[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN113170408B - Method and device for determining location - Google Patents

Method and device for determining location Download PDF

Info

Publication number
CN113170408B
CN113170408B CN201980081690.9A CN201980081690A CN113170408B CN 113170408 B CN113170408 B CN 113170408B CN 201980081690 A CN201980081690 A CN 201980081690A CN 113170408 B CN113170408 B CN 113170408B
Authority
CN
China
Prior art keywords
terminal device
parameter
terminal
weight
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980081690.9A
Other languages
Chinese (zh)
Other versions
CN113170408A (en
Inventor
卢前溪
沈渊
刘袁鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Guangdong Oppo Mobile Telecommunications Corp Ltd
Original Assignee
Tsinghua University
Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Guangdong Oppo Mobile Telecommunications Corp Ltd filed Critical Tsinghua University
Publication of CN113170408A publication Critical patent/CN113170408A/en
Application granted granted Critical
Publication of CN113170408B publication Critical patent/CN113170408B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/46Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请公开了一种确定位置的方法及设备,该方法包括:根据第一参数,确定第一终端设备的位置,所述第一参数包括以下参数中的至少两个参数:所述第一终端设备与卫星之间的伪距,所述第一终端设备与网络设备之间的伪距,所述第一终端设备与所述网络设备之间的角度,所述第一终端设备与第二终端设备之间的伪距,或所述第一参数包括所述第一终端设备与第二终端设备之间的伪距。该方法可以结合多个测量参数,来确定终端设备的位置,相比于仅采用单一的测量量进行定位的方案,能够提高定位精度。

Figure 201980081690

The present application discloses a method and device for determining a location. The method includes: determining the location of a first terminal device according to a first parameter, and the first parameter includes at least two of the following parameters: the first terminal The pseudo-range between the device and the satellite, the pseudo-range between the first terminal device and the network device, the angle between the first terminal device and the network device, the first terminal device and the second terminal The pseudorange between the devices, or the first parameter includes the pseudorange between the first terminal device and the second terminal device. The method can combine multiple measurement parameters to determine the position of the terminal device, and can improve the positioning accuracy compared with the solution of only using a single measurement quantity for positioning.

Figure 201980081690

Description

确定位置的方法及设备Method and device for determining location

技术领域technical field

本申请实施例涉及通信领域,并且更具体地,涉及确定位置的方法及设备。The embodiments of the present application relate to the communication field, and more specifically, to a method and device for determining a location.

背景技术Background technique

随着技术的发展,越来越多的终端设备需要进行定位,且用户对终端设备的定位精度要求越来越高。With the development of technology, more and more terminal devices need to be positioned, and users have higher and higher requirements for the positioning accuracy of the terminal devices.

如何实现对终端设备更为精准的定位成为亟需解决的问题。How to achieve more accurate positioning of terminal equipment has become an urgent problem to be solved.

发明内容Contents of the invention

本申请实施例提供了一种确定位置的方法及设备,能够实现对终端设备的精准定位。Embodiments of the present application provide a method and device for determining a position, which can realize precise positioning of a terminal device.

第一方面,提供了一种确定位置的方法,包括:根据第一参数,确定第一终端设备的位置,所述第一参数包括以下参数中的至少两个参数:所述第一终端设备与卫星之间的伪距,所述第一终端设备与网络设备之间的伪距,所述第一终端设备与所述网络设备之间的角度,所述第一终端设备与第二终端设备之间的伪距,或所述第一参数包括所述第一终端设备与第二终端设备之间的伪距。In a first aspect, a method for determining a location is provided, including: determining the location of a first terminal device according to a first parameter, where the first parameter includes at least two of the following parameters: the first terminal device and The pseudo-range between satellites, the pseudo-range between the first terminal device and the network device, the angle between the first terminal device and the network device, the angle between the first terminal device and the second terminal device The pseudorange between the first terminal device and the second terminal device, or the first parameter includes the pseudorange between the first terminal device and the second terminal device.

第二方面,提供了一种通信设备,该通信设备可以执行上述第一方面或第一方面的任意可选的实现方式中的方法。具体地,该通信设备可以包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的功能模块。In a second aspect, a communication device is provided, and the communication device can execute the method in the foregoing first aspect or any optional implementation manner of the first aspect. Specifically, the communication device may include a functional module configured to execute the method in the foregoing first aspect or any possible implementation manner of the first aspect.

第三方面,提供了一种通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或第一方面的任意可能的实现方式中的方法。In a third aspect, a communication device is provided, including a processor and a memory. The memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the above first aspect or any possible implementation manner of the first aspect.

第四方面,提供了一种芯片,用于实现上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该芯片包括处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面或第一方面的任意可能的实现方式中的方法。In a fourth aspect, a chip is provided, configured to implement the method in the foregoing first aspect or any possible implementation manner of the first aspect. Specifically, the chip includes a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the method in the above first aspect or any possible implementation manner of the first aspect.

第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。In a fifth aspect, there is provided a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in the above-mentioned first aspect or any possible implementation manner of the first aspect.

第六方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。According to a sixth aspect, a computer program product is provided, including computer program instructions, where the computer program instructions cause a computer to execute the method in the above first aspect or any possible implementation manner of the first aspect.

第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。In a seventh aspect, a computer program is provided, which, when running on a computer, causes the computer to execute the method in the above first aspect or any possible implementation manner of the first aspect.

第八方面,提供了一种通信系统,包括通信设备,其中,该通信设备用于:根据第一参数,确定第一终端设备的位置,所述第一参数包括以下参数中的至少两个参数:所述第一终端设备与卫星之间的伪距,所述第一终端设备与基站之间的伪距,所述第一终端设备与基站之间的角度,所述第一终端设备与第二终端设备之间的伪距,或所述第一参数包括所述第一终端设备与第二终端设备之间的伪距。In an eighth aspect, a communication system is provided, including a communication device, wherein the communication device is configured to: determine the position of the first terminal device according to a first parameter, and the first parameter includes at least two of the following parameters : the pseudo-range between the first terminal device and the satellite, the pseudo-range between the first terminal device and the base station, the angle between the first terminal device and the base station, the first terminal device and the second The pseudorange between the two terminal devices, or the first parameter includes the pseudorange between the first terminal device and the second terminal device.

本申请提供的技术方案,可以结合多个测量参数,来确定终端设备的位置,相比于仅采用单一的测量量进行定位的方案,能够提高定位精度。此外,本申请实施例还提供一种基于终端设备之间的伪距进行定位的方案,能够在没有基站或卫星辅助的情况下,也能实现对终端设备的定位。The technical solution provided by the present application can combine multiple measurement parameters to determine the position of the terminal device, which can improve the positioning accuracy compared with the solution of only using a single measurement quantity for positioning. In addition, the embodiment of the present application also provides a positioning solution based on the pseudo-range between terminal devices, which can realize the positioning of the terminal device without the assistance of a base station or a satellite.

附图说明Description of drawings

图1是本申请实施例提供的一种车联网通信模式的示意性图。Fig. 1 is a schematic diagram of a vehicle networking communication mode provided by an embodiment of the present application.

图2是本申请实施例提供的另一种车联网通信模式的示意性图。Fig. 2 is a schematic diagram of another communication mode of the Internet of Vehicles provided by the embodiment of the present application.

图3是本申请实施例提供的一种天线阵列进行角度测量的示意性结构图。Fig. 3 is a schematic structural diagram of angle measurement performed by an antenna array provided by an embodiment of the present application.

图4是本申请实施例提供的一种确定位置的方法的示意性流程图。Fig. 4 is a schematic flowchart of a method for determining a location provided by an embodiment of the present application.

图5是本申请实施例的一种通信设备的示意性框图。Fig. 5 is a schematic block diagram of a communication device according to an embodiment of the present application.

图6是本申请实施例的另一种通信设备的示意性结构图。FIG. 6 is a schematic structural diagram of another communication device according to an embodiment of the present application.

图7是本申请实施例的芯片的示意性结构图。FIG. 7 is a schematic structural diagram of a chip according to an embodiment of the present application.

图8是本申请实施例的通信系统的示意性框图。Fig. 8 is a schematic block diagram of a communication system according to an embodiment of the present application.

具体实施方式detailed description

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be described below with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments are part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the scope of protection of this application.

本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(GlobalSystem of Mobile communication,GSM)系统、码分多址(Code Division MultipleAccess,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long TermEvolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal MobileTelecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperabilityfor Microwave Access,WiMAX)通信系统或5G系统等。The technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, Code Division Multiple Access (Code Division Multiple Access, CDMA) system, Wideband Code Division Multiple Access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (General Packet Radio Service, GPRS), Long Term Evolution (Long Term Evolution, LTE) system, LTE Frequency Division Duplex (Frequency Division Duplex, FDD) system, LTE Time Division Duplex (Time Division Duplex, TDD), Universal Mobile Telecommunication System (Universal MobileTelecommunication System, UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system or 5G system, etc.

本申请实施例提到的网络设备可以是与终端设备(或称为通信终端、终端)通信的设备。网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。在一实施方式中,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是新无线系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(PublicLand Mobile Network,PLMN)中的网络设备等。The network device mentioned in the embodiment of the present application may be a device that communicates with a terminal device (or called a communication terminal, terminal). A network device can provide communication coverage for a specific geographic area, and can communicate with terminal devices located within the coverage area. In one embodiment, the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or an evolved A type base station (Evolutional Node B, eNB or eNodeB), or a base station (gNB) in a new wireless system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device can For mobile switching centers, relay stations, access points, vehicle-mounted devices, wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks or future evolution of public land mobile networks (PublicLand Mobile Network, PLMN) network equipment, etc.

本申请实施例提及的终端设备可以是任何需要确定位置信息的终端设备。该终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal DigitalAssistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。The terminal device mentioned in this embodiment of the present application may be any terminal device that needs to determine location information. The terminal equipment may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent or user device. Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (Session Initiation Protocol, SIP) phones, wireless local loop (Wireless Local Loop, WLL) stations, personal digital processing (Personal Digital Assistant, PDA), with wireless communication functions Handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolved PLMNs, etc.

该终端设备可以是车联网中的车载终端,车联网中对车辆的位置精度要求非常高。车辆需要准确地确定出自己的当前位置,才能更好地实现无人驾驶。The terminal device may be a vehicle-mounted terminal in the Internet of Vehicles, which requires very high position accuracy of the vehicle. Vehicles need to accurately determine their current location in order to better realize unmanned driving.

终端设备在各种场景中,都需要进行定位,以更好地实现终端设备的功能。例如,终端设备的导航系统,终端设备需要准确地定位出当前的位置,以为用户规划合理的导航路线,提高用户体验。Terminal devices need to be positioned in various scenarios to better realize the functions of the terminal devices. For example, in the navigation system of the terminal device, the terminal device needs to accurately locate the current location, so as to plan a reasonable navigation route for the user and improve user experience.

本申请实施例可以适用于任何终端设备到终端设备的通信框架。The embodiments of the present application may be applicable to any terminal device-to-terminal device communication framework.

例如,车辆到车辆(vehicle to vehicle,V2V)、车辆到其他设备(vehicle toeverything,V2X)、设备到设备(device to device,D2D)等。For example, vehicle to vehicle (vehicle to vehicle, V2V), vehicle to other equipment (vehicle to everything, V2X), device to device (device to device, D2D), etc.

下面对本申请实施例的应用场景进行介绍,主要以车联网为例进行介绍。The following introduces the application scenarios of the embodiments of the present application, mainly taking the Internet of Vehicles as an example.

在一实施方式中,在本申请的一些实施例中,本申请实施例可以适用于第三代合作伙伴计划(3rd generation partnership project,3GPP)Rel-14中定义的传输模式3和传输模式4。In an implementation manner, in some embodiments of the present application, the embodiments of the present application may be applicable to transmission mode 3 and transmission mode 4 defined in 3rd generation partnership project (3rd generation partnership project, 3GPP) Rel-14.

图1是本申请实施例的模式3的示意图。图2是本申请实施例的模式4的示意图。Fig. 1 is a schematic diagram of mode 3 of the embodiment of the present application. Fig. 2 is a schematic diagram of mode 4 of the embodiment of the present application.

在图1所示的传输模式3中,车载终端(车载终端121和车载终端122)的传输资源是由基站110分配的,车载终端根据基站110分配的资源在侧行链路上进行数据的发送。具体地,基站110可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。In transmission mode 3 shown in FIG. 1 , the transmission resource of the vehicle-mounted terminal (vehicle-mounted terminal 121 and vehicle-mounted terminal 122 ) is allocated by the base station 110, and the vehicle-mounted terminal transmits data on the sidelink according to the resources allocated by the base station 110 . Specifically, the base station 110 may allocate resources for a single transmission to the terminal, or may allocate resources for semi-static transmission to the terminal.

在图2所示的传输模式4中,车载终端(车载终端131和车载终端132)采用侦听(sensing)加预留(reservation)的传输方式,车载终端在侧行链路的资源上自主选取传输资源进行数据传输。In the transmission mode 4 shown in FIG. 2 , the vehicle-mounted terminal (vehicle-mounted terminal 131 and vehicle-mounted terminal 132) adopts the transmission method of sensing and reservation, and the vehicle-mounted terminal independently selects the resources of the side link. Transfer resources for data transfer.

车辆在车联网系统中,需要实时地确定当前位置,避免与其他物体发生碰撞。In the vehicle networking system, the vehicle needs to determine the current position in real time to avoid collisions with other objects.

目前,普遍使用的定位方式是使用基站进行定位,或者是使用卫星进行定位。At present, the commonly used positioning method is to use a base station for positioning, or use a satellite for positioning.

基站定位可以是基于观测到达时间差(observed time difference of arrival,OTDOA)进行定位。卫星定位可以是基于双曲线定位算法进行定位。这两种定位方式原理相同,下面以卫星为例说明其算法。Base station positioning may be based on observed time difference of arrival (observed time difference of arrival, OTDOA). Satellite positioning can be based on a hyperbolic positioning algorithm for positioning. The principles of these two positioning methods are the same, and the following uses satellites as an example to illustrate their algorithms.

一般情况下,卫星可以向终端设备发送一个信号,终端设备可以根据该信号的接收时间,以及卫星发射该信号的时间,确定信号到达时间差;根据信号到达时间差,确定终端设备与卫星之间的测量距离。终端设备在确定信号到达时间差时,由于终端设备的时钟与卫星的时钟不同步,存在时钟偏差,或者在信号传输过程中,由于信号噪声、时钟噪声等因素的影响,使得终端设备确定的信号到达时间差并不等于真实的信号传输时间,从而由该到达时间差计算出的距离也并非是终端设备与卫星之间的真实距离,我们可以将该测量距离称为伪距。In general, the satellite can send a signal to the terminal device, and the terminal device can determine the signal arrival time difference according to the receiving time of the signal and the time when the satellite transmits the signal; according to the signal arrival time difference, determine the measurement between the terminal device and the satellite distance. When the terminal device determines the signal arrival time difference, because the clock of the terminal device is not synchronized with the satellite clock, there is a clock deviation, or in the process of signal transmission, due to the influence of factors such as signal noise and clock noise, the signal arrival time determined by the terminal device The time difference is not equal to the real signal transmission time, so the distance calculated from the time difference of arrival is not the real distance between the terminal device and the satellite. We can call this measured distance a pseudorange.

本申请实施例可以根据终端设备与卫星之间的伪距来确定终端设备的位置。例如,可以以某一卫星为参考卫星,其他卫星的伪距减去参考卫星的伪距可以得到两个卫星伪距的差。由于做差能够消去终端设备的时钟偏差的影响,因此伪距的差可以更真实地近似两个卫星到终端设备的距离差。进一步地,可以通过对该多个距离差做最小二乘代价函数,采用一阶近似的泰勒算法可以获得车辆的位置估计。In this embodiment of the present application, the position of the terminal device may be determined according to the pseudo-range between the terminal device and the satellite. For example, a certain satellite can be used as a reference satellite, and the pseudorange of other satellites can be subtracted from the pseudorange of the reference satellite to obtain the difference between the pseudoranges of the two satellites. Since the difference can eliminate the influence of the clock bias of the terminal equipment, the difference in pseudo-range can more truly approximate the distance difference between two satellites and the terminal equipment. Further, the position estimation of the vehicle can be obtained by performing the least squares cost function on the plurality of distance differences, and using the first-order approximate Taylor algorithm.

但是,随着5G技术的发展,终端设备对定位精度的要求越来越高。尤其是在车联网系统中,对定位精度的要求更为严格。However, with the development of 5G technology, terminal devices have higher and higher requirements for positioning accuracy. Especially in the Internet of Vehicles system, the requirements for positioning accuracy are more stringent.

上述最小二乘代价函数不够精确,且直接采用一阶近似的泰勒算法进行定位,这会导致当测量误差较大时容易收敛到错误的位置,从而计算的终端设备的位置与实际位置之间的误差较大,定位精度不高。The above least squares cost function is not accurate enough, and the first-order approximate Taylor algorithm is directly used for positioning, which will easily converge to the wrong position when the measurement error is large, so that the calculated position of the terminal device and the actual position The difference between The error is large and the positioning accuracy is not high.

另外,卫星系统由于其特殊的高空特性,只能实现米级的二维平面精度,而高度上的定位精度很差,达到十米级。基站在高度上的定位精度虽然高于卫星,但是基站容易被遮挡,导致能够被车辆获取的数目有限,车辆不能使用被遮挡的基站进行定位;且基站存在同频干扰,远处的基站信号容易被近处的基站信号干扰,故基站的定位精度也有限,大致在十米级。传统定位算法仅依靠单一的卫星系统或基站系统,只考虑单一的测量量,例如基站的伪距或卫星的伪距。由于测量量较少,不能发挥卫星和基站两者不同的优势,无法满足车联网亚米级的精度要求。In addition, due to its special high-altitude characteristics, the satellite system can only achieve meter-level two-dimensional plane accuracy, while the altitude positioning accuracy is very poor, reaching the ten-meter level. Although the positioning accuracy of the base station is higher than that of the satellite, the base station is easily blocked, resulting in a limited number of vehicles that can be obtained, and the vehicle cannot use the blocked base station for positioning; and the base station has co-frequency interference, and the signal of the base station in the distance is easy. It is interfered by the signal of the nearby base station, so the positioning accuracy of the base station is also limited, roughly at the level of ten meters. Traditional positioning algorithms only rely on a single satellite system or base station system, and only consider a single measurement, such as the pseudo-range of the base station or the pseudo-range of the satellite. Due to the small amount of measurement, it cannot take advantage of the different advantages of satellites and base stations, and cannot meet the sub-meter accuracy requirements of the Internet of Vehicles.

此外,基站端的天线阵列可以测角度,以及终端设备之间也可以相互协作测量,这些能够提高系统精度的测量项都没有加入到现有的算法中。基于此,本申请实施例提供一种确定位置的方法,能够提高终端设备的定位精度。In addition, the antenna array at the base station can measure the angle, and the terminal equipment can also cooperate with each other to measure. These measurement items that can improve the system accuracy have not been added to the existing algorithm. Based on this, an embodiment of the present application provides a method for determining a position, which can improve the positioning accuracy of a terminal device.

如图3所示,该确定位置的方法包括步骤S210。As shown in FIG. 3 , the method for determining a location includes step S210.

S210、根据第一参数,确定第一终端设备的位置,所述第一参数包括以下参数中的至少两个参数:所述第一终端设备与卫星之间的伪距,所述第一终端设备与网络设备之间的伪距,所述第一终端设备与网络设备之间的角度,所述第一终端设备与第二终端设备之间的伪距,或所述第一参数包括所述第一终端设备与第二终端设备之间的伪距。S210. Determine the position of the first terminal device according to the first parameter, where the first parameter includes at least two of the following parameters: the pseudo-range between the first terminal device and the satellite, and the first terminal device The pseudo-range between the first terminal device and the network device, the angle between the first terminal device and the network device, the pseudo-range between the first terminal device and the second terminal device, or the first parameter includes the first A pseudorange between a terminal device and a second terminal device.

该第一终端设备可以是车联网系统中的车载终端,如车辆;也可以是其他网络的终端设备,例如移动终端等,本申请实施例对该第一终端设备的类型不做具体限定。The first terminal device may be a vehicle-mounted terminal in the Internet of Vehicles system, such as a vehicle; it may also be a terminal device of another network, such as a mobile terminal, etc. The embodiment of the present application does not specifically limit the type of the first terminal device.

本申请实施例中的第二终端设备可以表示除第一终端设备之外的其他任意终端设备。The second terminal device in this embodiment of the present application may refer to any other terminal device except the first terminal device.

本申请实施例中的网络设备例如可以是基站。为方便理解,下文以网络设备为基站为例进行描述。The network device in this embodiment of the present application may be, for example, a base station. For ease of understanding, the network device is used as an example for description below.

该第一参数为通过测量得到的参数,如伪距测量值和角度测量值。对于某些终端设备来说,其也可以实现对终端设备的角度测量,对于这种情况,第一参数中也可以包括终端设备之间的角度测量值。The first parameter is a parameter obtained by measurement, such as a pseudorange measurement value and an angle measurement value. For some terminal devices, it may also implement angle measurement for the terminal devices. In this case, the first parameter may also include an angle measurement value between the terminal devices.

本申请实施例提供的技术方案,可以将基站系统、卫星系统和终端网络系统中的测量量融合起来,进行终端设备的定位,相比于采用单一的测量量方案,能够提升定位精度。The technical solution provided by the embodiment of the present application can integrate the measurement quantities in the base station system, the satellite system and the terminal network system to locate the terminal equipment. Compared with a single measurement quantity solution, the positioning accuracy can be improved.

此外,第一参数也可以仅包括上述参数中的一种参数,例如,第一参数可以仅包括终端设备之间的伪距,或者仅包括第一终端设备与基站之间的角度。通过该第一参数,也可以确定出第一终端设备的位置。In addition, the first parameter may also include only one of the above parameters, for example, the first parameter may only include the pseudorange between the terminal devices, or only include the angle between the first terminal device and the base station. Through the first parameter, the position of the first terminal device can also be determined.

第一终端设备的位置可以是绝对位置,也可以是相对位置。绝对位置可以指第一终端设备在经纬度坐标,相对位置可以是指第一终端设备相对于其他终端设备的位置。The position of the first terminal device may be an absolute position or a relative position. The absolute position may refer to the latitude and longitude coordinates of the first terminal device, and the relative position may refer to the position of the first terminal device relative to other terminal devices.

第一终端设备的位置信息可以包括第一终端设备的三维位置信息,或者二维位置信息,本申请实施例对此不做限定。The location information of the first terminal device may include three-dimensional location information or two-dimensional location information of the first terminal device, which is not limited in this embodiment of the present application.

为方便描述,本申请实施例可以将终端设备、卫星和基站统称为节点。第一终端设备与节点之间的伪距可以采用传统的测量伪距的方法进行获得。For convenience of description, the embodiment of the present application may collectively refer to a terminal device, a satellite, and a base station as a node. The pseudo-range between the first terminal device and the node may be obtained by using a traditional method of measuring pseudo-range.

本申请实施例中的卫星可以是全球定位系统(global positioning system,GPS)卫星,也可以是北斗卫星等,对此不做限定。The satellites in this embodiment of the present application may be global positioning system (global positioning system, GPS) satellites, or Beidou satellites, etc., which are not limited.

本申请实施例中的基站可以是5G系统中的基站,也可以是LTE系统中的基站,或者其他系统中的基站。The base station in the embodiment of the present application may be a base station in a 5G system, a base station in an LTE system, or a base station in other systems.

第一终端设备与基站之间的角度可以是指基站的天线阵列测得的基站与第一终端设备之间的角度。第一终端设备与基站之间的角度可以包括第一终端设备与基站之间的方位角和/或俯仰角。The angle between the first terminal device and the base station may refer to the angle between the base station and the first terminal device measured by the antenna array of the base station. The angle between the first terminal device and the base station may include an azimuth angle and/or an elevation angle between the first terminal device and the base station.

本申请实施例对确定第一终端设备的位置方式不做具体限定。假设第一参数包括第一终端设备与卫星之间的伪距,以及第一终端设备与基站之间的伪距。The embodiment of the present application does not specifically limit the manner of determining the location of the first terminal device. It is assumed that the first parameter includes the pseudo-range between the first terminal device and the satellite, and the pseudo-range between the first terminal device and the base station.

作为一个示例,确定位置的方式可以是指,根据第一终端设备与卫星之间的伪距,以及第一终端设备与基站之间的伪距,分别计算出第一终端设备的位置,也就是说,可以根据第一终端设备与卫星之间的伪距计算出第一终端设备的位置X1,然后根据第一终端设备与基站之间的伪距计算出第一终端设备的位置X2,最后可以根据位置X1和位置X2,最终确定出第一终端设备的位置。As an example, the method of determining the position may refer to calculating the position of the first terminal device respectively according to the pseudo-range between the first terminal device and the satellite, and the pseudo-range between the first terminal device and the base station, that is, That is, the position X1 of the first terminal device can be calculated according to the pseudo-range between the first terminal device and the satellite, and then the position X2 of the first terminal device can be calculated according to the pseudo-range between the first terminal device and the base station, and finally the position X2 of the first terminal device can be calculated. According to the position X1 and the position X2, the position of the first terminal device is finally determined.

根据位置X1和位置X2,确定第一终端设备的位置可以指,将位置X1和位置X2的平均值作为第一终端设备的位置。或者,也可以对位置X1和位置X2分别设置不同的权重,计算出第一终端设备的位置。According to the position X1 and the position X2, determining the position of the first terminal device may refer to taking the average value of the position X1 and the position X2 as the position of the first terminal device. Alternatively, different weights may be set for the position X1 and the position X2 to calculate the position of the first terminal device.

本申请实施例对根据第一终端设备与卫星之间的伪距,计算第一终端设备的位置X1的方式不做限定。例如可以采用传统的最小二乘代价函数,确定第一终端设备的位置X1;或者也可以根据双曲线定位算法确定第一终端设备的位置X1。The embodiment of the present application does not limit the manner of calculating the position X1 of the first terminal device according to the pseudo-range between the first terminal device and the satellite. For example, the traditional least square cost function may be used to determine the position X1 of the first terminal device; or the position X1 of the first terminal device may be determined according to a hyperbolic positioning algorithm.

类似的,根据第一终端设备与基站之间的伪距,计算第一终端设备的位置X2的方式也可以采用上述方式中的任意一种。Similarly, according to the pseudo-range between the first terminal device and the base station, the method of calculating the position X2 of the first terminal device may also adopt any one of the above-mentioned methods.

作为又一示例,确定位置的方式也可以是将第一终端设备与卫星之间的伪距,以及第一终端设备与基站之间的伪距融合在一个代价函数中,通过对该代价函数进行迭代,确定出第一终端设备的位置。As yet another example, the method of determining the position may also be to integrate the pseudo-range between the first terminal device and the satellite, and the pseudo-range between the first terminal device and the base station into a cost function, and perform Iterate to determine the location of the first terminal device.

为方便描述,将第一终端设备与卫星之间的伪距简称为卫星的伪距,将第一终端设备与基站之间的伪距简称为基站的伪距。For convenience of description, the pseudo-range between the first terminal device and the satellite is simply referred to as the pseudo-range of the satellite, and the pseudo-range between the first terminal device and the base station is simply referred to as the pseudo-range of the base station.

上文是以卫星的伪距和基站的伪距进行举例说明的,本申请实施例的第一参数也可以包括其他的参数,例如第一终端设备与基站的之间角度,和/或第一终端设备与其他终端设备之间的伪距。The above is an example of the pseudorange of the satellite and the pseudorange of the base station. The first parameter in the embodiment of the present application may also include other parameters, such as the angle between the first terminal device and the base station, and/or the first The pseudorange between an end device and other end devices.

当然,第一参数还可以包括其他的测量量,例如,在终端设备与终端设备之间可以进行角度测量的情况下,也可以根据终端设备之间的角度进行定位。任何可以进行位置确定的参数都可以包含在第一参数之内。Of course, the first parameter may also include other measurement quantities. For example, in a case where angle measurement can be performed between terminal devices, positioning may also be performed according to the angle between terminal devices. Any parameter that enables location determination can be included in the first parameter.

本申请实施例还可以为不同的参数分别设置权重。也就是说,第一参数中的每个参数分别具有各自的权重信息,不同参数的权重可以相同,也可以不同,具体的权重信息可以根据实际情况来确定。本申请实施例可以根据第一参数,以及第一参数中每个参数的权重信息,确定第一终端设备的位置。In this embodiment of the present application, weights may also be set for different parameters. That is to say, each parameter in the first parameter has its own weight information, and the weights of different parameters may be the same or different, and the specific weight information may be determined according to actual conditions. In this embodiment of the present application, the position of the first terminal device may be determined according to the first parameter and weight information of each parameter in the first parameter.

这种确定位置的方式,可以根据具体情况,为不同的参数设置不同的权重。例如,在测量参数相对准确的情况下,可以为该参数设置较高的权重,在测量参数误差较大的情况下,为该参数设置较低的权重,这样在根据多个参数确定第一终端设备的位置时,能够保证第一终端设备位置的精度。In this way of determining the position, different weights can be set for different parameters according to specific situations. For example, when the measurement parameter is relatively accurate, a higher weight can be set for the parameter, and a lower weight can be set for the parameter when the measurement parameter error is large, so that when determining the first terminal based on multiple parameters When determining the location of the device, the accuracy of the location of the first terminal device can be guaranteed.

除了时钟偏差的影响外,距离的偏差主要是由于噪声而产生的,噪声可以包括信号噪声和/或时钟噪声。由于噪声不可消除,也不可避免,因此在确定终端设备位置时,我们可以尽量减小噪声的影响。作为一种实现方式,可以基于噪声来为不同的参数设置不同的权重,以提高定位精度。In addition to the influence of clock skew, the distance deviation is mainly caused by noise, and the noise may include signal noise and/or clock noise. Since noise cannot be eliminated and is unavoidable, we can minimize the impact of noise when determining the location of terminal equipment. As an implementation manner, different weights can be set for different parameters based on noise, so as to improve positioning accuracy.

假设第一终端设备与卫星之间的伪距具有第一权重,第一终端设备与基站之间的伪距具有第二权重,第一终端设备与第二终端设备之间的伪距具有第三权重,第一终端设备与基站之间的角度具有第四权重。It is assumed that the pseudorange between the first terminal device and the satellite has a first weight, the pseudorange between the first terminal device and the base station has a second weight, and the pseudorange between the first terminal device and the second terminal device has a third weight. Weight, the angle between the first terminal device and the base station has a fourth weight.

由于卫星的时钟相对稳定,因此可以不用考虑卫星的时钟噪声的影响,在确定权重时可以根据信号噪声的方差来确定第一权重。对于基站和第二终端设备来说,可能会存在时钟噪声的影响,因此,第二权重和第三权重可以是根据信号噪声的方差和时钟噪声的方差共同确定的。基站测量的与第一终端设备之间的角度也会受到信号噪声的影响,因此,第四权重可以是根据信号噪声的协方差确定的。Since the clock of the satellite is relatively stable, the influence of the clock noise of the satellite may not be considered, and the first weight may be determined according to the variance of the signal noise when determining the weight. For the base station and the second terminal device, there may be an influence of clock noise, therefore, the second weight and the third weight may be jointly determined according to the variance of signal noise and the variance of clock noise. The angle measured by the base station and the first terminal device will also be affected by signal noise, therefore, the fourth weight may be determined according to the covariance of signal noise.

作为一种实现方式,第一权重可以为信号噪声的方差的倒数,第二权重和第三权重可以为信号噪声的方差和时钟噪声的方差之和的倒数,第四权重可以为信号噪声协方差的逆矩阵。As an implementation, the first weight can be the reciprocal of the variance of the signal noise, the second weight and the third weight can be the reciprocal of the sum of the variance of the signal noise and the variance of the clock noise, and the fourth weight can be the covariance of the signal noise the inverse matrix of .

在一实施方式中,第一终端设备与第二终端设备之间的伪距可用于确定距离估计值,该距离估计值可以为第一终端设备获得的与第二终端设备之间的伪距,以及第二终端设备获得的与第一终端设备之间的伪距的均值;则根据第一参数,确定一终端设备的位置可以指,根据该距离估计值,确定第一终端设备的位置。In an embodiment, the pseudo-range between the first terminal device and the second terminal device may be used to determine a distance estimate, and the distance estimate may be a pseudo-range obtained by the first terminal device and the second terminal device, and the mean value of the pseudo-range between the second terminal device and the first terminal device; then, according to the first parameter, determining the position of a terminal device may refer to determining the position of the first terminal device according to the estimated distance value.

本申请实施例利用终端设备之间可以进行双向测距的特性,在进行定位时,采用双向测距的均值(即距离估计值)作为第一参数进行计算,由于距离估计值能够消去终端设备的时钟偏差的影响,因此距离估计值能够更真实地反映两个终端设备之间的距离,从而采用距离估计值进行定位也能够提高定位精度。The embodiment of the present application utilizes the characteristic that two-way distance measurement can be performed between terminal devices. When performing positioning, the mean value of two-way distance measurement (that is, the estimated distance value) is used as the first parameter for calculation. Since the estimated distance value can eliminate the Therefore, the distance estimation value can more truly reflect the distance between two terminal devices, so the positioning accuracy can also be improved by using the distance estimation value for positioning.

在一实施方式中,本申请实施例对确定第一终端设备的位置所采用的算法不做限定。例如,可以是基于最大似然理论,构建最大似然函数,通过该最大似然函数确定第一终端设备的位置。下文将会对该最大似然函数进行详细描述。In an implementation manner, the embodiment of the present application does not limit the algorithm used to determine the location of the first terminal device. For example, a maximum likelihood function may be constructed based on the maximum likelihood theory, and the position of the first terminal device may be determined through the maximum likelihood function. The maximum likelihood function will be described in detail below.

该最大似然函数中还可以包括时钟偏差参数,本申请在确定终端设备位置的同时,也能够将终端设备的时钟偏差确定出来。具体地,可以根据第一参数,以及最大似然函数,计算出第一终端设备的时钟偏差。The maximum likelihood function may also include a clock bias parameter, and the present application can also determine the clock bias of the terminal device while determining the position of the terminal device. Specifically, the clock offset of the first terminal device may be calculated according to the first parameter and the maximum likelihood function.

对最大似然函数进行计算,确定终端设备的位置可以是由终端设备、基站和卫星中的任意一个节点执行的。Calculating the maximum likelihood function and determining the position of the terminal device may be performed by any node among the terminal device, the base station and the satellite.

该似然函数可以是集中式似然函数,表示所有终端设备的位置信息都是由同一个计算节点对该似然函数进行迭代得到的。The likelihood function may be a centralized likelihood function, which means that the location information of all terminal devices is obtained by iterating the likelihood function by the same computing node.

或者,该似然函数可以是分布式似然函数,表示每个终端设备仅计算自己的位置信息。多个终端设备的位置可以是多个终端设备中的每个终端设备分别对该似然函数进行迭代得到的。Alternatively, the likelihood function may be a distributed likelihood function, which means that each terminal device only calculates its own location information. The positions of the multiple terminal devices may be obtained by each terminal device among the multiple terminal devices respectively iterating the likelihood function.

第一终端设备根据第一参数,以及最大似然函数,确定第一终端设备的位置可以指,第一终端设备可以根据第一参数,对该似然函数进行迭代,得到第一终端设备的第m次迭代参数,m为大于或等于1的整数;然后可以根据多个终端设备中其他终端设备的第m次迭代参数和第一终端设备的第m次的迭代参数,确定第一终端设备的第(m+1)次迭代参数;重复上述步骤,直到所有的迭代参数都不再发生变化,或者达到最大迭代次数;根据最后一次的迭代参数,确定第一终端设备的位置。Determining the position of the first terminal device by the first terminal device according to the first parameter and the maximum likelihood function may refer to that the first terminal device may iterate the likelihood function according to the first parameter to obtain the position of the first terminal device. The m iteration parameter, m is an integer greater than or equal to 1; then the first terminal device can be determined according to the mth iteration parameter of other terminal devices among the multiple terminal devices and the mth iteration parameter of the first terminal device The (m+1)th iteration parameter; repeat the above steps until all the iteration parameters are no longer changed, or the maximum number of iterations is reached; according to the last iteration parameter, determine the position of the first terminal device.

下面结合具体的例子,对本申请实施例提供的最大似然函数进行详细描述。The maximum likelihood function provided by the embodiment of the present application will be described in detail below with reference to specific examples.

我们可以假设系统中有Nc个终端设备,Nb个基站,Ns个卫星,其中,基站和卫星的位置是已知的。该Nc个终端设备可以计算出与Nb个基站之间的伪距,和/或与Ns个卫星之间的伪距。终端,基站和卫星的集合定义如下:

Figure GDA0003109150460000101
Figure GDA0003109150460000102
We may assume that there are N c terminal devices, N b base stations, and N s satellites in the system, where the positions of the base stations and satellites are known. The N c terminal devices can calculate pseudo-ranges with N b base stations, and/or pseudo-ranges with N s satellites. The set of terminals, base stations and satellites is defined as follows:
Figure GDA0003109150460000101
with
Figure GDA0003109150460000102

该终端设备可以是车辆,Nc个终端设备可以指车联网系统中的Nc个车辆。The terminal device may be a vehicle, and the N c terminal devices may refer to N c vehicles in the Internet of Vehicles system.

节点k(包括终端设备、基站和卫星)的位置记为pk=[xk,yk,zk]T,包含所有终端设备位置的参数向量记为

Figure GDA0003109150460000103
The position of node k (including terminal equipment, base station and satellite) is denoted as p k =[x k , y k , z k ] T , and the parameter vector containing the positions of all terminal equipment is denoted as
Figure GDA0003109150460000103

我们可以定义参数a的测量形式和估计形式分别为

Figure GDA0003109150460000104
Figure GDA0003109150460000105
We can define the measured and estimated forms of the parameter a as
Figure GDA0003109150460000104
with
Figure GDA0003109150460000105

本申请实施例可以假设卫星和基站是同步的,也就是说,卫星和基站之间没有时钟偏差。终端设备k由于硬件设备的限制,与基站和卫星之间存在时钟偏差δkIn the embodiment of the present application, it may be assumed that the satellite and the base station are synchronized, that is, there is no clock deviation between the satellite and the base station. Due to the limitation of hardware equipment, there is a clock deviation δ k between the terminal equipment k and the base station and the satellite.

定义节点k观察节点j的距离dkj,俯仰角θkj,和方位角φkj分别为:Define the distance d kj , pitch angle θ kj , and azimuth angle φ kj of node k observing node j as:

dkj=||pk-pj||d kj =||p k -p j ||

Figure GDA0003109150460000106
Figure GDA0003109150460000106

Figure GDA0003109150460000107
Figure GDA0003109150460000107

其中,pk表示节点的位置,pj表示节点j的位置。Among them, p k represents the position of the node, and p j represents the position of node j.

节点k可以接收来自节点j的信号,节点k例如可以是第一终端设备,节点j可以是卫星、基站、其他终端设备中的任一种。Node k may receive a signal from node j, node k may be, for example, a first terminal device, and node j may be any one of a satellite, a base station, and other terminal devices.

节点k可以接收到来自节点j的信号,该信号可以写成如下形式:Node k can receive a signal from node j, which can be written as follows:

rkj(t)=αkjSj(t-τkj)+nkj(t) (2)r kj (t)=α kj S j (t-τ kj )+n kj (t) (2)

其中,sj(t)是已知信号,其傅里叶变换为sj(f),αkj和τkj分别是节点j到节点k传输链路的信号幅度和时延,nkj(t)是功率谱密度为N0/2的高斯白噪声。也就是说,节点k接收到的信号除了节点j发送的sj(t)信号之外,还会包括噪声信号nkj(t)。Among them, s j (t) is a known signal, and its Fourier transform is s j (f), α kj and τ kj are the signal amplitude and time delay of the transmission link from node j to node k, respectively, n kj (t ) is Gaussian white noise with power spectral density N 0 /2. That is to say, the signal received by node k will include noise signal n kj (t) in addition to the s j (t) signal sent by node j.

假设节点j为卫星,对于节点k接收到来自卫星j的信号,我们采用以下伪距模型,伪距测量值

Figure GDA0003109150460000111
建模如下:Assuming that node j is a satellite, for node k to receive a signal from satellite j, we use the following pseudorange model, the pseudorange measurement
Figure GDA0003109150460000111
Modeled as follows:

Figure GDA0003109150460000112
Figure GDA0003109150460000112

其中,

Figure GDA0003109150460000113
表示节点k与节点j之间的伪距,dkj表示节点k与节点j之间的实际距离,bk表示节点k的时钟偏差引入的距离偏差,ωkj是由于信号噪声nkj(t)引入的一个等效零均值高斯误差,换句话说,ωkj是由于信号噪声nkj(t)引入的距离误差。in,
Figure GDA0003109150460000113
represents the pseudorange between node k and node j, d kj represents the actual distance between node k and node j, b k represents the distance deviation introduced by the clock bias of node k, ω kj is due to signal noise n kj (t) An equivalent zero-mean Gaussian error introduced, in other words, ω kj is the distance error due to signal noise n kj (t).

其中,bk=c*δk,c为光速,δk表示节点k(或称终端设备k)的时钟偏差。Wherein, b k =c*δ k , c is the speed of light, and δ k represents the clock bias of node k (or terminal device k).

ωkj的方差

Figure GDA0003109150460000114
满足:Variance of ω kj
Figure GDA0003109150460000114
Satisfy:

Figure GDA0003109150460000115
Figure GDA0003109150460000115

本申请实施例可以基于ωkj的方差可用于确定节点k与节点j之间的伪距的权重。例如,可以将方差

Figure GDA0003109150460000116
的倒数确定为节点k与节点j之间伪距的权重。In this embodiment of the present application, the variance of ω kj may be used to determine the weight of the pseudo-range between node k and node j. For example, the variance can be
Figure GDA0003109150460000116
The reciprocal of is determined as the weight of the pseudo-range between node k and node j.

从上式可以看出,该方差和信噪比、等效带宽成反比,可以通过增加信噪比和等效带宽来减小方差。It can be seen from the above formula that the variance is inversely proportional to the signal-to-noise ratio and the equivalent bandwidth, and the variance can be reduced by increasing the signal-to-noise ratio and the equivalent bandwidth.

假设节点j为基站或其他终端设备,对于节点k接收到来自节点j的信号,我们还考虑了终端设备和基站的时钟漂移等引起的时钟噪声的影响。因此,可以建立以下伪距模型:Assuming that node j is a base station or other terminal equipment, for node k to receive the signal from node j, we also consider the influence of clock noise caused by clock drift of terminal equipment and base station. Therefore, the following pseudorange model can be established:

Figure GDA0003109150460000117
Figure GDA0003109150460000117

其中,bj表示节点j的时钟偏移引入的距离偏差,υkj表示时钟噪声引入的距离误差。时钟噪声若不进行校准,其方差

Figure GDA0003109150460000118
会随着时间的累积而增长。该时钟噪声的方差
Figure GDA0003109150460000119
可以在时钟的出厂参数中获得。Among them, b j represents the distance deviation introduced by the clock offset of node j, and υ kj represents the distance error introduced by clock noise. If the clock noise is not calibrated, its variance
Figure GDA0003109150460000118
will grow over time. The variance of the clock noise
Figure GDA0003109150460000119
It can be obtained in the factory parameters of the clock.

对于节点j为基站的情况,我们可以假设基站与卫星同步,不存在时钟偏移,此时bj=0。此时,伪距模型可以表示为:For the case where node j is a base station, we can assume that the base station is synchronous with the satellite, there is no clock offset, and b j =0 at this time. At this point, the pseudorange model can be expressed as:

Figure GDA00031091504600001110
Figure GDA00031091504600001110

对于不同的伪距测量,我们引入参数λkj,其表示两种噪声叠加后方差的倒数:For different pseudorange measurements, we introduce the parameter λ kj , which represents the reciprocal of the variance after the superposition of the two noises:

对于节点j为卫星的情况:

Figure GDA0003109150460000121
For the case where node j is a satellite:
Figure GDA0003109150460000121

对于节点j为基站或其他终端设备的情况:

Figure GDA0003109150460000122
For the case where node j is a base station or other terminal equipment:
Figure GDA0003109150460000122

除了上述伪距测量量之外,本申请实施例还考虑了基站可以测角的性质,基站j可以测量与终端设备k之间的俯仰角θjk和方位角φjk,其建模可以如下:In addition to the above-mentioned pseudo-range measurement, the embodiment of the present application also considers the property that the base station can measure angles, and the base station j can measure the pitch angle θ jk and the azimuth angle φ jk between the terminal device k, and its modeling can be as follows:

Figure GDA0003109150460000123
Figure GDA0003109150460000123

其中,

Figure GDA0003109150460000124
表示节点j与节点k之间的俯仰角的测量值,
Figure GDA0003109150460000125
表示节点j与节点k之间的方位角的测量值,θjk表示节点j与节点k之间的实际俯仰角,φjk表示节点j与节点k之间的实际方位角,μjk表示由于信号噪声引入的二维角度上的等效零均值的高斯噪声,其协方差矩阵可以用cjk来表示。in,
Figure GDA0003109150460000124
represents the measured value of the pitch angle between node j and node k,
Figure GDA0003109150460000125
represents the measured value of the azimuth between node j and node k, θ jk represents the actual pitch angle between node j and node k, φ jk represents the actual azimuth between node j and node k, μ jk represents the The equivalent zero-mean Gaussian noise on the two-dimensional angle introduced by the noise, its covariance matrix can be expressed by c jk .

cjk的具体形式与基站天线阵列的空间结构有关,基站天线阵列的空间结构例如可以是矩形阵列或圆形阵列等。对于不同的空间结构,cjk的表达形式不同。下面以基站的天线阵列为矩形阵列为例进行说明,如图4所示,假设基站的天线阵列为M×N的矩形阵列。The specific form of c jk is related to the spatial structure of the base station antenna array. The spatial structure of the base station antenna array may be, for example, a rectangular array or a circular array. For different spatial structures, the expressions of c jk are different. Hereinafter, the antenna array of the base station is an example of a rectangular array for description. As shown in FIG. 4 , it is assumed that the antenna array of the base station is an M×N rectangular array.

以图4所示的天线阵列进行角度测量时,可令

Figure GDA0003109150460000126
Figure GDA0003109150460000127
Δ为图中阵元间隔,或者,Δ可以理解为行间距或列间距,λ为信号波长,则μjk的协方差矩阵Cjk可以表示为:When measuring the angle with the antenna array shown in Figure 4, the
Figure GDA0003109150460000126
Figure GDA0003109150460000127
Δ is the array element spacing in the figure, or, Δ can be understood as the row spacing or column spacing, and λ is the signal wavelength, then the covariance matrix C jk of μ jk can be expressed as:

Figure GDA0003109150460000128
Figure GDA0003109150460000128

其中:in:

a=cos2θjk(mcos2φjk+nsin2φjk+2lcosφjksinφjk)a=cos 2 θ jk (mcos 2 φ jk +nsin 2 φ jk +2lcosφ jk sinφ jk )

b=cosθjksinθjk((n-m)cosφjksinφjk+l(cos2φjk-sin2φkj))b=cosθ jk sinθ jk ((nm)cosφ jk sinφ jk +l(cos 2 φ jk -sin 2 φ kj ))

d=sin2θjk(msin2φjk+ncos2φjk-2lcosφjksinφjk)d=sin 2 θ jk (msin 2 φ jk +ncos 2 φ jk -2lcosφ jk sinφ jk )

建立伪距模型和角度模型后,我们可以通过合适的算法得到终端设备的位置信息。After establishing the pseudo-range model and angle model, we can obtain the location information of the terminal device through a suitable algorithm.

例如,可以通过传统算法计算出终端设备的位置。又例如,也可以基于本申请实施例提供的最大似然函数计算出终端设备的位置。For example, the position of the end device can be calculated by conventional algorithms. For another example, the position of the terminal device may also be calculated based on the maximum likelihood function provided by the embodiment of the present application.

基于最大似然理论,我们可以构造出如下总似然函数,其中,z是所有测量组成的向量。p表示所有终端设备的位置组成的向量,b表示所有终端设备的时钟偏移组成的向量。Based on the maximum likelihood theory, we can construct the following total likelihood function, where z is the vector composed of all measurements. p represents a vector composed of positions of all terminal devices, and b represents a vector composed of clock offsets of all terminal devices.

Figure GDA0003109150460000131
Figure GDA0003109150460000131

其中,pk表示节点k的位置,节点k可以是终端设备,pj表示节点j的位置,节点j可以是终端设备、基站和卫星中的任意一种,||pk-pj||表示节点k与节j之间的实际距离。Among them, p k represents the position of node k, node k can be a terminal device, p j represents the position of node j, node j can be any one of terminal device, base station and satellite, ||p k -p j || Indicates the actual distance between node k and node j.

Figure GDA0003109150460000132
Figure GDA0003109150460000132

上式表示基站或卫星的伪距的最大似然。The above formula expresses the maximum likelihood of the pseudorange of the base station or satellite.

Figure GDA0003109150460000133
Figure GDA0003109150460000133

上式表示终端设备之间的伪距的最大似然。The above formula represents the maximum likelihood of pseudoranges between terminal devices.

Figure GDA0003109150460000134
Figure GDA0003109150460000134

上式表示基站与终端设备之间的角度的最大似然。The above formula expresses the maximum likelihood of the angle between the base station and the terminal equipment.

本申请实施例在确定终端设备的位置时,考虑了多个测量项,并且可以将多个测量项集成在一个代价函数中,通过对该代价函数进行多次迭代,直至所述代价函数收敛或者达到最大迭代次数,然后可以将最后一次的迭代参数确定为终端设备的位置。In this embodiment of the present application, when determining the position of the terminal device, multiple measurement items are considered, and the multiple measurement items can be integrated into a cost function, and the cost function is iterated multiple times until the cost function converges or After reaching the maximum number of iterations, the last iteration parameter can then be determined as the position of the end device.

其次,本申请实施例提供的似然函数中还考虑了时钟偏差的影响,将时钟偏差产生的距离偏差也引入到似然函数中进行计算,在计算出终端设备位置的同时,也能获得终端设备的时钟偏差。该时钟偏差可以在终端设备后续的通信过程中具有重要的作用,例如,终端设备可以将自己的时钟偏差告诉给对端终端设备,这样有利于后续的通信。Secondly, the likelihood function provided by the embodiment of the present application also considers the influence of the clock bias, and the distance deviation caused by the clock bias is also introduced into the likelihood function for calculation. While calculating the position of the terminal device, it can also obtain the The clock skew of the device. The clock deviation may play an important role in the subsequent communication process of the terminal device. For example, the terminal device may inform the opposite terminal device of its own clock deviation, which is beneficial to subsequent communication.

当然,本申请实施例的似然函数也不局限于上述形式,例如,也可以不考虑时钟偏差带来的距离偏差,直接通过测量的伪距进行位置估计。Of course, the likelihood function in the embodiment of the present application is not limited to the above-mentioned form, for example, the position estimation may be performed directly through the measured pseudorange without considering the distance deviation caused by the clock deviation.

进一步地,本申请实施例还考虑终端设备之间可以进行双向测距的特性,也就是说,第一参数可以包括第一终端设备获得的与第二终端设备之间的伪距,以及第二终端设备获得的与第一终端设备之间的伪距。因此将第一终端设备与第二终端设备之间测得的双向伪距都进行考虑,集成到该似然函数中,能够进一步提高定位精度。Furthermore, this embodiment of the present application also considers the feature that two-way ranging can be performed between terminal devices, that is, the first parameter may include the pseudorange between the first terminal device and the second terminal device, and the second The pseudo-range obtained by the terminal device and the first terminal device. Therefore, the two-way pseudoranges measured between the first terminal device and the second terminal device are considered and integrated into the likelihood function to further improve the positioning accuracy.

第一终端设备k获得的与第二终端设备j之间的伪距可以指,第二终端设备j可以向第一终端设备发送第一信号,该第一信号中可以包括第二终端设备j发送第一信号的发送时间t1,第一终端设备k接收到第一信号之后,可以根据自己的接收时间t2,确定出与第二终端设备j之间的伪距为

Figure GDA0003109150460000141
Figure GDA0003109150460000142
The pseudo-range obtained by the first terminal device k and the second terminal device j may mean that the second terminal device j may send a first signal to the first terminal device, and the first signal may include a signal sent by the second terminal device j. At the sending time t1 of the first signal, after the first terminal device k receives the first signal, it can determine the pseudo-range to the second terminal device j according to its receiving time t2 as
Figure GDA0003109150460000141
Figure GDA0003109150460000142

第二终端设备j获得的与第一终端设备k之间的伪距可以指,第一终端设备k可以向第二终端设备j发送第二信号,该第二信号中可以包括第一终端设备k发送第二信号的发送时间t3,第二终端设备j接收到第二信号之后,可以根据自己的接收时间t4,确定出与第一终端设备k之间的伪距为

Figure GDA0003109150460000143
Figure GDA0003109150460000144
The pseudo-range between the second terminal device j and the first terminal device k may mean that the first terminal device k may send a second signal to the second terminal device j, and the second signal may include the first terminal device k The sending time t3 of the second signal is sent. After the second terminal device j receives the second signal, it can determine the pseudo-range to the first terminal device k according to its own receiving time t4 as
Figure GDA0003109150460000143
Figure GDA0003109150460000144

此时,在考虑了终端设备之间的双向测距的特性后,最大似然函数中的终端设备之间的伪距的最大似然可以变形为:At this time, after considering the characteristics of two-way ranging between terminal devices, the maximum likelihood of the pseudo-range between terminal devices in the maximum likelihood function can be transformed into:

Figure GDA0003109150460000145
Figure GDA0003109150460000145

Figure GDA0003109150460000146
表示节点k获得的与节点j之间的伪距的最大似然,
Figure GDA0003109150460000147
表示节点j获得的与节点k之间的伪距的最大似然。
Figure GDA0003109150460000146
Indicates the maximum likelihood of the pseudorange obtained by node k and node j,
Figure GDA0003109150460000147
Indicates the maximum likelihood of the pseudorange obtained by node j from node k.

进一步地,本申请实施例还可以为不同的参数设置不同的权重,对于卫星的伪距,我们可以仅考虑信号噪声的影响,因此可以基于信号噪声为卫星的伪距设置权重,例如,将信号噪声的方差的倒数λkj设置为卫星伪距的权重,

Figure GDA0003109150460000148
节点j表示卫星。Further, in the embodiment of the present application, different weights can be set for different parameters. For the pseudo-range of the satellite, we can only consider the influence of signal noise, so the weight can be set for the pseudo-range of the satellite based on the signal noise. For example, the signal The reciprocal λ kj of the variance of the noise is set as the weight of the satellite pseudorange,
Figure GDA0003109150460000148
Node j represents a satellite.

对于基站的伪距,我们可以同时考虑信号噪声和时钟噪声的影响,基站的伪距可以是根据信号噪声的方差和时钟噪声的方差共同确定的,例如,基站伪距的权重可以为信号噪声的方差和时钟噪声的方差之和的倒数,

Figure GDA0003109150460000149
节点j表示基站。For the pseudo-range of the base station, we can consider the influence of signal noise and clock noise at the same time. The pseudo-range of the base station can be determined according to the variance of the signal noise and the variance of the clock noise. For example, the weight of the pseudo-range of the base station can be the signal noise. The inverse of the sum of the variance of the variance and the clock noise,
Figure GDA0003109150460000149
Node j represents a base station.

对于终端设备之间的伪距,与基站的伪距类似,我们可以同时考虑信号噪声和时钟噪声的影响,为终端设备之间的伪距设置权重,该权重例如可以为

Figure GDA00031091504600001410
节点j表示其他终端设备。For the pseudo-range between terminal devices, similar to the pseudo-range of the base station, we can consider the influence of signal noise and clock noise at the same time, and set the weight for the pseudo-range between terminal devices. The weight can be, for example,
Figure GDA00031091504600001410
Node j represents other end devices.

对于基站的角度测量,本申请实施例可以考虑信号噪声引入的二维角度上的等效零均值高斯噪声的影响,该信号噪声的协方差矩阵可用于确定角度测量的权重。例如,将协方差矩阵的逆矩阵确定为角度测量的权重。For the angle measurement of the base station, the embodiment of the present application may consider the influence of the equivalent zero-mean Gaussian noise on the two-dimensional angle introduced by the signal noise, and the covariance matrix of the signal noise may be used to determine the weight of the angle measurement. For example, the inverse of the covariance matrix is determined as the weight for the angle measure.

我们可以将上述权重信息添加到最大似然函数中,进行终端设备位置的确定。We can add the above weight information to the maximum likelihood function to determine the position of the terminal device.

该最大似然函数可以变形为:The maximum likelihood function can be transformed into:

Figure GDA0003109150460000151
Figure GDA0003109150460000151

上述似然函数中,可以为不同的参数设置不同的权重λkjIn the above likelihood function, different weights λ kj can be set for different parameters.

由于噪声的方差与信噪比成反比,而λkj与噪声的方差成反比,因此,λkj与信噪比成正比,也就是说,信噪比越大,权重λkj也越大。如果一个测量量的信噪比比较大,表示该信号中的噪声较小,则可以为该测量量赋予较大的权重;如果一个测量量的信噪比比较小,表示该信号中的噪声比较大,则可以为该测量量赋予较小的权重。这种设置权重的方式较为合理,在算法中考虑了信号噪声和时钟噪声的影响,由该最大似然函数确定的终端设备的位置也与实际位置比较接近,定位精度较高。Since the variance of the noise is inversely proportional to the SNR, and λkj is inversely proportional to the variance of the noise, therefore, λkj is directly proportional to the SNR, that is, the larger the SNR, the greater the weight λkj . If the signal-to-noise ratio of a measurement is relatively large, it means that the noise in the signal is relatively small, and a larger weight can be assigned to the measurement; if the signal-to-noise ratio of a measurement is relatively small, it means that the noise in the signal is relatively small. If the value is large, a smaller weight can be given to the measurement. This method of setting weights is more reasonable, and the influence of signal noise and clock noise is considered in the algorithm. The position of the terminal device determined by the maximum likelihood function is also relatively close to the actual position, and the positioning accuracy is high.

对于上述最大似然函数,本申请实施例对其求解所采用的方式不做具体限定。例如,可以是梯度下降法,EM算法、坐标上升或下降算法等。下面以梯度下降算法为例,对似然函数的求解过程进行描述。For the above-mentioned maximum likelihood function, the embodiment of the present application does not specifically limit the method adopted for solving it. For example, it may be a gradient descent method, an EM algorithm, a coordinate ascent or descent algorithm, and the like. The following takes the gradient descent algorithm as an example to describe the solution process of the likelihood function.

对于上述似然函数,我们的目的是找到合适的P和b,使得上述似然函数值最大。因为该似然函数为指数形式,因此我们只需得到指数项的最大值,就可以获得该似然函数的最大值。也就是说,让下述代价函数H(p,b)值最小。For the above likelihood function, our purpose is to find the appropriate P and b to maximize the value of the above likelihood function. Because the likelihood function is in exponential form, we only need to get the maximum value of the exponential term to obtain the maximum value of the likelihood function. That is to say, the value of the following cost function H(p, b) should be minimized.

Figure GDA0003109150460000161
Figure GDA0003109150460000161

H(p,b)表现为加权平方和的形式。其中,包含了两部分内容,一部分是来自锚点的信息,例如来自基站的伪距和角度信息,来自卫星的伪距信息。另一部分是来自其他终端设备的伪距信息。其中,

Figure GDA0003109150460000162
是测量得到的伪距值和角度值。我们的目的是让解算的伪距和角度值,与测量的伪距和角度值之间的偏差最小。H(p,b) takes the form of a weighted sum of squares. Among them, there are two parts, one part is the information from the anchor point, such as the pseudorange and angle information from the base station, and the pseudorange information from the satellite. The other part is pseudorange information from other terminal devices. in,
Figure GDA0003109150460000162
are the measured pseudorange and angle values. Our goal is to minimize the deviation between the calculated pseudorange and angle values and the measured pseudorange and angle values.

对于上述似然函数,由于其包括所有的测量信息,也就是说,包括Nc个终端设备、Nb个基站和Ns个卫星之间的所有节点之间的测量信息,因此我们可以将该似然函数称为集中式定位算法。For the above likelihood function, since it includes all the measurement information, that is, the measurement information between all nodes among N c terminal devices, N b base stations and N s satellites, we can set The likelihood function is called a centralized localization algorithm.

采用梯度下降算法进行求解时,我们可以给出H(p,b)中每个多项式对于P和b的梯度(即一阶导数)。对于H(p,b)中的每个多项式,其只表示节点j和节点k之间的测量,故只和终端设备的未知参数pj,pk,bj,bk有关。When using the gradient descent algorithm to solve, we can give the gradient (ie, the first derivative) of each polynomial in H(p, b) with respect to P and b. For each polynomial in H(p, b), it only represents the measurement between node j and node k, so it is only related to the unknown parameters p j , p k , b j , b k of the terminal equipment.

对于伪距测量,我们以终端设备之间的伪距测量为例进行说明,基站或卫星之间的伪距对于终端设备的位置参数pk和时钟偏差参数bk的一阶导数也可以通过下式类比得到,只需将多项式中的pj,bj当成是相应的卫星或基站的已知参数即可。For the pseudo-range measurement, we take the pseudo-range measurement between terminal devices as an example. The first-order derivative of the pseudo-range between base stations or satellites for the position parameter p k and clock bias parameter b k of the terminal device can also be obtained by the following It can be obtained by analogy with the formula, only need to regard p j and b j in the polynomial as the known parameters of the corresponding satellite or base station.

对终端设备之间的伪距的测量项,我们对其进行求导,可以得到:For the measurement item of the pseudo-range between terminal devices, we can derive it, and we can get:

Figure GDA0003109150460000163
Figure GDA0003109150460000163

Figure GDA0003109150460000164
Figure GDA0003109150460000164

Figure GDA0003109150460000165
Figure GDA0003109150460000165

Figure GDA0003109150460000166
Figure GDA0003109150460000166

对于基站和终端设备之间的角度测量,首先定义:For the angle measurement between the base station and the end device, first define:

Figure GDA0003109150460000171
Figure GDA0003109150460000171

则角度测量项对应的梯度为:Then the gradient corresponding to the angle measurement item is:

Figure GDA0003109150460000172
Figure GDA0003109150460000172

得到各多项式的一阶导数后,可以对似然函数进行第一次迭代,得到该第一次迭代的最小值。进一步地,根据第一次迭代的迭代参数进行第二次迭代,得到该第二次迭代的迭代参数。依次循环,直至迭代参数不再发生变化,或者达到最大迭代次数。After obtaining the first-order derivatives of each polynomial, the likelihood function can be iterated for the first time to obtain the minimum value of the first iterative. Further, the second iteration is performed according to the iteration parameters of the first iteration to obtain the iteration parameters of the second iteration. Loop in turn until the iteration parameters no longer change, or reach the maximum number of iterations.

在对该似然函数进行求解时,可以输入终端设备和所有节点之间的伪距和角度测量值。然后可以给定所有终端设备的初始状态

Figure GDA0003109150460000173
Figure GDA0003109150460000174
并根据该初始状态进行迭代。对于第m次的迭代参数
Figure GDA0003109150460000175
Figure GDA0003109150460000176
可以根据整体代价函数和当前的迭代参数
Figure GDA0003109150460000177
Figure GDA0003109150460000178
根据上述给出的梯度表达式计算位置和时钟参数的梯度,依据梯度下降更新下一轮的参数
Figure GDA0003109150460000179
Figure GDA00031091504600001710
m为大于等于1的整数。直至该似然函数收敛或者达到最大迭代次数;根据最后一次迭代对应的迭代参数,确定终端设备的位置和时钟偏差。When solving this likelihood function, the pseudorange and angle measurements between the end device and all nodes can be input. The initial state of all end devices can then be given
Figure GDA0003109150460000173
with
Figure GDA0003109150460000174
And iterate based on that initial state. For the mth iteration parameter
Figure GDA0003109150460000175
with
Figure GDA0003109150460000176
According to the overall cost function and the current iteration parameters
Figure GDA0003109150460000177
with
Figure GDA0003109150460000178
Calculate the gradient of the position and clock parameters according to the gradient expression given above, and update the parameters of the next round according to the gradient descent
Figure GDA0003109150460000179
with
Figure GDA00031091504600001710
m is an integer greater than or equal to 1. Until the likelihood function converges or reaches the maximum number of iterations; according to the iteration parameters corresponding to the last iteration, the position and clock bias of the terminal device are determined.

除了上述确定权重的方式之外,还可以是其他的确定权重的方式。作为一种实现方式,可以给每个测量量设置固定的权重信息,例如,卫星的伪距、基站的伪距、基站的角度、终端设备之间的伪距的权重可以分别为0.3、0.3、0.2、0.2。In addition to the above-mentioned manners for determining weights, other manners for determining weights are also possible. As an implementation, fixed weight information can be set for each measurement quantity. For example, the weights of satellite pseudo-range, base station pseudo-range, base station angle, and pseudo-range between terminal devices can be 0.3, 0.3, 0.2, 0.2.

上述计算过程是假设所有的测量项都存在的情况下进行描述的。当然,可以可以只有其中部分测量项,对于只有部分测量项的情况下,上述似然函数及其计算过程也同样适用,只需将测量缺失的测量项置为0即可。The above calculation process is described under the assumption that all measurement items exist. Of course, there may be only some of the measurement items. For the case of only some of the measurement items, the above-mentioned likelihood function and its calculation process are also applicable, and it is only necessary to set the missing measurement items to 0.

对于没有基站或卫星系统的测量项的情况下,也就是说,没有基站或卫星辅助定位,第一参数值仅包括终端设备的伪距的情况下,如果直接采用上述给定的梯度下降算法进行定位,若给定的初值不够好,容易产生不收敛或者收敛到错误位置的情况,即计算得到的终端设备的位置与实际位置相差很大。For the case where there is no measurement item of the base station or satellite system, that is to say, there is no base station or satellite-assisted positioning, and the first parameter value only includes the pseudo-range of the terminal device, if the gradient descent algorithm given above is directly used for For positioning, if the given initial value is not good enough, it is easy to fail to converge or converge to the wrong position, that is, the calculated position of the terminal device is very different from the actual position.

由于无卫星和基站辅助,此时可以以第一个车辆为时钟基准,令其时钟偏差引入的距离偏差b1=0,然后可以根据双向测量得到终端设备之间的距离估计值,以及其他车辆相对于第一个车辆的时钟偏差。Since there is no satellite and base station assistance, the first vehicle can be used as the clock reference at this time, and the distance deviation b 1 introduced by its clock deviation can be set to 0, and then the estimated distance between the terminal equipment and other vehicles can be obtained according to the two-way measurement Clock offset relative to the first vehicle.

由于式(5)是关于距离dkj以及偏差bk,bj的线型模型,故直接采用最小二乘即可得到所有距离dkj和距离偏差bk的估计。Since formula (5) is a linear model about distance d kj and deviations b k and b j , the estimation of all distances d kj and distance deviation b k can be obtained directly by least squares.

本申请实施例还提供另外一种简单的获得距离估计的方式,即对双向测距直接进行平均,得到距离估计值:The embodiment of this application also provides another simple way to obtain distance estimation, that is, directly average the two-way ranging to obtain the distance estimation value:

Figure GDA0003109150460000181
Figure GDA0003109150460000181

采用距离估计值进行定位,可以消去第一终端设备与第二终端设备的时钟偏差对距离估计的影响。Using the distance estimation value for positioning can eliminate the influence of the clock bias between the first terminal device and the second terminal device on the distance estimation.

获得所有节点之间的距离估计值后,可直接通过经典的多维标定算法即可得到终端设备网络的形状,或者也可以通过其他算法例如半正定规划算法来获得终端设备网络的“形状估计”。下面以多维标定算法为例进行说明,平方距离矩阵

Figure GDA0003109150460000182
的k行j列可以表示为:After obtaining the distance estimates between all nodes, the shape of the terminal equipment network can be obtained directly through the classic multi-dimensional calibration algorithm, or the "shape estimation" of the terminal equipment network can be obtained through other algorithms such as semi-positive definite programming algorithm. The following is an example of a multi-dimensional calibration algorithm, the square distance matrix
Figure GDA0003109150460000182
The k rows and j columns can be expressed as:

Figure GDA0003109150460000183
Figure GDA0003109150460000183

对于平方距离矩阵

Figure GDA0003109150460000184
中没有测量的距离值,可以采用经典的最短路径算法进行代替。然后对平方距离矩阵
Figure GDA0003109150460000185
可以采用多维标定算法即可获得终端设备网络的“形状”。For the squared distance matrix
Figure GDA0003109150460000184
There is no measured distance value in , which can be replaced by the classic shortest path algorithm. Then for the squared distance matrix
Figure GDA0003109150460000185
The "shape" of the terminal device network can be obtained by using a multi-dimensional calibration algorithm.

多维标定算法的实现可以如下:The implementation of the multidimensional calibration algorithm can be as follows:

首先对平方距离矩阵

Figure GDA0003109150460000186
去质心化,得到G矩阵。
Figure GDA0003109150460000187
其中L=I-1/Nc11T,I为Nc维单位阵,1为Nc维全为1的列向量。对G矩阵进行特征值分解得到特征值和其对应的特征向量。取出最大的三个特征值和其对应的特征向量分别相乘得到三个加权的向量,按特征值从大到小顺序排列三个向量得到一个三列的矩阵,即为三维位置参数矩阵。如果只需要二维位置矩阵,则只取该三列矩阵的前两列即可。First for the squared distance matrix
Figure GDA0003109150460000186
Decentralize to get the G matrix.
Figure GDA0003109150460000187
Where L=I-1/N c 11 T , I is an N c -dimensional unit matrix, and 1 is a column vector of all 1s in N c dimensions. Decompose the eigenvalues of the G matrix to obtain the eigenvalues and their corresponding eigenvectors. The three largest eigenvalues are multiplied by their corresponding eigenvectors to obtain three weighted vectors, and the three vectors are arranged in descending order of the eigenvalues to obtain a three-column matrix, which is the three-dimensional position parameter matrix. If only a two-dimensional position matrix is required, only the first two columns of the three-column matrix can be used.

上述集中式定位算法需要集合网络中的所有测量,且所有的这些测量量都需要在一个中心点集中计算,也就是说,所有终端设备的位置以及时钟偏差都是通过一个中心点进行计算得到的。该中心点可以是终端设备、基站和卫星中的任意一个节点。该算法由于直接对Nc个车辆的p和b进行解算,解算空间大导致复杂度高,对于中心点的计算能力也有很高的要求。The above centralized positioning algorithm needs to gather all the measurements in the network, and all these measurements need to be calculated at a central point, that is, the positions and clock deviations of all terminal devices are calculated through a central point . The central point may be any node among terminal equipment, base station and satellite. Since the algorithm directly calculates the p and b of N c vehicles, the large calculation space leads to high complexity, and it also has high requirements for the calculation ability of the central point.

另外,在移动网络中,为了保持实时性,很多时候无法将所有的数据都收集到中心节点进行计算,并且大部分节点的计算能力也无法实时计算出所有节点的参数。In addition, in the mobile network, in order to maintain real-time performance, it is often impossible to collect all the data to the central node for calculation, and the computing power of most nodes cannot calculate the parameters of all nodes in real time.

基于此,本申请实施例提供一种分布式定位算法,该算法可以将计算过程进行分解,每个终端设备k只需计算自己的位置pk和时钟偏差bk,这样也可以得到所有终端设备的位置和时钟偏移。这种计算方式能够降低计算节点的计算复杂度,能够提高计算速率,保证移动网络中的实时性要求。Based on this, the embodiment of the present application provides a distributed positioning algorithm, which can decompose the calculation process, and each terminal device k only needs to calculate its own position p k and clock bias b k , so that all terminal devices can also be obtained position and clock offset. This calculation method can reduce the calculation complexity of the calculation nodes, increase the calculation rate, and ensure the real-time requirements in the mobile network.

对于分布式定位算法,我们可以从集中式代价函数H(p,b)中把和终端设备k有关的项提取出来,构造局部代价函数Hk(pk,bk),如下:For the distributed positioning algorithm, we can extract the items related to the terminal device k from the centralized cost function H(p, b), and construct the local cost function H k (p k , b k ), as follows:

Figure GDA0003109150460000191
Figure GDA0003109150460000191

每个终端设备均可以按照上文描述的求导方式,对似然函数进行迭代,每个终端设备对各自的似然函数进行迭代,求出其对应的位置和时钟偏移。Each terminal device can iterate the likelihood function according to the derivation method described above, and each terminal device iterates its own likelihood function to obtain its corresponding position and clock offset.

具体的迭代过程如下:The specific iterative process is as follows:

第一终端设备可以根据第一参数,对该分布式似然函数进行迭代,得到该第一终端设备的第m次迭代参数,m为大于或等于1的整数。The first terminal device may iterate the distributed likelihood function according to the first parameter to obtain an m-th iteration parameter of the first terminal device, where m is an integer greater than or equal to 1.

第一终端设备可以接收其他终端设备广播的其他终端设备的第m次迭代参数,并根据其他终端设备的第m次迭代参数,利用梯度下降算法,得到本节点的第(m+1)次迭代参数。The first terminal device can receive the mth iteration parameters of other terminal devices broadcast by other terminal devices, and use the gradient descent algorithm to obtain the (m+1)th iteration of the node according to the mth iteration parameters of other terminal devices parameter.

重复上述步骤,直到所有的迭代参数不在发生变化,或者达到最大迭代次数。Repeat the above steps until all iteration parameters do not change, or the maximum number of iterations is reached.

第一终端设备根据最后一次的迭代参数,确定第一终端设备的位置和时钟偏移。例如,第一终端设备可以将最后一次迭代参数中的p确定为第一终端设备的位置信息,将最后一次迭代参数中的b确定为第一终端设备的时钟偏移距离。The first terminal device determines the location and clock offset of the first terminal device according to the last iteration parameter. For example, the first terminal device may determine p in the last iteration parameter as the location information of the first terminal device, and determine b in the last iteration parameter as the clock offset distance of the first terminal device.

同样地,第二终端设备可以采用上述步骤,得到第二终端设备的位置和时钟偏移。以此类推,每个终端设备都可以得到本节点的位置和时钟偏移。这样整个终端设备系统的位置和时钟偏移都可以获得到。Likewise, the second terminal device may use the above steps to obtain the location and clock offset of the second terminal device. By analogy, each terminal device can obtain the location and clock offset of its own node. In this way, the position and clock offset of the entire terminal equipment system can be obtained.

对于局部式定位算法,当无锚点时,也就是说,没有基站系统和卫星系统辅助定位时,可直接采用上文描述的梯度下降算法进行计算。但是,如果给定的初值不够好,也容易产生不收敛或收敛到错误位置的情况。For the local positioning algorithm, when there is no anchor point, that is, when there is no base station system and satellite system to assist positioning, the gradient descent algorithm described above can be directly used for calculation. However, if the given initial value is not good enough, it is easy to cause non-convergence or convergence to the wrong position.

基于此,本申请实施例提供一种计算方式,可以避免不收敛或收敛到错误位置的情况。下面对该计算方式进行描述。Based on this, the embodiment of the present application provides a calculation method, which can avoid the situation of not converging or converging to a wrong position. The calculation method is described below.

每个终端设备可以通过式(6)获得其和邻居的距离值,每个终端设备可以将其获得的所有距离值广播给其他终端设备。这样,每个终端设备都可以获得其1跳网络内的所有测量信息,也就是说,每个终端设备都可以获得能够与自己通信的其他终端设备的测量信息。终端设备可以根据该1跳范围内的所有节点的距离测量值(或称伪距),根据多维标定算法或半正定规划算法,即可获得每个终端设备1跳网络的“形状”。进一步地,可以将这些局部的结构融合起来得到整个网络的“形状”。具体的计算过程如下:Each terminal device can obtain the distance value between itself and its neighbors through formula (6), and each terminal device can broadcast all the distance values it obtains to other terminal devices. In this way, each terminal device can obtain all measurement information in its 1-hop network, that is, each terminal device can obtain measurement information of other terminal devices that can communicate with itself. The terminal device can obtain the "shape" of each terminal device's 1-hop network according to the distance measurement values (or pseudoranges) of all nodes within the 1-hop range, and according to the multi-dimensional calibration algorithm or semi-positive definite programming algorithm. Further, these local structures can be fused to obtain the "shape" of the entire network. The specific calculation process is as follows:

输入为终端设备与其他终端设备之间的伪距,输出为整个终端设备网络的“形状”。The input is the pseudorange between the end-device and other end-devices, and the output is the "shape" of the entire end-device network.

每个终端设备可以上文描述的多维标定算法构建自己第0轮迭代的本地的1跳网络“形状”

Figure GDA0003109150460000201
并将其广播给邻居。Each terminal device can build its own local 1-hop network "shape" of the 0th round of iteration using the multi-dimensional calibration algorithm described above
Figure GDA0003109150460000201
and broadcast it to neighbors.

从任一终端设备开始,将其定为起始网络,这里以将终端设备k定义为起始网络为例。Starting from any terminal device, define it as the initial network. Here, define terminal device k as the initial network as an example.

对于第m次的迭代参数

Figure GDA0003109150460000202
终端设备k可以从不在
Figure GDA0003109150460000203
中的终端设备中挑选出终端设备j,使得
Figure GDA0003109150460000204
Figure GDA0003109150460000205
拥有的共有节点最多m为大于等于1的整数。For the mth iteration parameter
Figure GDA0003109150460000202
End device k can never be in
Figure GDA0003109150460000203
Select the terminal device j from the terminal devices in , such that
Figure GDA0003109150460000204
Know
Figure GDA0003109150460000205
The maximum number of shared nodes owned by m is an integer greater than or equal to 1.

通过共有节点的空间关系将

Figure GDA0003109150460000206
Figure GDA0003109150460000207
融合成一个包含
Figure GDA0003109150460000208
Figure GDA0003109150460000209
所有节点的新网络“形状”,将融合后的网络更新为
Figure GDA00031091504600002010
Through the spatial relationship of common nodes will
Figure GDA0003109150460000206
with
Figure GDA0003109150460000207
fused into one containing
Figure GDA0003109150460000208
with
Figure GDA0003109150460000209
The new network "shape" of all nodes, updating the fused network to
Figure GDA00031091504600002010

直至

Figure GDA00031091504600002011
包含所有终端设备。当
Figure GDA00031091504600002012
包含所有终端设备时,则将其定为网络的整体“形状”。until
Figure GDA00031091504600002011
Contains all end devices. when
Figure GDA00031091504600002012
When all end devices are included, this defines the overall "shape" of the network.

相比于3GPP定位算法中只含有伪距测量参数,且只使用单一种类的信息(如基站或卫星),本申请实施例不仅加入了基站的角度测量和终端设备之间相互协作的伪距测量,且在算法中将所有的这些测量同一整合到了一个代价函数中,通过融合之后的代价函数进行定位,能够提升定位精度。Compared with the 3GPP positioning algorithm that only contains pseudo-range measurement parameters and only uses a single type of information (such as base stations or satellites), the embodiment of the present application not only adds the angle measurement of the base station and the pseudo-range measurement of mutual cooperation between terminal devices , and all these measurements are integrated into a cost function in the algorithm, and positioning can be performed through the fused cost function, which can improve the positioning accuracy.

本申请实施例提供的最大似然函数具有包含性,对于未知的测量项,或没有进行的测量项,只需将测量缺失的部分置为0即可,仍然可以沿用该似然函数进行定位。例如,对于只有基站的角度测量和伪距测量的情况下,只需将有关卫星伪距的多项式和终端设备之间的伪距的多项式置为0,仅对基站的角度和伪距的多项式进行迭代,得到终端设备的位置信息。The maximum likelihood function provided by the embodiment of the present application is inclusive. For unknown measurement items or measurement items that have not been performed, it is only necessary to set the missing part of the measurement to 0, and the likelihood function can still be used for positioning. For example, in the case of only the angle measurement and pseudorange measurement of the base station, it is only necessary to set the polynomial of the pseudorange of the satellite and the polynomial of the pseudorange between the terminal equipment to 0, and only carry out the polynomial of the angle and pseudorange of the base station Iterate to obtain the location information of the terminal device.

本申请实施例提供的最大似然函数能够在实现对终端设备的定位的同时,也能够实现对终端设备的时钟偏移的估计。The maximum likelihood function provided by the embodiment of the present application can realize the estimation of the clock offset of the terminal device while realizing the positioning of the terminal device.

另外,本申请实施例采用梯度下降算法对最大似然函数进行求解,由于使用梯度下降算法,迭代的过程中只需计算梯度即可。且该梯度部分有闭式表达式,复杂度较低。尤其是对于车联网这种实时性要求较高的网络来说,低复杂度能够满足其实时性要求。本申请实施例提供的分布式定位算法能够进一步降低计算复杂度,提高实时性。In addition, the embodiment of the present application uses the gradient descent algorithm to solve the maximum likelihood function. Since the gradient descent algorithm is used, only the gradient needs to be calculated in the iterative process. And the gradient part has a closed expression, and the complexity is low. Especially for a network with high real-time requirements such as the Internet of Vehicles, low complexity can meet its real-time requirements. The distributed positioning algorithm provided by the embodiment of the present application can further reduce computational complexity and improve real-time performance.

上文详细描述了本申请实施例提供的确定位置的方法,下面结合图5-图8,详细描述本申请实施例的装置,装置实施例与方法实施例相互对应,因此未详细描述的部分可以参见前面各方法实施例。The method for determining the position provided by the embodiment of the present application has been described in detail above, and the device of the embodiment of the present application will be described in detail below in conjunction with Fig. 5-Fig. See the previous method embodiments.

图5是本申请实施例提供的一种通信设备500的示意性框图。图5所示的通信设备500可以是方法实施例中的发送端设备。该通信设备可以包括处理单元510。Fig. 5 is a schematic block diagram of a communication device 500 provided by an embodiment of the present application. The communication device 500 shown in FIG. 5 may be the sending end device in the method embodiment. The communication device may comprise a processing unit 510 .

处理单元510,用于根据第一参数,确定第一终端设备的位置,所述第一参数包括以下参数中的至少两个参数:所述第一终端设备与卫星之间的伪距,所述第一终端设备与网络设备之间的伪距,所述第一终端设备与所述网络设备之间的角度,所述第一终端设备与第二终端设备之间的伪距,或所述第一参数包括所述第一终端设备与第二终端设备之间的伪距。The processing unit 510 is configured to determine the position of the first terminal device according to a first parameter, where the first parameter includes at least two parameters among the following parameters: a pseudo-range between the first terminal device and a satellite, the The pseudo-range between the first terminal device and the network device, the angle between the first terminal device and the network device, the pseudo-range between the first terminal device and the second terminal device, or the first terminal device A parameter includes a pseudorange between the first terminal device and the second terminal device.

在一实施方式中,所述第一参数中的每个参数分别具有各自的权重信息,所述处理单元510用于:根据所述第一参数,以及所述第一参数中每个参数的权重信息,确定所述第一终端设备的位置。In one embodiment, each of the first parameters has its own weight information, and the processing unit 510 is configured to: according to the first parameter and the weight of each of the first parameters information to determine the location of the first terminal device.

在一实施方式中,所述第一终端设备与所述卫星之间的伪距具有第一权重,所述第一终端设备与所述网络设备之间的伪距具有第二权重,所述第一终端设备与所述第二终端设备之间的伪距具有第三权重,所述第一终端设备与所述网络设备之间的角度具有第四权重,所述第一权重是根据信号噪声的方差确定的,所述第二权重和所述第三权重是根据信号噪声的方差和时钟噪声的方差确定的,所述第四权重是根据信号噪声的协方差确定的。In an embodiment, the pseudorange between the first terminal device and the satellite has a first weight, the pseudorange between the first terminal device and the network device has a second weight, and the first A pseudorange between a terminal device and the second terminal device has a third weight, an angle between the first terminal device and the network device has a fourth weight, and the first weight is based on signal noise The second weight and the third weight are determined according to the variance of signal noise and the variance of clock noise, and the fourth weight is determined according to the covariance of signal noise.

在一实施方式中,所述第一终端设备与所述网络设备之间的角度包括方位角和/或俯仰角。In an implementation manner, the angle between the first terminal device and the network device includes an azimuth angle and/or an elevation angle.

在一实施方式中,所述第一终端设备与所述第二终端设备之间的伪距用于确定距离估计值,所述距离估计值为所述第一终端设备获得的与所述第二终端设备之间的伪距,以及所述第二终端设备获得的与所述第一终端设备之间的伪距的均值;所述处理单元510用于:根据所述距离估计值,确定所述第一终端设备的位置。In an embodiment, the pseudo-range between the first terminal device and the second terminal device is used to determine a distance estimate value, and the distance estimate value is obtained by the first terminal device and the second terminal device The pseudorange between the terminal devices, and the mean value of the pseudorange obtained by the second terminal device and the first terminal device; the processing unit 510 is configured to: determine the The location of the first terminal device.

在一实施方式中,所述处理单元510用于:根据所述第一参数,以及最大似然函数,确定所述第一终端设备的位置。In an implementation manner, the processing unit 510 is configured to: determine the position of the first terminal device according to the first parameter and a maximum likelihood function.

在一实施方式中,所述通信设备用于获取多个终端设备的位置,所述多个终端设备包括所述第一终端设备,所述处理单元510用于:根据所述第一参数,采用梯度下降算法对所述最大似然函数进行多次迭代,得到所述最大似然函数的最小值;根据所述最大似然函数最小值处的迭代参数,确定所述多个终端设备的位置。In an embodiment, the communication device is configured to obtain the positions of multiple terminal devices, the multiple terminal devices include the first terminal device, and the processing unit 510 is configured to: according to the first parameter, adopt The gradient descent algorithm performs multiple iterations on the maximum likelihood function to obtain a minimum value of the maximum likelihood function; and determine the positions of the multiple terminal devices according to an iteration parameter at the minimum value of the maximum likelihood function.

在一实施方式中,所述多个终端设备的位置是同一个计算节点对所述最大似然函数进行迭代得到的。In an implementation manner, the positions of the multiple terminal devices are obtained by iterating the maximum likelihood function on the same computing node.

在一实施方式中,所述多个终端设备的位置是所述多个终端设备中的每个终端设备分别对所述最大似然函数进行迭代得到的,所述处理单元510用于:根据所述第一参数,对所述最大似然函数进行迭代,得到所述第一终端设备的第m次迭代参数,m为大于或等于1的整数;根据所述多个终端设备中其他终端设备的第m次迭代参数和所述第一终端设备的第m次迭代参数,确定所述第一终端设备的第(m+1)次迭代参数;重复上述步骤,直到所有的迭代参数不再发生变化;根据最后一次的迭代参数,确定所述第一终端设备的位置。In an embodiment, the positions of the plurality of terminal devices are obtained by each terminal device in the plurality of terminal devices respectively iterating the maximum likelihood function, and the processing unit 510 is configured to: according to the The first parameter is iterated on the maximum likelihood function to obtain the mth iteration parameter of the first terminal device, m is an integer greater than or equal to 1; according to the other terminal devices among the multiple terminal devices The mth iteration parameter and the mth iteration parameter of the first terminal device determine the (m+1)th iteration parameter of the first terminal device; repeat the above steps until all iteration parameters no longer change ; Determine the position of the first terminal device according to the last iteration parameter.

在一实施方式中,所述最大似然函数中还包括所述第一终端设备的时钟偏差参数,所述处理单元510用于:根据所述第一参数,以及所述最大似然函数,确定所述第一终端设备的时钟偏差。In an embodiment, the maximum likelihood function further includes a clock bias parameter of the first terminal device, and the processing unit 510 is configured to: determine according to the first parameter and the maximum likelihood function The clock deviation of the first terminal device.

在一实施方式中,所述第一参数包括所述第一终端设备与所述第二终端设备之间的伪距,所述处理单元510用于:根据所述第一终端设备与所述第二终端设备之间的伪距,确定平方距离矩阵;根据所述平方距离矩阵,通过多维标定算法或半正定规划算法确定所述第一终端设备的位置。In an implementation manner, the first parameter includes a pseudo-range between the first terminal device and the second terminal device, and the processing unit 510 is configured to: according to the first terminal device and the second terminal device A square distance matrix is determined for the pseudo-range between the two terminal devices; according to the square distance matrix, the position of the first terminal device is determined through a multi-dimensional calibration algorithm or a positive semi-definite programming algorithm.

在一实施方式中,所述第一终端设备的位置包括所述第一终端设备的二维位置信息和/或三维位置信息。In an embodiment, the position of the first terminal device includes two-dimensional position information and/or three-dimensional position information of the first terminal device.

应理解,该通信设备500可以执行上述方法中由通信设备执行的相应操作,为了简洁,在此不再赘述。该通信设备500例如可以是上文描述的终端设备、网络设备或卫星。It should be understood that the communication device 500 may perform corresponding operations performed by the communication device in the foregoing method, and details are not described here for brevity. The communication device 500 may be, for example, the terminal device, network device or satellite described above.

图6是本申请实施例提供的一种通信设备600示意性结构图。图6所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。FIG. 6 is a schematic structural diagram of a communication device 600 provided in an embodiment of the present application. The communication device 600 shown in FIG. 6 includes a processor 610, and the processor 610 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.

在一实施方式中,如图6所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。In an implementation manner, as shown in FIG. 6 , the communication device 600 may further include a memory 620 . Wherein, the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.

其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。Wherein, the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .

在一实施方式中,如图6所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。In one embodiment, as shown in FIG. 6, the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, to send information or data to other devices, or Receive messages or data from other devices.

其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。Wherein, the transceiver 630 may include a transmitter and a receiver. The transceiver 630 may further include antennas, and the number of antennas may be one or more.

在一实施方式中,该通信设备600具体可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由通信设备实现的相应流程,为了简洁,在此不再赘述。In an embodiment, the communication device 600 may specifically be the terminal device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the communication device in each method of the embodiment of the present application. Let me repeat.

图7是本申请实施例的芯片的示意性结构图。图7所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。FIG. 7 is a schematic structural diagram of a chip according to an embodiment of the present application. The chip 700 shown in FIG. 7 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.

在一实施方式中,如图7所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。In an implementation manner, as shown in FIG. 7 , the chip 700 may further include a memory 720 . Wherein, the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.

其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。Wherein, the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .

在一实施方式中,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。In an implementation manner, the chip 700 may further include an input interface 730 . Wherein, the processor 710 can control the input interface 730 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.

在一实施方式中,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。In an implementation manner, the chip 700 may further include an output interface 740 . Wherein, the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.

在一实施方式中,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。In an implementation manner, the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here.

应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。It should be understood that the chips mentioned in the embodiments of the present application may also be called system-on-chip, system-on-chip, system-on-a-chip, or system-on-a-chip.

应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital SignalProcessor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。It should be understood that the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability. In the implementation process, each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software. The above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other programmable Logic devices, discrete gate or transistor logic devices, discrete hardware components. Various methods, steps, and logic block diagrams disclosed in the embodiments of the present application may be implemented or executed. A general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like. The steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor. The software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register. The storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.

可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或者可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double DataRate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。It can be understood that the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories. Wherein, the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash. The volatile memory can be Random Access Memory (RAM), which acts as an external cache. By way of illustration and not limitation, many forms of RAM are available such as Static RAM (SRAM), Dynamic RAM (DRAM), Synchronous DRAM (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double DataRate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synchlink DRAM, SLDRAM) And direct memory bus random access memory (Direct Rambus RAM, DR RAM). It should be noted that the memory of the systems and methods described herein is intended to include, but not be limited to, these and any other suitable types of memory.

应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch Link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。It should be understood that the above-mentioned memory is illustrative but not restrictive. For example, the memory in the embodiment of the present application may also be a static random access memory (Static RAM, SRAM), a dynamic random access memory (Dynamic RAM, DRAM), Synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (Synch Link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.

图8是根据本申请实施例的通信系统800的示意性框图。如图8所示,该通信系统800包括网络设备810和终端设备820。Fig. 8 is a schematic block diagram of a communication system 800 according to an embodiment of the present application. As shown in FIG. 8 , the communication system 800 includes a network device 810 and a terminal device 820 .

在一实施方式中,该网络设备810可以用于实现上述方法中由网络设备实现的相应的功能,以及该网络设备810的组成可以如图5中的通信设备500所示,为了简洁,在此不再赘述。In an embodiment, the network device 810 can be used to implement the corresponding functions implemented by the network device in the above method, and the composition of the network device 810 can be shown as the communication device 500 in FIG. 5 , for the sake of brevity, here No longer.

在一实施方式中,该终端设备820可以用于实现上述方法中由终端设备实现的相应的功能,以及该终端设备820的组成可以如图5中的通信设备500所示,为了简洁,在此不再赘述。In an embodiment, the terminal device 820 can be used to realize the corresponding functions realized by the terminal device in the above method, and the composition of the terminal device 820 can be shown as the communication device 500 in FIG. 5 , for the sake of brevity, here No longer.

本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。在一实施方式中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。The embodiment of the present application also provides a computer-readable storage medium for storing computer programs. Optionally, the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application. For brevity, here No longer. In one embodiment, the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiment of the present application. For the sake of brevity, I won't repeat them here.

本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。在一实施方式中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。The embodiment of the present application also provides a computer program product, including computer program instructions. Optionally, the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, the Let me repeat. In one embodiment, the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiment of the present application. For the sake of brevity, the This will not be repeated here.

本申请实施例还提供了一种计算机程序。可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。在一实施方式中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。The embodiment of the present application also provides a computer program. Optionally, the computer program can be applied to the network device in the embodiment of the present application. When the computer program is run on the computer, the computer executes the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity , which will not be repeated here. In one embodiment, the computer program can be applied to the terminal device in the embodiment of the present application. When the computer program is run on the computer, the computer executes the corresponding process implemented by the terminal device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.

应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。It should be understood that the terms "system" and "network" are often used interchangeably herein. The term "and/or" in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone B these three situations. In addition, the character "/" in this article generally indicates that the contextual objects are an "or" relationship.

还应理解,在本发明实施例中,“与A相应(对应)的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。It should also be understood that in the embodiment of the present invention, "B corresponding (corresponding) to A" means that B is associated with A, and B can be determined according to A. However, it should also be understood that determining B according to A does not mean determining B only according to A, and B may also be determined according to A and/or other information.

本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。Those skilled in the art can appreciate that the units and algorithm steps of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.

所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that for the convenience and brevity of the description, the specific working process of the above-described system, device and unit can refer to the corresponding process in the foregoing method embodiment, which will not be repeated here.

在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided in this application, it should be understood that the disclosed systems, devices and methods may be implemented in other ways. For example, the device embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components can be combined or can be Integrate into another system, or some features may be ignored, or not implemented. In another point, the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。In addition, each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.

所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。If the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other various media that can store program codes. .

以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。The above is only a specific implementation of the application, but the scope of protection of the application is not limited thereto. Anyone familiar with the technical field can easily think of changes or substitutions within the technical scope disclosed in the application. Should be covered within the protection scope of this application. Therefore, the protection scope of the present application should be based on the protection scope of the claims.

Claims (12)

1.一种确定位置的方法,其特征在于,所述方法用于获取多个终端设备的位置,所述多个终端设备包括第一终端设备,所述多个终端设备的位置是所述多个终端设备中的每个终端设备分别对最大似然函数进行迭代得到的,所述方法包括:1. A method for determining a position, characterized in that the method is used to obtain the positions of multiple terminal devices, the multiple terminal devices include a first terminal device, and the positions of the multiple terminal devices are the multiple Each terminal device in the terminal devices respectively iterates the maximum likelihood function, and the method includes: 根据第一参数,对所述最大似然函数进行多次迭代,得到所述第一终端设备的第m次迭代参数,m为大于或等于1的整数;Perform multiple iterations on the maximum likelihood function according to the first parameter to obtain the mth iteration parameter of the first terminal device, where m is an integer greater than or equal to 1; 根据所述多个终端设备中其他终端设备的第m次迭代参数和所述第一终端设备的第m次迭代参数,确定所述第一终端设备的第(m+1)次迭代参数;Determine the (m+1)th iteration parameter of the first terminal device according to the mth iteration parameter of other terminal devices among the plurality of terminal devices and the mth iteration parameter of the first terminal device; 重复上述步骤,直到所有的迭代参数不再发生变化;Repeat the above steps until all iteration parameters no longer change; 根据最后一次的迭代参数,确定所述第一终端设备的位置,determining the position of the first terminal device according to the last iteration parameter, 其中,所述第一参数包括:所述第一终端设备与卫星之间的伪距、所述第一终端设备与网络设备之间的伪距、所述第一终端设备与所述网络设备之间的角度和所述第一终端设备与第二终端设备之间的伪距;所述第一参数中的每个参数分别具有各自的权重信息;Wherein, the first parameter includes: the pseudo-range between the first terminal device and the satellite, the pseudo-range between the first terminal device and the network device, and the distance between the first terminal device and the network device. The angle between and the pseudo-range between the first terminal device and the second terminal device; each parameter in the first parameter has its own weight information; 其中,所述第一终端设备与所述卫星之间的伪距具有第一权重,所述第一终端设备与所述网络设备之间的伪距具有第二权重,所述第一终端设备与所述第二终端设备之间的伪距具有第三权重,所述第一终端设备与所述网络设备之间的角度具有第四权重,所述第一权重是根据信号噪声的方差确定的,所述第二权重和所述第三权重是根据信号噪声的方差和时钟噪声的方差确定的,所述第四权重是根据信号噪声的协方差确定的,Wherein, the pseudo-range between the first terminal device and the satellite has a first weight, the pseudo-range between the first terminal device and the network device has a second weight, and the first terminal device and the satellite have a second weight. The pseudorange between the second terminal devices has a third weight, the angle between the first terminal device and the network device has a fourth weight, and the first weight is determined according to the variance of signal noise, The second weight and the third weight are determined according to the variance of signal noise and the variance of clock noise, and the fourth weight is determined according to the covariance of signal noise, 其中,所述最大似然函数集成了所述第一参数中的每个参数以及每个参数各自的权重信息。Wherein, the maximum likelihood function integrates each parameter in the first parameters and respective weight information of each parameter. 2.根据权利要求1所述的方法,其特征在于,所述第一终端设备与所述网络设备之间的角度包括方位角和/或俯仰角。2. The method according to claim 1, wherein the angle between the first terminal device and the network device comprises an azimuth angle and/or an elevation angle. 3.根据权利要求1或2所述的方法,其特征在于,所述最大似然函数中还包括所述第一终端设备的时钟偏差参数,所述方法还包括:3. The method according to claim 1 or 2, wherein the maximum likelihood function also includes a clock bias parameter of the first terminal device, the method further comprising: 根据所述第一参数,以及所述最大似然函数,确定所述第一终端设备的时钟偏差。Determine the clock offset of the first terminal device according to the first parameter and the maximum likelihood function. 4.根据权利要求1或2所述的方法,其特征在于,所述第一终端设备的位置包括所述第一终端设备的二维位置信息和/或三维位置信息。4. The method according to claim 1 or 2, wherein the position of the first terminal device comprises two-dimensional position information and/or three-dimensional position information of the first terminal device. 5.一种通信设备,其特征在于,所述通信设备用于获取多个终端设备的位置,所述多个终端设备包括第一终端设备,所述多个终端设备的位置是所述多个终端设备中的每个终端设备分别对最大似然函数进行迭代得到的,所述通信设备包括:5. A communication device, characterized in that, the communication device is used to acquire the positions of multiple terminal devices, the multiple terminal devices include a first terminal device, and the positions of the multiple terminal devices are the multiple Each terminal device in the terminal device respectively iterates the maximum likelihood function, and the communication device includes: 处理单元,用于执行以下步骤:A processing unit for performing the following steps: 根据第一参数,对所述最大似然函数进行多次迭代,得到所述第一终端设备的第m次迭代参数,m为大于或等于1的整数;Perform multiple iterations on the maximum likelihood function according to the first parameter to obtain the mth iteration parameter of the first terminal device, where m is an integer greater than or equal to 1; 根据所述多个终端设备中其他终端设备的第m次迭代参数和所述第一终端设备的第m次迭代参数,确定所述第一终端设备的第(m+1)次迭代参数;Determine the (m+1)th iteration parameter of the first terminal device according to the mth iteration parameter of other terminal devices among the plurality of terminal devices and the mth iteration parameter of the first terminal device; 重复上述步骤,直到所有的迭代参数不再发生变化;Repeat the above steps until all iteration parameters no longer change; 根据最后一次的迭代参数,确定所述第一终端设备的位置,determining the position of the first terminal device according to the last iteration parameter, 其中,所述第一参数包括:所述第一终端设备与卫星之间的伪距、所述第一终端设备与网络设备之间的伪距、所述第一终端设备与所述网络设备之间的角度和所述第一终端设备与第二终端设备之间的伪距;所述第一参数中的每个参数分别具有各自的权重信息;Wherein, the first parameter includes: the pseudo-range between the first terminal device and the satellite, the pseudo-range between the first terminal device and the network device, and the distance between the first terminal device and the network device. The angle between and the pseudo-range between the first terminal device and the second terminal device; each parameter in the first parameter has its own weight information; 其中,所述第一终端设备与所述卫星之间的伪距具有第一权重,所述第一终端设备与所述网络设备之间的伪距具有第二权重,所述第一终端设备与所述第二终端设备之间的伪距具有第三权重,所述第一终端设备与所述网络设备之间的角度具有第四权重,所述第一权重是根据信号噪声的方差确定的,所述第二权重和所述第三权重是根据信号噪声的方差和时钟噪声的方差确定的,所述第四权重是根据信号噪声的协方差确定的,Wherein, the pseudo-range between the first terminal device and the satellite has a first weight, the pseudo-range between the first terminal device and the network device has a second weight, and the first terminal device and the satellite have a second weight. The pseudorange between the second terminal devices has a third weight, the angle between the first terminal device and the network device has a fourth weight, and the first weight is determined according to the variance of signal noise, The second weight and the third weight are determined according to the variance of signal noise and the variance of clock noise, and the fourth weight is determined according to the covariance of signal noise, 其中,所述最大似然函数集成了所述第一参数中的每个参数以及每个参数各自的权重信息。Wherein, the maximum likelihood function integrates each parameter in the first parameters and respective weight information of each parameter. 6.根据权利要求5所述的通信设备,其特征在于,所述第一终端设备与所述网络设备之间的角度包括方位角和/或俯仰角。6. The communication device according to claim 5, wherein the angle between the first terminal device and the network device comprises an azimuth angle and/or an elevation angle. 7.根据权利要求5或6所述的通信设备,其特征在于,所述最大似然函数中还包括所述第一终端设备的时钟偏差参数,所述处理单元用于:7. The communication device according to claim 5 or 6, wherein the maximum likelihood function further includes a clock bias parameter of the first terminal device, and the processing unit is configured to: 根据所述第一参数,以及所述最大似然函数,确定所述第一终端设备的时钟偏差。Determine the clock offset of the first terminal device according to the first parameter and the maximum likelihood function. 8.根据权利要求5或6所述的通信设备,其特征在于,所述第一终端设备的位置包括所述第一终端设备的二维位置信息和/或三维位置信息。8. The communication device according to claim 5 or 6, wherein the position of the first terminal device comprises two-dimensional position information and/or three-dimensional position information of the first terminal device. 9.一种通信设备,其特征在于,所述通信设备包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行如权利要求1至4中任一项所述的方法。9. A communication device, characterized in that the communication device includes a processor and a memory, the memory is used to store a computer program, and the processor is used to invoke and run the computer program stored in the memory to execute The method according to any one of claims 1 to 4. 10.一种芯片,其特征在于,所述芯片包括处理器,所述处理器用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至4中任一项所述的方法。10. A chip, characterized in that the chip includes a processor, the processor is used to call and run a computer program from a memory, so that a device equipped with the chip executes any one of claims 1 to 4 the method described. 11.一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至4中任一项所述的方法。11. A computer-readable storage medium, characterized by being used for storing a computer program, the computer program causing a computer to execute the method according to any one of claims 1 to 4. 12.一种通信系统,其特征在于,包括如权利要求5至8中任意一项所述的通信设备。12. A communication system, comprising the communication device according to any one of claims 5-8.
CN201980081690.9A 2019-03-01 2019-03-01 Method and device for determining location Active CN113170408B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/076775 WO2020177042A1 (en) 2019-03-01 2019-03-01 Position determining method and apparatus

Publications (2)

Publication Number Publication Date
CN113170408A CN113170408A (en) 2021-07-23
CN113170408B true CN113170408B (en) 2022-12-06

Family

ID=72337158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980081690.9A Active CN113170408B (en) 2019-03-01 2019-03-01 Method and device for determining location

Country Status (2)

Country Link
CN (1) CN113170408B (en)
WO (1) WO2020177042A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2624028A (en) * 2022-11-04 2024-05-08 Nokia Technologies Oy Method, apparatus and computer program
CN117336852B (en) * 2023-12-01 2024-04-02 广州斯沃德科技有限公司 Distributed co-location method, device, electronic equipment and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844492A1 (en) * 1996-11-20 1998-05-27 Space Systems/Loral, Inc. Integrated navigation and communication satellite system
CN1688892A (en) * 2002-07-15 2005-10-26 高通股份有限公司 Apparatus and method of position determination of a first mobile device using information from a second mobile device
CN104301999A (en) * 2014-10-14 2015-01-21 西北工业大学 An Adaptive Iterative Localization Method for Wireless Sensor Networks Based on RSSI
CN104808226A (en) * 2014-01-26 2015-07-29 北京大学 Cooperative localization-based terminal-to-terminal orientation method and device
CN109000654A (en) * 2018-06-07 2018-12-14 全图通位置网络有限公司 Localization method, device, equipment and storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143576B (en) * 2010-01-29 2014-12-10 中兴通讯股份有限公司 Terminal positioning system and terminal positioning method
CN105636192B (en) * 2014-10-27 2019-02-26 中国移动通信集团设计院有限公司 Terminal positioning method and positioning device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844492A1 (en) * 1996-11-20 1998-05-27 Space Systems/Loral, Inc. Integrated navigation and communication satellite system
CN1688892A (en) * 2002-07-15 2005-10-26 高通股份有限公司 Apparatus and method of position determination of a first mobile device using information from a second mobile device
CN104808226A (en) * 2014-01-26 2015-07-29 北京大学 Cooperative localization-based terminal-to-terminal orientation method and device
CN104301999A (en) * 2014-10-14 2015-01-21 西北工业大学 An Adaptive Iterative Localization Method for Wireless Sensor Networks Based on RSSI
CN109000654A (en) * 2018-06-07 2018-12-14 全图通位置网络有限公司 Localization method, device, equipment and storage medium

Also Published As

Publication number Publication date
CN113170408A (en) 2021-07-23
WO2020177042A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
US10578743B1 (en) System and method of location determination using multiple location inputs
Podevijn et al. TDoA‐based outdoor positioning with tracking algorithm in a public LoRa network
KR20230011305A (en) Measure and/or transmit user equipment positioning signals
JP7288589B2 (en) Cooperative positioning
CN105792115B (en) More net location data fusion methods and system
WO2021227901A1 (en) Positioning method, positioning management apparatus, access network device and terminal
KR102669986B1 (en) Signal Timing Error Group Updates for Positioning
CN112399330A (en) Positioning method and device based on relative angle
CN115767415A (en) Method for sending and receiving information and communication device
US20220322085A1 (en) Passive digital key systems
CN113170408B (en) Method and device for determining location
WO2020177041A1 (en) Method for information processing and terminal device
TW202312768A (en) Improving ultrawideband range accuracy
CN114095855A (en) Positioning method and device
WO2023178569A1 (en) Position determining method and apparatus, device, medium, chip, product, and program
KR20240036587A (en) Sidelink assisted arrival time difference-based positioning
US20240015693A1 (en) User equipment (ue) positioning
Liu et al. Relative localization of ground vehicles using non-terrestrial networks
CN116648964A (en) Positioning method and device
US12041512B2 (en) Method and apparatus for positioning using image and radio signals
US20240357541A1 (en) Positioning method and apparatus, storage medium, and program product
US20230156657A1 (en) Multipath Single-Anchor Positioning Method and Communication Apparatus
WO2023151469A1 (en) Locating method and apparatus
Razavi et al. Standardization in 5G and 5G Advanced Positioning
CN118661456A (en) Positioning method, terminal device and network device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant