控制算法为主、纯跟踪算法为辅的混合控制方法,并综合考虑智能体当前位置与目标路径曲线之间的距离、速度差值和前轮转角差值设定切换条件,以实时、准确地捕捉智能体对目标路径的跟踪能力,并切换至相应的跟踪算法,充分发挥两种跟踪算法之间的互补性,使曲线运动的智能体不仅具有较高的跟踪精度,还保证了较好的行驶稳定性。
在智能体路径跟踪过程中,涉及到两个坐标系,即全局坐标系和局部坐标系,二者可相互变换;为便于描述,在没有特殊说明的情况下,以大写字母X和Y表示全局坐标系下的坐标,以小写字母x和y表示局部坐标系下的坐标;例如,智能体当前在全局坐标系下的坐标表示为(X0,Y0),智能体在局部坐标系下的坐标表示为(x0,y0)。
以下为实施例。
实施例1:
一种智能体路径跟踪控制方法,如图1和图2所示,具体包括:
在当前控制周期,识别智能体在目标路径曲线上需经过的弯曲路径段;目标路径曲线包括路径方程f(x)和参考路径点序列;
计算预瞄距离ld,将智能体之前与其相距ld的参考路径点定位为当前控制周期的目标参考路径点,基于定位结果计算偏差权重距离Δl;
若Δl<lmin,Δvr<Δvrmax且Δδf<Δδfmax,则利用模型预测控制算法获得控制转角量δ2,作为待修正控制转角量;否则,利用纯跟踪算法获得控制转角量δ1,作为待修正控制转角量;
根据智能体与目标参考路径点之间的横向位置偏差eld计算转角修正量Δδ,对待修正控制转角量进行修正,得到控制转角量δ,并发送至智能体,以使智能体在当前控制周期沿目标路径移动,实现路径跟踪;
其中,偏差权重距离Δl用于衡量智能体与目标路径曲线之间的距离;Δvr和Δδf分别表示智能体的速度差值和前轮转角差值;lmin表示横向跟踪误差阈值,Δvrmax表示速度差值阈值,表示Δδfmax转角差值阈值。
本实施例中,在进行路径跟踪控制之前,还会先采集环境信息并对目标路径曲线进行预处理;在采集环境信息时,首先通过传感器设备检测周围环境信息并进行完成自身的定位,传感器设备可以是深度相机、激光雷达、超声波传感器等;目标路径曲线的预处理具体包括:
生成智能体的路径曲线,包括路径方程和原始的参考路径点序列;
过滤掉原始的参考路径点序列中的毛刺点后,对剩余的参考路径点进行插值处理,得到新的参考路径点序列;在实际应用中,具体可采用高斯滤波、双边滤波和中值滤波等方式过滤毛刺点,可采用分段线性插值、任意阶多项式插值和自然邻点插值等插值方式对参考路径点进行插值;新的参考路径点序列中的参考路径点更为密集,可表示为点序列(xr(nT),yr(nT),θr(nT)),其中,T为采样时间,xr(nT),yr(nT)和θr(nT)分别表示第 nT时刻智能体期望的位姿横坐标、纵坐标和横摆角度;
利用新的参考路径点拟合得到新的路径方程;在实际应用中,可采用贝塞尔曲线、三次样条曲线和基数样条曲线等拟合新的路径方程;拟合得到路径方程更为平滑;
由新的参考路径点序列和新的路径方程构成智能体的目标路径曲线;
本实施例通过对原始的参考路径点序列依次进行滤除毛刺点和插值的处理,能够得到更为密集的参考路径点序列,由该更为密集的参考路径点序列拟合得到的路径方程更为平滑,有利于提高路径跟踪的稳定性。
识别弯曲路径段,可将其简化为识别出弯曲路径段的起点和终点,作为一种可选的实施方式,本实施例中,识别智能体在目标路径曲线上需经过的弯曲路径段,如图3所示,包括:
(S1)以参考路径点序列中当前离智能体最近的参考路径点P0为起点,沿目标路径曲线向前搜索N个参考路径点Pk(xPk,yPk),k=1,2,...,N,得到路径点集,将参考路径点P0作为采样起点;
参考路径点P0的坐标可表示为(x0+lpre1,f(x0+lpre1)),其中,lpre1是预瞄区域内的一段距离;
当前控制周期的弯曲路径段的起点和终点仅在搜索到的N个参考路径点中确定;
在实际的路径跟踪过程中,可能存在在当前控制周期中,智能体并不经过弯曲路径段的情况,这也表明智能体在当前控制周期中的移动路径是直线路径,此时,弯曲路径段的曲率为K=0;
为了合理限定弯曲路径段起点、终点的搜索范围,可选地,本实施例在沿目标路径向前搜索参考路径点时,还会先计算一个预测距离Dp,用于预测弯曲路径段所覆盖的范围,步骤(S1)中,搜索得到的N个参考路径点Pk(xPk,yPk)均在预测距离Dp内;本实施例中,预测距离Dp的计算公式为:
Dp=r·Np·Vref·([10(1+e-ξ·K′)+rev]);
其中,r为修正系数,用于将预测距离取值到合理范围,本实施例中,其值具体为0.01;Np为模型预测算法中的预测时域,Vref为目标控制速度, K'为上一控制周期的弯曲路径段的曲率;ξ为调整因子,其取值可依据实验数据调整获取;rev为调整量,rev<1,本实施例中,其取值具体为0.5;[] 表示取整;预测距离Dp是根据当前的控制目标速度、当前的预测时域以及上一控制周期的弯曲路径段的曲率计算得到的,该预测距离能够较为准确地反映当前控制周期内弯曲路径段所覆盖的范围,仅在该预测距离内搜索参考路径点,能够在当前控制周期不存在弯曲路径段时,及时终止参考路径点的处理,从而避免无效的计算,有效提高计算效率;
(S2)从采样起点开始,在路径点集中等间隔采样3个参考路径点P1'、 P2'和P3',计算直线段P1'P2'和P2'P3'之间的夹角α,若α<α0,则将参考路径点P2'作为弯曲路径点的起点,并转入步骤(S4);否则,转入步骤(S3);
采样间隔可跟据实验数据调整获取;
以(xP1',yP1')、(xP2',yP2')和(xP3',yP3')分别表示参考路径点P1'、P2'和P3'的坐标,直线段P1'P2'和P2'P3'之间的夹角α的计算公式可表示为:
Figure BDA0003020951680000131
(S3)将采样起点沿目标路径曲线滑动第一预设距离后,将当前的参考路径点作为新的采样起点,并转入步骤(S2);
第一预设距离与采样间隔之间的比例可根据实验数据调整获取;
(S4)将采样起点沿目标路径曲线滑动第二预设距离后,将当前的参考路径点作为新的采样起点;
第二预设距离与采样间隔之间的比例可根据实验数据调整获取;
(S5)从采样起点开始,在路径点集中等间隔采样3个参考路径点P1'、 P2'和P3',计算直线段P1'P2'和P2'P3'之间的夹角α,若α≥α0,则将参考路径点作为P1'弯曲路径的终点,并转入步骤(S7);否则,转入步骤(S6);
(S6)将采样起点沿目标路径曲线滑动第三预设距离后,将当前的参考路径点作为新的采样起点,并转入步骤(S5);
第三预设距离与采样间隔之间的比例可根据实验数据调整获取;
(S7)将目标路径曲线上,由所识别的起点和终点所限定的路径段识别为当前控制周期内的弯曲路径段;
其中,α0为预设的标准角度,其值可根据智能体结构参数和用户需求综合设定,可选地,本实施例中,α0的取值小于车轮最大转向角度的机械结构参数限制;可选地,本实施例中,在确定弯曲路径段起点和终点时,采样间隔相同,且第一预设阈值、第二预设阈值和第三预设阈值相等;
图4所示为一个具体的示例,搜索得到的N个参考路径点P1~PN以及个参考路径点在目标路径曲线上的分布如图4所示,经过上述识别过程后,其中第 2个参考路径点P2被识别为弯曲路径段起点,第6个参考路径点P6被识别为完全路径段终点。
识别出当前控制周期的弯曲路径段后,可相应计算该弯曲路径段的曲率K和曲率阈值Ky;曲率阈值Ky用于衡量智能体与目标路径的接近程度;
弯曲路径段的曲率K按照如下计算公式计算:
Figure BDA0003020951680000141
其中,
Figure BDA0003020951680000142
Figure BDA0003020951680000143
S和E分别为弯曲路径段的起点和终点,O'为弯曲路径段上除端点外的一个点,(xS,yS)、(xE,yE)和(xO',yO')分别表示起点S、终点E和点O'的在局部坐标系下的坐标,且xO'=(xS+xE)/2;d1、d2、d3分别代表直线段SO'、SE和O'E的长度。
如图5和图6所示,曲率阈值Ky按照如下方式获取:
获得参考路径点序列中当前离智能体最近的参考路径点 P0(x0+lpre1,f(x0+lpre1)),从参考路径点P0前方的点(x0+lpre2,f(x0+lpre2))处开始,识别三个等间距的点PA(xPA,yPA)、PB(xPB,yPB)和PC(xPC,yPC),三个点所对应的侧向误差分别为s0、s1和s2
在智能体的纵向(即图6中的x1方向)上预瞄一段路程,该路程的起点、中点和终点分别是PA *(xPA,0),PB *(xPB,0)和PC *(xPC,0);
按照如下计算公式计算率阈值Ky
Figure BDA0003020951680000144
其中,lpre1和lpre2是预瞄区域中两段不同的距离,且lpre2≤lpre1,通过设定lpre2≤lpre1,可以在计算预瞄距离时对预瞄距离进行细致调整,同时在智能体经过弯曲路径段时提前减速,从而进一步提高路径跟踪的稳定性和精度;在以上计算式中,
Figure BDA0003020951680000151
表示 PAPBPCPA *PB *PC *曲线所围成的面积,
Figure BDA0003020951680000152
表示以点PA、PB、PA *、 PB *为顶点的梯形面积,
Figure BDA0003020951680000153
表示以点PB、PC、PB *、PC *为顶点的梯形面积;
当f(x)为图6中的凸路段弧PAPBPC时,Ky>0;当f(x)为图6中的直线路段PAPB'PC时,Ky=0;当f(x)为图6中的凹路段弧PAPB”PC时,Ky<0;|Ky| 越大,f(x)相对于预瞄方向的曲率越大。
为了能够适应于不同曲线道路对车速和预瞄距离调整的需求,本实施例提出了一种新的用于计算预瞄距离的预瞄模型,该模型中建立了预瞄距离与速度和路径曲率之间的关系方程,具体表达式如下:
Figure BDA0003020951680000154
其中,Ky表示弯曲路径段的曲率阈值,其绝对值越大,路径方程f(x) 相对于预瞄方向的曲率越大;ld表示预瞄距离,V表示智能体的当前速度, C为常数,kp和ki分别为比例系数和积分系数;m和m'均为正整数;
在实际应用中,根据智能体实际的运动特性,通过调整m和m'的取值,能够使预瞄距离与速度之间相应呈现出线性或非线性关系,例如,预瞄距离ld与速度V呈线性关系时,相应设置m与m'相等;预瞄距离ld与速度V 呈非线性关系时,相应设置m与m'不相等;可选地,本实施例中,m=3、 m'=2,即
Figure BDA0003020951680000155
计算得到预瞄距离ld之后,以智能体当前的后轴中点为原点,以预瞄距离为半径作圆,将该圆与路径方程f(x)在智能体前方的交点作为目标参考路径点;智能体当前的后轴中点可通过传感器获取;当无前向交点时,以该目标路径曲线末端点切线方向延长3L(L表示智能体的长度)长度作为预泊车距离进行跟踪,并停止期望速度的计算而采取减速操作。
为了使偏差权重距离Δl能够准确地衡量智能体与目标路径曲线之间的距离,作为一种可选的实施方式,本实施例中,偏差权重距离Δl的获取方式包括:
沿目标路径曲线,在参考路径点序列中从目标参考路径点开始向前、向后分别等间距采样n个参考路径点,连同目标参考路径点一起共得到 2n+1个参考路径点;采样间隔可根据智能体的实际移动情况相应设定;
在局部坐标系下,按照如下公式计算偏差权重距离Δl:
Figure 2
其中,j表示2n+1个参考路径点中的参考路径点编号,(xrj,yrj)表示第j 个参考路径点的坐标;(x0,y0)表示智能体当前的坐标;
在目标参考路径点周围(包括前向和后向)采样得到多个参考路径点,以采样得到的各参考路径点与智能体当前的距离均值作为偏差权重距离Δl,使得所计算的偏差权重距离Δl能够准确反映智能体与目标路径曲线之间的距离。
计算得到偏差权重距离Δl之后,即可结合智能体的速度信息和前路转角信息判断智能体当前对目标路径的跟踪能力;
具体地,在本实施例中,在同时满足Δl<lmin,Δvr<Δvrmax且Δδf<Δδfmax时,判定智能体能够很好地跟踪目标路径,此时采用模型预测控制算法,能够在路径跟踪的同时,有效提高跟踪精度和稳定性;在其他情况下,则说明此时智能体已经或即将失去对目标路径的跟踪能力,此时采用纯跟踪算法,能够使智能体快速收敛至目标路径附近。本实施例综合考虑智能体当前位置与目标路径曲线之间的距离、速度差值和前轮转角差值设定切换条件,能够实时、准确地捕捉智能体的运动状态。
横向跟踪误差阈值lmin,速度差值阈值Δvrmax,转角差值阈值Δδfmax可通过实验获取;例如,可在不同车速和横向偏差参数下对智能体的直线跟踪效果进行测试,选取当智能体失去对目标路径跟踪能力时的横向跟踪误差作为lmin
以上混合控制方法输出的控制转角量δ可以表示为:
δ=λ1·δ12·δ2+Δδ;
其中λ12均为控制器切换开关系数,取值为0或1,具体地,当满足Δl<lmin,Δvr<Δvrmax且Δδf<Δδfmax时,λ1=0且λ2=1,其中lmin为横向偏差阈值;其他情况均切换至λ1=1且λ2=0。
模型预测控制算法包括误差模型、目标函数和约束条件,具体可根据动力学模型预测算法得到误差模型和目标函数,如图7所示,建立纵向、横向及横摆3个自由度的智能体动力学模型为
Figure BDA0003020951680000171
Figure BDA0003020951680000172
Figure BDA0003020951680000173
Figure BDA0003020951680000174
Figure BDA0003020951680000175
Figure BDA0003020951680000176
其中,假设预瞄点为A,m为智能体质量;lf、lr分别为前后轴到智能体质心的距离;δ为智能体前轮有效转向角;Iz是车体绕Z轴的转动惯量;αf、αr为前后轮侧偏角;φ,
Figure BDA0003020951680000177
为智能体横摆角及加速度;
Figure BDA0003020951680000178
是x、y轴方向的速度及加速度;Cxf、Cxr为前后轮纵向滑移刚度,Cαf、Cαr为前后轮侧偏刚度;if、ir为前后轮胎纵向滑移率;
Figure BDA0003020951680000179
为全局坐标系X、Y轴方向的速度;
对模型进行线性化处理并进行近似离散化处理得到出系统的预测输出表达式为
Y(t)=Ftγ(t|t)+GtΔU(t)+HtI
Figure BDA0003020951680000181
Figure BDA0003020951680000182
Figure BDA0003020951680000183
Figure BDA0003020951680000184
Figure BDA0003020951680000185
Figure BDA0003020951680000186
Figure BDA0003020951680000187
Ak,t=At,t,Bk,t=Bt,t
其中,Ft、Gt代表变换矩阵,Nu、Ny为输入输出量个数;
本实施例中,模型预测控制算法的目标函数为:
Figure BDA0003020951680000188
其中,Np为预测时域,Nc为控制时域,Q、R、S为权重矩阵,ε为松弛因子,ρ为其权重系数,η(k|t)为系统状态量(位姿);
Figure BDA0003020951680000189
表示系统状态参考量,
Figure BDA0003020951680000191
U(k|t)为系统控制量(控制转角量、速度),ΔU(k|t)为系统控制量的变化;Xr、Yr和θr分别表示智能体参考横坐标、参考纵坐标和参考航向角;
控制过程中满足以下约束条件:
Figure BDA0003020951680000192
Umin≤E·ΔU0+U0≤Umax
Figure BDA0003020951680000193
其中,构成E左矩阵的行数和列数均为Nc,Im代表一个维数为m的单位矩阵,
Figure BDA0003020951680000194
表示克罗内克积;
考虑到传统的模型预测控制中参数均为常量,在跟踪曲线道路时,智能体跟踪稳定性和实时性较差;本实施例中,模型预测控制算法中的预测时域由粒子群优化算法确定,具体如图8所示,以预测时域Np为粒子,搜索空间为D维,粒子的运动路径简化为一维运动方程如下:
Figure BDA0003020951680000195
Figure BDA0003020951680000196
其中,j=1,2,…n,n是群体规模。
Figure BDA0003020951680000197
为第k次更新第j个粒子时更新的速度;
Figure BDA0003020951680000198
为第k次更新时第j个粒子所在位置;ω为惯性权重因子;c1、 c2是学习因子常数;r1、r2是0到1之间的随机数;Pk为第k次更新时的个体极值;Gk是第k次整个种群中的极值。惯性权重的线性变化分为两个部分,通过临时参数η,则第k次迭代的惯性权重因子ωk(开始迭代时偏向于局部寻优;之后偏向于全局寻优)为:
Figure BDA0003020951680000201
其中,Nmax为转折迭代次数,Na为最大迭代次数,η为临时参数,ωmax和ωmin分别为惯性权重因子的最大值和最小值;
本实施例在利用粒子群优化算法确定模型预测控制算法的预测时域时,惯性权重的线性变化过程分为两个部分,在达到转折迭代次数之前,更偏向于局部寻优;在转折迭代次数之后,则偏向于全局寻优;采用这种方式设置惯性权重参数,能够使所确定的预测时域自适应路径曲率的变化情况,使得在不同路径(直线、曲线)和不同运行速度(低速、中速、高速)下,都能提高模型的预测精度,使智能体更好地跟踪目标路径。
纯跟踪算法输出的控制转角量δ1的计算式如下:
Figure BDA0003020951680000202
其中,L表示智能体的长度;本实施例中,智能体与目标参考路径点之间的横向位置偏差eld为:
Figure BDA0003020951680000203
其中,(Xr(k+1),Yr(k+1))为目标参考路径点在全局坐标系下的坐标,(X0, Y0)为智能体当前在全局坐标系下的坐标,
Figure BDA0003020951680000204
为目标参考路径点在全局坐标系下的期望航向。
传统的路径跟踪控制方法中,往往利用模糊控制算法计算控制转角量的修正量,耗时较长且精度得不到保证;为了进一步提高转角修正量的计算速度和计算精度,作为一种可选的实施方式,本实施例中,转角修正量Δδ的计算公式为:
Δδ=Kp·eld+Ki·∫elddt+Kd·deld/dt;
其中,Kp、Ki和Kd分别表示PID控制中的比例系数、积分系数和微分系数。
本实施例将智能体与目标参考路径点之间的横向位置偏差作为优化行为的反馈信息,通过PID控制方法计算转角修正量,具有较高的计算速度,且计算得到的转角修正量精度较高。
为了进一步提高智能体路径跟踪的稳定性和跟踪精度,如图1所示,本实施例提供的智能体路径跟踪控制方法,还包括:
按照Vref=min((1-e-K/c)·Vmax,Vs)实时计算目标控制速度Vref,并实时判断智能体是否通过了当前的弯曲路径段;K表示弯曲路径段的曲率;Vmax表示限制最大速度,
Figure BDA0003020951680000211
g表示重力加速度,μ表示摩擦系数;Vs为根据Sigmod规划曲线计算出的速度;c为与智能体运动性能相关的系数,与智能体受路径曲率变化的影响程度正相关,具体地,智能体受路径曲率变化影响越小,c的值越小,且
Figure BDA0003020951680000212
若智能体当前未通过弯曲路径段,则根据目标控制速度Vref使智能体执行减速;否则,根据速度Vs控制智能体的速度;
在判断智能体是否通过了当前的弯曲路径段时,可根据智能体的传感器获取相关信息;
本实施例在路径跟踪的同时,会实时根据路径曲率确定目标控制速度 Vref,并根据智能体的运动状态相应控制智能体的速度,由此能够进一步保证智能体运动的稳定性;智能体速度的控制结果会影响模型预测控制算法和纯跟踪算法的输出结果,进一步提高路径跟踪的精度。
为了减少内存消耗,本实施例在当前控制周期结束,进入下一个控制周期之前,会记录当控制周期的弯曲路径段的曲率K和曲率阈值Ky并删除掉当前控制周期位于智能体后方已处理的路径点及相关几何信息。
总体而言,本实施例所提供的智能体路径跟踪控制方法,是一种混合控制方法,其以模型预测控制算法为主、纯跟踪算法为辅,综合考虑了智能体当前位置与目标路径曲线之间的距离、速度差值和前轮转角差值设定切换条件,能够使智能体可以在不同曲率的曲线道路上运动,实现高稳定性、高精度的路径跟踪。
实施例2:
一种计算机可读存储介质,包括存储的计算机程序;计算机程序被处理器执行时,控制计算机可读存储介质所在设备执行上述实施例1提供的智能体路径跟踪控制方法。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种智能体路径跟踪控制方法,其特征在于,包括:
在当前控制周期,识别所述智能体在目标路径曲线上需经过的弯曲路径段;所述目标路径曲线包括路径方程f(x)和参考路径点序列;
计算预瞄距离ld,将所述智能体之前与其相距ld的参考路径点定位为当前控制周期的目标参考路径点,基于定位结果计算偏差权重距离Δl;
若Δl<lmin,Δvr<Δvrmax且Δδf<Δδfmax,则利用模型预测控制算法获得控制转角量δ2,作为待修正控制转角量;否则,利用纯跟踪算法获得控制转角量δ1,作为待修正控制转角量;
根据所述智能体与所述目标参考路径点之间的横向位置偏差eld计算转角修正量Δδ,对待修正控制转角量进行修正,得到控制转角量δ,并发送至所述智能体,以使所述智能体在当前控制周期沿所述目标路径移动,实现路径跟踪;
其中,偏差权重距离Δl用于衡量所述智能体与所述目标路径曲线之间的距离;Δvr和Δδf分别表示所述智能体的速度差值和前轮转角差值;lmin表示横向跟踪误差阈值,Δvrmax表示速度差值阈值,Δδfmax表示转角差值阈值。
2.如权利要求1所述的智能体路径跟踪控制方法,其特征在于,用于计算所述预瞄距离的预瞄模型表达式为:
Figure FDA0003020951670000011
其中,Ky表示所述弯曲路径段的曲率阈值,其绝对值越大,所述路径方程f(x)相对于预瞄方向的曲率越大;ld表示所述预瞄距离,V表示所述智能体的当前速度,C为常数,kp和ki分别为比例系数和积分系数;m和m'均为正整数。
3.如权利要求2所述的智能体路径跟踪控制方法,其特征在于,所述曲率阈值Ky按照如下方式获取:
获得所述参考路径点序列中当前离所述智能体最近的参考路径点P0(x0+lpre1,f(x0+lpre1)),从所述参考路径点P0前方的点(x0+lpre2,f(x0+lpre2))处开始,识别三个等间距的点PA(xPA,yPA)、PB(xPB,yPB)和PC(xPC,yPC),三个点所对应的侧向误差分别为s0、s1和s2
在所述智能体的纵向上预瞄一段路程,该路程的起点、中点和终点分别是PA *(xPA,0),PB *(xPB,0)和PC *(xPC,0);
按照如下计算公式计算所述曲率阈值Ky
Figure FDA0003020951670000021
其中,lpre1和lpre2是预瞄区域中两段不同的距离,且lpre2≤lpre1
4.如权利要求1所述的智能体路径跟踪控制方法,其特征在于,所述模型预测控制算法中的预测时域由粒子群优化算法确定,并且,所述粒子群优化算法中,第k次迭代的惯性权重因子ωk为:
Figure FDA0003020951670000022
其中,Nmax为转折迭代次数,Na为最大迭代次数,η为临时参数,ωmax和ωmin分别为惯性权重因子的最大值和最小值。
5.如权利要求1所述的智能体路径跟踪控制方法,其特征在于,所述转角修正量Δδ的计算公式为:
Δδ=Kp·eld+Ki·∫elddt+Kd·deld/dt;
并且,所述智能体与所述目标参考路径点之间的横向位置偏差eld为:
Figure FDA0003020951670000023
其中,Kp、Ki和Kd分别表示PID控制中的比例系数、积分系数和微分系数;(Xr(k+1),Yr(k+1))为所述目标参考路径点在全局坐标系下的坐标,(X0,Y0)为所述智能体当前在全局坐标系下的坐标,
Figure FDA0003020951670000031
为所述目标参考路径点在全局坐标系下的期望航向。
6.如权利要求1-5任一项所述的智能体控制方法,其特征在于,还包括:
按照Vref=min((1-e-K/c)·Vmax,Vs)实时计算目标控制速度Vref,并实时判断所述智能体是否通过了当前的弯曲路径段;K表示弯曲路径段的曲率;Vmax表示限制最大速度,
Figure FDA0003020951670000032
g表示重力加速度,μ表示摩擦系数;Vs为根据Sigmod规划曲线计算出的速度;c为与所述智能体运动性能相关的系数,与所述智能体受路径曲率变化的影响程度正相关;
若所述智能体当前未通过弯曲路径段,则根据目标控制速度Vref使所述智能体执行减速;否则,根据速度Vs控制所述智能体的速度。
7.如权利要求6所述的智能体控制方法,其特征在于,弯曲路径段的曲率K按照如下计算公式计算:
Figure FDA0003020951670000033
其中,
Figure FDA0003020951670000034
Figure FDA0003020951670000035
S和E分别为弯曲路径段的起点和终点,O'为弯曲路径段上除端点外的一个点,(xS,yS)、(xE,yE)和(xO',yO')分别表示起点S、终点E和点O'的在局部坐标系下的坐标,且xO'=(xS+xE)/2。
8.如权利要求1-7任一项所述的智能体路径跟踪控制方法,其特征在于,识别所述智能体在目标路径曲线上需经过的弯曲路径段,包括:
(S1)以所述参考路径点序列中当前离所述智能体最近的参考路径点P0为起点,沿所述目标路径曲线向前搜索N个参考路径点Pk(xPk,yPk),k=1,2,...,N,得到路径点集,将所述参考路径点P0作为采样起点;
(S2)从采样起点开始,在所述路径点集中等间隔采样3个参考路径点P1'、P2'和P3',计算直线段P1'P2'和P2'P3'之间的夹角α,若α<α0,则将参考路径点P2'作为弯曲路径点的起点,并转入步骤(S4);否则,转入步骤(S3);
(S3)将采样起点沿所述目标路径曲线滑动第一预设距离后,将当前的参考路径点作为新的采样起点,并转入步骤(S2);
(S4)将采样起点沿所述目标路径曲线滑动第二预设距离后,将当前的参考路径点作为新的采样起点;
(S5)从采样起点开始,在所述路径点集中等间隔采样3个参考路径点P1'、P2'和P3',计算直线段P1'P2'和P2'P3'之间的夹角α,若α≥α0,则将参考路径点作为弯曲路径的终点,并转入步骤(S7);否则,转入步骤(S6);
(S6)将采样起点沿所述目标路径曲线滑动第三预设距离后,将当前的参考路径点P2'作为新的采样起点,并转入步骤(S5);
(S7)将所述目标路径曲线上,由所识别的起点和终点所限定的路径段识别为当前控制周期内的弯曲路径段;
其中,α0为预设的标准角度。
9.如权利要求8所述的智能体路径跟踪控制方法,其特征在于,所述步骤(S1)中,搜索得到的N个参考路径点Pk(xPk,yPk)均在预测距离Dp内;
所述预测距离Dp的计算公式为:
Dp=r·Np·Vref·([10(1+e-ξ·K′)+rev]);
其中,r为修正系数,Np为模型预测算法中的预测时域,Vref为目标控制速度,K'为上一控制周期的弯曲路径段的曲率,ξ为调整因子;rev为调整量,rev<1;[]表示取整。
10.一种计算机可读存储介质,其特征在于,包括存储的计算机程序;所述计算机程序被处理器执行时,控制所述计算机可读存储介质所在设备执行权利要求1-9任一项所述的智能体路径跟踪控制方法。
CN202110402508.4A 2021-04-14 2021-04-14 一种智能体路径跟踪控制方法 Active CN113204236B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110402508.4A CN113204236B (zh) 2021-04-14 2021-04-14 一种智能体路径跟踪控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110402508.4A CN113204236B (zh) 2021-04-14 2021-04-14 一种智能体路径跟踪控制方法

Publications (2)

Publication Number Publication Date
CN113204236A true CN113204236A (zh) 2021-08-03
CN113204236B CN113204236B (zh) 2022-05-20

Family

ID=77026932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110402508.4A Active CN113204236B (zh) 2021-04-14 2021-04-14 一种智能体路径跟踪控制方法

Country Status (1)

Country Link
CN (1) CN113204236B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113655811A (zh) * 2021-08-25 2021-11-16 北京理工大学 隐式通信下无人机协同跟踪地面目标的期望队形获得方法
CN113895436A (zh) * 2021-10-20 2022-01-07 北京轻舟智航科技有限公司 一种变道路径规划方法
CN113985895A (zh) * 2021-11-29 2022-01-28 佛山市毕佳索智能科技有限公司 一种基于最优化的agv路径跟踪方法
CN114355924A (zh) * 2021-12-28 2022-04-15 北京理工大学 一种改进型纯跟踪路径跟踪方法
CN114637296A (zh) * 2022-03-16 2022-06-17 中铁二院工程集团有限责任公司 一种prt车辆的循迹控制系统及控制方法
CN114764251A (zh) * 2022-05-13 2022-07-19 电子科技大学 一种基于能耗模型的多智能体协同搜索节能方法
CN114942590A (zh) * 2022-03-30 2022-08-26 合肥工业大学 一种基于模糊控制的方程式赛车的横向控制方法及装置
CN116118751A (zh) * 2023-04-19 2023-05-16 深圳佑驾创新科技有限公司 车辆的控制方法、装置、车辆和存储介质
CN116954234A (zh) * 2023-09-06 2023-10-27 江苏苏亿盟智能科技有限公司 一种机器人巡检控制方法及系统
CN117572876A (zh) * 2024-01-15 2024-02-20 湖南大学 一种基于依赖关系的多智能体避碰控制方法
CN117612026A (zh) * 2023-11-24 2024-02-27 北京邮电大学 一种基于遥感影像道路提取的路径预测方法及系统
CN117724504A (zh) * 2024-02-07 2024-03-19 北京科技大学 一种基于投影面积的无人车路径跟踪控制方法及装置

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070213886A1 (en) * 2006-03-10 2007-09-13 Yilu Zhang Method and system for driver handling skill recognition through driver's steering behavior
CN102084403A (zh) * 2009-01-28 2011-06-01 丰田自动车株式会社 车辆群控制方法及车辆群控制装置
CN102900366A (zh) * 2012-10-26 2013-01-30 东南大学 一种水平定向钻自由轨迹规划及纠偏方法
CN103439884A (zh) * 2013-07-19 2013-12-11 大连理工大学 一种基于模糊滑模的智能汽车横向控制方法
CN104898657A (zh) * 2014-03-06 2015-09-09 西北农林科技大学 一种基于dsp的机器人视觉路径识别方法
CN104977933A (zh) * 2015-07-01 2015-10-14 吉林大学 一种自主驾驶车辆的区域型路径跟踪控制方法
CN107097785A (zh) * 2017-05-25 2017-08-29 江苏大学 一种预瞄距离自适应的智能车辆横向控制方法
CN107577227A (zh) * 2016-07-05 2018-01-12 百度(美国)有限责任公司 操作无人驾驶车辆的方法、装置和数据处理系统
CN108001447A (zh) * 2017-11-23 2018-05-08 江苏大学 一种智能车辆路径跟踪前轮转角补偿控制方法
CN108646734A (zh) * 2018-04-27 2018-10-12 天津大学 基于量子粒子群算法的非线性模型预测控制方法
CN108827335A (zh) * 2018-08-22 2018-11-16 北京理工大学 一种基于单向搜索模型的最短路径规划方法
CN109214127A (zh) * 2018-10-24 2019-01-15 合肥工业大学智能制造技术研究院 一种多点预瞄方法及其多点预瞄装置与目标路径跟踪方法
CN109318905A (zh) * 2018-08-22 2019-02-12 江苏大学 一种智能汽车路径跟踪混合控制方法
CN109884900A (zh) * 2019-04-03 2019-06-14 东南大学 基于自适应模型预测控制的收获机路径跟踪控制器的设计方法
CN110001637A (zh) * 2019-04-10 2019-07-12 吉林大学 一种基于多点跟踪的无人驾驶汽车路径跟踪控制装置及控制方法
CN110262508A (zh) * 2019-07-06 2019-09-20 深圳数翔科技有限公司 应用于封闭场地无人驾驶货运车辆上的自动引导系统及方法
CN110398969A (zh) * 2019-08-01 2019-11-01 北京主线科技有限公司 自动驾驶车辆自适应预测时域转向控制方法及装置
CN110502009A (zh) * 2019-08-14 2019-11-26 南京理工大学 基于航向预估的无人驾驶车辆路径跟踪控制方法
CN110989625A (zh) * 2019-12-25 2020-04-10 湖南大学 一种车辆路径跟踪控制方法
CN111325578A (zh) * 2020-02-20 2020-06-23 深圳市腾讯计算机系统有限公司 预测模型的样本确定方法及装置、介质和设备
CN111610780A (zh) * 2019-02-25 2020-09-01 广州汽车集团股份有限公司 一种自动驾驶车路径跟踪控制方法及其装置
CN111694356A (zh) * 2020-06-10 2020-09-22 上海高仙自动化科技发展有限公司 一种行驶控制方法、装置、电子设备及存储介质
EP3761065A1 (en) * 2019-07-05 2021-01-06 Deere & Company Apparatus and methods for vehicle steering to follow a curved path
CN112527000A (zh) * 2020-12-23 2021-03-19 中南大学 矿井下智能驾驶的局部路径规划方法及系统
US20210086832A1 (en) * 2019-09-23 2021-03-25 GM Global Technology Operations LLC Method and apparatus for lateral movement control

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070213886A1 (en) * 2006-03-10 2007-09-13 Yilu Zhang Method and system for driver handling skill recognition through driver's steering behavior
CN102084403A (zh) * 2009-01-28 2011-06-01 丰田自动车株式会社 车辆群控制方法及车辆群控制装置
CN102900366A (zh) * 2012-10-26 2013-01-30 东南大学 一种水平定向钻自由轨迹规划及纠偏方法
CN103439884A (zh) * 2013-07-19 2013-12-11 大连理工大学 一种基于模糊滑模的智能汽车横向控制方法
CN104898657A (zh) * 2014-03-06 2015-09-09 西北农林科技大学 一种基于dsp的机器人视觉路径识别方法
CN104977933A (zh) * 2015-07-01 2015-10-14 吉林大学 一种自主驾驶车辆的区域型路径跟踪控制方法
CN107577227A (zh) * 2016-07-05 2018-01-12 百度(美国)有限责任公司 操作无人驾驶车辆的方法、装置和数据处理系统
CN107097785A (zh) * 2017-05-25 2017-08-29 江苏大学 一种预瞄距离自适应的智能车辆横向控制方法
CN108001447A (zh) * 2017-11-23 2018-05-08 江苏大学 一种智能车辆路径跟踪前轮转角补偿控制方法
CN108646734A (zh) * 2018-04-27 2018-10-12 天津大学 基于量子粒子群算法的非线性模型预测控制方法
CN109318905A (zh) * 2018-08-22 2019-02-12 江苏大学 一种智能汽车路径跟踪混合控制方法
CN108827335A (zh) * 2018-08-22 2018-11-16 北京理工大学 一种基于单向搜索模型的最短路径规划方法
CN109214127A (zh) * 2018-10-24 2019-01-15 合肥工业大学智能制造技术研究院 一种多点预瞄方法及其多点预瞄装置与目标路径跟踪方法
CN111610780A (zh) * 2019-02-25 2020-09-01 广州汽车集团股份有限公司 一种自动驾驶车路径跟踪控制方法及其装置
CN109884900A (zh) * 2019-04-03 2019-06-14 东南大学 基于自适应模型预测控制的收获机路径跟踪控制器的设计方法
CN110001637A (zh) * 2019-04-10 2019-07-12 吉林大学 一种基于多点跟踪的无人驾驶汽车路径跟踪控制装置及控制方法
EP3761065A1 (en) * 2019-07-05 2021-01-06 Deere & Company Apparatus and methods for vehicle steering to follow a curved path
AU2020203993A1 (en) * 2019-07-05 2021-01-21 Deere & Company Apparatus and methods for vehicle steering to follow a curved path
CN110262508A (zh) * 2019-07-06 2019-09-20 深圳数翔科技有限公司 应用于封闭场地无人驾驶货运车辆上的自动引导系统及方法
CN110398969A (zh) * 2019-08-01 2019-11-01 北京主线科技有限公司 自动驾驶车辆自适应预测时域转向控制方法及装置
CN110502009A (zh) * 2019-08-14 2019-11-26 南京理工大学 基于航向预估的无人驾驶车辆路径跟踪控制方法
US20210086832A1 (en) * 2019-09-23 2021-03-25 GM Global Technology Operations LLC Method and apparatus for lateral movement control
CN110989625A (zh) * 2019-12-25 2020-04-10 湖南大学 一种车辆路径跟踪控制方法
CN111325578A (zh) * 2020-02-20 2020-06-23 深圳市腾讯计算机系统有限公司 预测模型的样本确定方法及装置、介质和设备
CN111694356A (zh) * 2020-06-10 2020-09-22 上海高仙自动化科技发展有限公司 一种行驶控制方法、装置、电子设备及存储介质
CN112527000A (zh) * 2020-12-23 2021-03-19 中南大学 矿井下智能驾驶的局部路径规划方法及系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUI XIE等: "Path-Following Control for Connected Self-driving Rollers with Preview Distance Online Optimization", 《PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE》 *
M. HADDAD等: "Trajectory Planning of Unicycle Mobile Robots With", 《IEEE TRANSACTIONS ON ROBOTICS》 *
SHAOBING XU等: "Design, Analysis, and Experiments of Preview Path", 《IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS》 *
王耀等: "基于预测-模糊联合控制的分布式驱动车辆", 《科学技术与工程》 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113655811B (zh) * 2021-08-25 2024-05-07 北京理工大学 隐式通信下无人机协同跟踪地面目标的期望队形获得方法
CN113655811A (zh) * 2021-08-25 2021-11-16 北京理工大学 隐式通信下无人机协同跟踪地面目标的期望队形获得方法
CN113895436A (zh) * 2021-10-20 2022-01-07 北京轻舟智航科技有限公司 一种变道路径规划方法
CN113895436B (zh) * 2021-10-20 2023-03-14 北京轻舟智航科技有限公司 一种变道路径规划方法
CN113985895A (zh) * 2021-11-29 2022-01-28 佛山市毕佳索智能科技有限公司 一种基于最优化的agv路径跟踪方法
CN113985895B (zh) * 2021-11-29 2024-05-03 佛山市毕佳索智能科技有限公司 一种基于最优化的agv路径跟踪方法
CN114355924B (zh) * 2021-12-28 2023-10-13 北京理工大学 一种改进型纯跟踪路径跟踪方法
CN114355924A (zh) * 2021-12-28 2022-04-15 北京理工大学 一种改进型纯跟踪路径跟踪方法
CN114637296A (zh) * 2022-03-16 2022-06-17 中铁二院工程集团有限责任公司 一种prt车辆的循迹控制系统及控制方法
CN114942590B (zh) * 2022-03-30 2024-05-07 合肥工业大学 一种基于模糊控制的方程式赛车的横向控制方法及装置
CN114942590A (zh) * 2022-03-30 2022-08-26 合肥工业大学 一种基于模糊控制的方程式赛车的横向控制方法及装置
CN114764251B (zh) * 2022-05-13 2023-10-10 电子科技大学 一种基于能耗模型的多智能体协同搜索节能方法
CN114764251A (zh) * 2022-05-13 2022-07-19 电子科技大学 一种基于能耗模型的多智能体协同搜索节能方法
CN116118751B (zh) * 2023-04-19 2023-08-29 深圳佑驾创新科技有限公司 车辆的控制方法、装置、车辆和存储介质
CN116118751A (zh) * 2023-04-19 2023-05-16 深圳佑驾创新科技有限公司 车辆的控制方法、装置、车辆和存储介质
CN116954234A (zh) * 2023-09-06 2023-10-27 江苏苏亿盟智能科技有限公司 一种机器人巡检控制方法及系统
CN116954234B (zh) * 2023-09-06 2023-12-01 江苏苏亿盟智能科技有限公司 一种机器人巡检控制方法及系统
CN117612026A (zh) * 2023-11-24 2024-02-27 北京邮电大学 一种基于遥感影像道路提取的路径预测方法及系统
CN117612026B (zh) * 2023-11-24 2024-06-07 北京邮电大学 一种基于遥感影像道路提取的路径预测方法及系统
CN117572876A (zh) * 2024-01-15 2024-02-20 湖南大学 一种基于依赖关系的多智能体避碰控制方法
CN117572876B (zh) * 2024-01-15 2024-04-12 湖南大学 一种基于依赖关系的多智能体避碰控制方法
CN117724504A (zh) * 2024-02-07 2024-03-19 北京科技大学 一种基于投影面积的无人车路径跟踪控制方法及装置
CN117724504B (zh) * 2024-02-07 2024-04-16 北京科技大学 一种基于投影面积的无人车路径跟踪控制方法及装置

Also Published As

Publication number Publication date
CN113204236B (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
CN113204236B (zh) 一种智能体路径跟踪控制方法
CN107702716B (zh) 一种无人驾驶路径规划方法、系统和装置
Li et al. Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles
CN109131325B (zh) 智能驾驶汽车的三维可拓预瞄切换的车道保持控制方法
Cibooglu et al. Hybrid controller approach for an autonomous ground vehicle path tracking problem
CN111845774A (zh) 一种基于横纵向协调的自动驾驶汽车动态轨迹规划及跟踪方法
CN110036353A (zh) 用于跟踪路线的地面车辆中的自适应控制方法和系统,尤其是在自动驾驶场景中
CN112197778A (zh) 基于改进a*算法的轮式机场巡界机器人路径规划方法
CN111896004A (zh) 一种狭窄通道车辆轨迹规划方法及系统
Qie et al. An improved model predictive control-based trajectory planning method for automated driving vehicles under uncertainty environments
CN116185014A (zh) 一种基于动态规划的智能车全局最优轨迹规划方法与系统
CN113408062A (zh) 自动驾驶全工况路面自适应mpc轨迹跟踪控制及评价方法
Chen et al. An adaptive path tracking controller based on reinforcement learning with urban driving application
Yu et al. RDT-RRT: Real-time double-tree rapidly-exploring random tree path planning for autonomous vehicles
Huang et al. Path tracking based on improved pure pursuit model and pid
Jiang et al. A dynamic motion planning framework for autonomous driving in urban environments
CN113515111A (zh) 一种车辆避障路径规划方法及装置
CN107992039B (zh) 一种动态环境下的基于流场的轨迹规划方法
CN118192601B (zh) 一种面向非结构化场景的自动驾驶拖拉机路径规划方法
Xiao et al. Smooth trajectory tracking using longitudinal distance constraint for a 4WS4WD unmanned ground vehicle
CN117470241A (zh) 一种用于非平坦地形下的自适应无地图导航方法及系统
Fnadi et al. Local obstacle-skirting path planning for a fast Bi-steerable rover using bézier curves
Shi et al. An autonomous valet parking algorithm for path planning and tracking
Song et al. A TC-RRT-based path planning algorithm for the nonholonomic mobile robots
CN116009558A (zh) 一种结合运动学约束的移动机器人路径规划方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant