CN113151129B - Construction method of recombinant escherichia coli for high-yield p-aminophenylalanine - Google Patents
Construction method of recombinant escherichia coli for high-yield p-aminophenylalanine Download PDFInfo
- Publication number
- CN113151129B CN113151129B CN202110271292.2A CN202110271292A CN113151129B CN 113151129 B CN113151129 B CN 113151129B CN 202110271292 A CN202110271292 A CN 202110271292A CN 113151129 B CN113151129 B CN 113151129B
- Authority
- CN
- China
- Prior art keywords
- escherichia coli
- gene
- papa
- recombinant
- aminophenylalanine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/001—Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1085—Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1096—Transferases (2.) transferring nitrogenous groups (2.6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/22—Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
- C12P13/222—Phenylalanine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y103/00—Oxidoreductases acting on the CH-CH group of donors (1.3)
- C12Y103/01—Oxidoreductases acting on the CH-CH group of donors (1.3) with NAD+ or NADP+ as acceptor (1.3.1)
- C12Y103/01012—Prephenate dehydrogenase (1.3.1.12)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y205/00—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
- C12Y205/01—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
- C12Y205/01054—3-Deoxy-7-phosphoheptulonate synthase (2.5.1.54)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y206/00—Transferases transferring nitrogenous groups (2.6)
- C12Y206/01—Transaminases (2.6.1)
- C12Y206/01085—Aminodeoxychorismate synthase (2.6.1.85)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/03—Oxo-acid-lyases (4.1.3)
- C12Y401/03027—Anthranilate synthase (4.1.3.27)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/03—Oxo-acid-lyases (4.1.3)
- C12Y401/03038—Aminodeoxychorismate lyase (4.1.3.38)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y402/00—Carbon-oxygen lyases (4.2)
- C12Y402/01—Hydro-lyases (4.2.1)
- C12Y402/01051—Prephenate dehydratase (4.2.1.51)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/22—Vectors comprising a coding region that has been codon optimised for expression in a respective host
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The invention discloses a construction method of recombinant escherichia coli for high-yield p-aminophenylalanine. The invention screens PAPA biosynthesis pathways from different strains, and determines the pathway source of high-yield PAPA through combinatorial optimization. The combined approach is transferred into escherichia coli, and host strains are subjected to genetic engineering transformation, so that the metabolic approach of the chorismic acid is weakened while the synthetic approach of the chorismic acid is strengthened. To obtain the recombinant Escherichia coli which can produce PAPA with high yield. The yield of the strain PAPA can reach 752.63mg/L. The invention lays a foundation for the industrial production and application of the PAPA.
Description
Technical Field
The invention belongs to the field of synthetic biology or metabolic engineering, and relates to a construction method of a p-aminophenylalanine (PAPA) high-yield strain, in particular to a construction method of recombinant escherichia coli for high-yield p-aminophenylalanine.
Background
P-aminophenylalanine (PAPA) is used as a non-protein amino acid and is a rare natural product structural block. In nature, PAPAs are present in a variety of different microorganisms. For example, in precious actinomyces fascicularis a. Prediction, PAPA is a backbone source of a secondary metabolite dnacin B1 thereof, and the compound has excellent antitumor activity; in streptomyces venezuelae s.venezuelae, PAPA is a structural unit of its secondary metabolite chloramphenicol, a widely used antibacterial drug; in streptomyces pristinaespiralis, PAPA is a building block for the secondary metabolite plinamycin pristinamycin a, a commonly used antibiotic; in pseudomonas fluorescens, PAPA can form secondary metabolites pyrazine compounds DMBAP and medbap. In addition, PAPA is also a synthetic building block of melphalan, an anticancer drug, and the drug has obvious curative effect on multiple myeloma. Therefore, the PAPA obtained in large quantity has certain industrial value and medicinal value.
In microorganisms, the biosynthesis of PAPA starts with the branching acid. Firstly, the chorismic acid forms 4-amino deoxy chorismic acid under the action of 4-amino deoxy chorismate synthetase PapA, then forms 4-amino deoxy prephenate under the catalysis of 4-amino deoxy chorismate mutase PapB, and forms p-aminophenylpyruvic acid under the action of 4-amino deoxy prephenate dehydratase PapC. Finally, PAPA is formed by the action of nonspecific transaminase. Previous experiments show that the tyrosine aminotransferase TyrB in the Escherichia coli can convert p-aminophenylpyruvate into PAPA. It is therefore feasible to construct a recombinant strain that produces PAPA in high yield using E.coli as a host. Provides a research foundation for subsequent large-scale industrial production.
Disclosure of Invention
The invention aims to provide a construction method of recombinant escherichia coli with high yield of p-aminophenylalanine. The escherichia coli engineering bacteria with high yield of p-aminophenylalanine is obtained, the yield of the bacterial strain is further improved through genetic engineering modification, and a foundation is laid for industrial production of the bacterial strain.
The invention screens PAPA biosynthesis pathways from different strains, and determines the pathway source of high-yield PAPA through combinatorial optimization. Transferring the combined approach into escherichia coli, carrying out genetic engineering transformation on a host strain, strengthening a branched acid synthesis approach and weakening a metabolic approach of the branched acid synthesis approach; finally, the recombinant escherichia coli with high PAPA yield is obtained.
The purpose of the invention is realized by the following technical means.
In a first aspect, the invention relates to a construction method of an escherichia coli engineering bacterium for synthesizing p-aminophenylalanine (PAPA), wherein key enzyme required in a PAPA synthesis path is expressed in escherichia coli; the key enzymes include 4-aminodeoxychorismate synthetase PapA, 4-aminodeoxychorismate mutase PapB and 4-aminodeoxyprephenate dehydratase PapC.
As an embodiment, the key enzymes are selected from the PAPA synthesis pathways from different hosts, including Actinosynnema Presotium, streptomyces venezuelae, streptomyces pristinaespiralis, pseudomonas fluorescens papA, papB, papC genes, and Corynebacterium glutamicum papA genes.
As one embodiment, the PAPA synthetic pathway is selected from the papABC combination of two of apppa, appbc, svpapA, svpapBC, sppapA, sppapBC, pfpappa, pfpapBC, cgpapA; the nucleotide sequences of Apapa, apapBC, sppapA, sppapBC, svpappa, pfpapa, pfpappaB C and CgpA are respectively shown in SEQ ID No.1-9 in sequence.
As an embodiment, the PAPA synthetic pathway is selected from one of appabc, sppapab bc, svpapab bc, pfpapab, cgpapA and appbc, cgpapA and SppapBC, cgpapA and SvpapBC, cgpapA and PfpapBC.
As an embodiment, the PAPA synthetic pathway is preferably a combination of CgpapA and SppapBC.
As an embodiment, the method comprises the steps of:
s1, carrying out codon optimization and total synthesis on the key enzyme genes; obtaining Apapa, apapBC, sppapA, sppapBC, svpapa, svpapaBC, pfpapa, pfpappa, cgppA genes with nucleotide sequences shown as SEQ ID No.1-9 in sequence;
s2, respectively constructing plasmids containing a papABC combination consisting of key enzyme genes, and introducing the plasmids into escherichia coli MG1655 (DE 3) to obtain a series of recombinant strains;
and S3, respectively detecting fermentation products of the recombinant strains, and screening the recombinant strains with high PAPA yield.
In one embodiment, the papABC combination is selected from the group consisting of appabc gene, sppapABC gene, svpapABC gene, pfpapABC gene, cgpapA-appbc gene, cgpapA-SppapBC gene, cgpapA-SvpapBC gene, cgpapA-PfpapBC gene in step S2.
As an embodiment, in step S2, a plasmid containing the papABC combination is constructed by inserting the corresponding papA and papBC genes into the first and second multiple cloning sites of pETDuet vector with BamHI/HindIII and NdeI/XhoI cleavage sites, respectively.
As an embodiment, the step S2 includes the steps of:
s2-1, constructing a plasmid containing ApapaABC gene, and introducing the plasmid into Escherichia coli MG1655 (DE 3) to obtain a recombinant strain HXJE61;
s2-2, constructing a plasmid containing SppapaBC genes, and introducing the plasmid into escherichia coli MG1655 (DE 3) to obtain a recombinant strain HXJE62;
s2-3, constructing a plasmid containing an SvpapABC gene, and introducing the plasmid into Escherichia coli MG1655 (DE 3) to obtain a recombinant strain HXJE63;
s2-4, constructing a plasmid containing a PfpapaBC gene, and introducing the plasmid into escherichia coli MG1655 (DE 3) to obtain a recombinant strain HXJE64;
s2-5, constructing a plasmid containing CgpA and ApapBC genes, and introducing the plasmid into escherichia coli MG1655 (DE 3) to obtain a recombinant strain HXJE65;
s2-6, constructing a plasmid containing CgppA and SppapbC genes, and introducing the plasmid into Escherichia coli MG1655 (DE 3) to obtain a recombinant strain HXJE66;
s2-7, constructing a plasmid containing CgppA and SvppBC genes, and introducing the plasmid into Escherichia coli MG1655 (DE 3) to obtain a recombinant strain HXJE67;
s2-8, constructing a plasmid containing CgppA and PfpappBC genes, and introducing the plasmid into Escherichia coli MG1655 (DE 3) to obtain a recombinant strain HXJE68.
As one embodiment, in step S3, the fermentation is to inoculate the recombinant strain to 100mL MM medium and culture to OD at 37 ℃ and 220rpm 600 When the concentration is about 0.6, IPTG is added to the medium at a final concentration of 0.5mM, and the culture is continued at 220rpm at 25 ℃ for 60 hours.
Specifically, the recombinant strains HXJE61, HXJE62, HXJE63, HXJE64, HXJE65, HXJE66, HXJE67, and HXJE68 were inoculated into 100mL of MM medium, and cultured at 37 ℃ and 220rpm until OD is reached 600 When the concentration is about 0.6, IPTG is added to the medium at a final concentration of 0.5mM, and the culture is continued at 220rpm at 25 ℃ for 60 hours. And (3) detecting the fermentation product of the 8 recombinant bacteria, wherein the HXJE66 recombinant bacteria PAPA yield is optimal.
The recombinant strain with high (optimal) PAPA yield is subjected to genetic engineering transformation, so that the synthesis pathway of chorismate is enhanced, the metabolic pathway of chorismate is weakened, and more chorismate flows to the synthesis of PAPA.
As an embodiment, the method further comprises the steps of:
s4, carrying out genetic engineering transformation on the screened recombinant strain with high PAPA yield, and knocking out chorismate mutase/prephenate dehydratase gene pheA, chorismate mutase/prephenate dehydrogenase gene tyrA, anthranilate synthase gene trpE and 4-aminodeoxychorismate lyase gene pabC.
The purpose of the gene modification is as follows: the biosynthesis of tyrosine, phenylalanine, tryptophan and p-aminobenzoic acid in escherichia coli is blocked.
The step S4 specifically comprises the following steps: knocking out chorismate mutase/prephenate dehydratase gene pheA, chorismate mutase/prephenate dehydrogenase gene tyrA, anthranilate synthase gene trpE and 4-aminodeoxychorismate lyase gene pabC, and constructing recombinant Escherichia coli (HXJE 70); and (3) transferring the plasmid corresponding to the recombinant strain with high PAPA yield screened out in the step (S2) into the recombinant escherichia coli to obtain a genetic engineering strain (HXJE 71).
S4, knocking out a target gene by adopting a lambda-red homologous recombination technology; the knockout specifically comprises the following steps:
s4-1, pheA/tyrA knock-out:
a. carrying out PCR by using a linearized pIJ773 carrier fragment as a template and pheA-tyrA-del-F/R to obtain a fragment containing a pheA-tyrA homologous arm, an FRT site and a Ai Bola resistance gene, and electrically transferring the fragment into escherichia coli MG1655 (DE 3) competence containing a pIJ790 plasmid;
b. b, transferring the BT340 plasmid containing FLP recombinase into the escherichia coli obtained in the step a, coating the escherichia coli on a LA plate without resistance for culture, and screening out a mutant strain with pheA/tyrA successfully knocked out;
s4-2, knock-out of pabC:
a. carrying out PCR by using the linearized pIJ773 vector fragment as a template and the FRT3-apr-F/R as a primer to obtain a fragment containing an FTR3 site and a Ai Bola resistance gene;
b. carrying out PCR by using the obtained fragment as a template and utilizing pabC-del-F/R to obtain a fragment containing a pabC homologous arm, an FRT3 site and a Ai Bola resistance gene, and electrically transferring the fragment into an escherichia coli MG1655 (DE 3)/delta pheA-tyrA competence;
c. b, transferring the BT340 plasmid containing FLP recombinase into the escherichia coli obtained in the step b, coating the escherichia coli on a LA plate without resistance for culture, and screening out a mutant strain with successful pabC knockout;
s4-3, trpE knockout:
a. carrying out PCR by using the linearized pIJ773 vector fragment as a template and FRT5-apr-F/R as a primer to obtain a fragment containing an FTR5 site and a Ai Bola resistance gene;
b. carrying out PCR by using the obtained fragment as a template and utilizing trpE-del-F/R to obtain a fragment containing a trpE homologous arm, an FRT5 site and a Ai Bola resistance gene, and electrically transferring the fragment into escherichia coli MG1655 (DE 3)/delta pheA-tyrA/delta pabC competence;
c. and (c) electrotransfering the BT340 plasmid containing FLP recombinase into the escherichia coli obtained in the step (b), coating the escherichia coli on a LA plate without resistance for culture, and screening out a mutant strain with successful trpE knockout.
As an embodiment, the method further comprises the steps of:
s5, overexpressing 3-deoxy-D-arabinoheptulose-7-phosphate (DAHP) synthetase encoding gene aroG in the genetically engineered strain obtained in the step S4 fbr ;aroG fbr The nucleotide sequence of the gene is shown as SEQ ID No. 10.
As an embodiment, step S5 specifically includes: construction of a plasmid containing aroG fbr The plasmid of the gene is transferred into the genetically engineered strain (HXJE 71) obtained in step S4, and a final recombinant strain (HXJE 72) is obtained.
As an embodiment, the construct is: will aroG fbr The gene is inserted into the BamHI/HindIII enzyme cutting site of the pACYCDuet vector to construct over-expressed aroG fbr The recombinant plasmid of (1).
In a second aspect, the invention relates to an escherichia coli engineering bacterium obtained by the construction method of the escherichia coli engineering bacterium for synthesizing the p-aminophenylalanine.
In a third aspect, the invention relates to an engineering bacterium of Escherichia coli for synthesizing p-aminophenylalanine, wherein the engineering bacterium is Escherichia coli HXJE72 with the preservation number of CGMCC No.21810.
In a fourth aspect, the invention relates to a recombinant plasmid for constructing escherichia coli engineering bacteria for synthesizing p-aminophenylalanine, wherein the recombinant plasmid is a recombinant plasmid containing genes CgpaA and SppapbC, or a recombinant plasmid containing genes CgpaA and SppapbC.
The Escherichia coli HXJE72 related by the invention is preserved in China general microbiological culture Collection center (CGMCC), and the preservation addresses are as follows: the institute of microbiology, national academy of sciences No. 3, xilu No.1, beijing, chaoyang, beijing; the preservation number is CGMCC No.21810, and the preservation date is 2021.2.4.
Compared with the prior art, the invention has the following beneficial effects:
the invention selects PAPA synthetic pathways from different species, and randomly combines the pathways, and systematically screens the high-efficiency synthetic pathway of PAPA. Finally, the combination with the optimal yield is obtained, and a good platform is provided for the subsequent industrial synthesis of the PAPA.
Drawings
Other features, objects and advantages of the invention will become more apparent upon reading of the detailed description of non-limiting embodiments with reference to the following drawings:
FIG. 1: a construction schematic diagram of high-yield p-aminophenylalanine recombinant escherichia coli;
FIG. 2: comparing the yield of different PAPA biosynthesis routes;
FIG. 3: verifying an agarose gel electrophoresis picture by using a recombinant strain HXJE70 PCR;
FIG. 4: and (3) liquid phase detection of the recombinant strain synthesized PAPA.
Detailed Description
The present invention will be described in detail with reference to examples. The following examples will assist those skilled in the art in further understanding the invention, but are not intended to limit the invention in any way. It should be noted that it would be apparent to those skilled in the art that several modifications and improvements can be made without departing from the inventive concept. All falling within the scope of the present invention.
Example 1 construction and screening of an efficient synthetic pathway for PAPA
In order to impart the ability of Escherichia coli to synthesize PAPA, the present invention introduces the gene papABC required for PAPA synthesis into Escherichia coli (FIG. 1). The invention selects PAPA synthesis routes from different hosts, including Actinosynnema preservatum, streptomyces venezuelae, streptomyces pristinaespiralis, papABC gene of Pseudomonas fluorescens and papA gene of Corynebacterium glutamicum. And (3) carrying out escherichia coli codon optimization and total synthesis on the genes. In synthesis, the papB and papC genes from the same host are fused with a nucleotide sequence including a ribosome binding site sequence, and the fused gene is referred to as a papBC gene.
The Apapa and ApapBC genes were inserted into the first and second multiple cloning sites of pETDuet vector with BamHI/HindIII and NdeI/XhoI sites, respectively, to obtain recombinant plasmids containing ApapaABC gene. Recombinant plasmids containing SppapaBC, svppapaBC, pfppapaBC, cgpapaA-ApppaBC, cgpapaA-SppapBC, cgpapaA-SvppapBC, and CgpapaA-PvppBC were constructed in the same manner, respectively. The constructed series of plasmids are respectively transferred into the competence of Escherichia coli MG1655 (DE 3) to obtain eight recombinant Escherichia coli strains which are respectively named as HXJE61-68.
Inoculating the above engineering bacteria HXJE61-68 into 100mL MM culture medium, and culturing at 37 deg.C and 220rpm to OD 600 When the concentration is about 0.6, IPTG is added to the medium at a final concentration of 0.5mM, and the culture is continued at 220rpm at 25 ℃ for 60 hours. Taking 1mL fermentation liquid, carrying out ultrasonic lysis in an ultrasonic cleaner for 20min, centrifuging at 12000rpm for 10min, and taking supernatant for HPLC detection. Elution was carried out using an Agilent TC C18 reverse phase column of 4.6 μm.times.250 mm, 0.1% formic acid as phase A and pure methanol as phase B at a flow rate of 1mL/min under the following conditions: 0-10min,2% by weight; 10-12min,2% -50% by weight B;12-17min,50% by weight B. The detection wavelength was 245nm. The results show that the eight recombinant Escherichia coli strains have the ability of producing PAPA (FIG. 2), wherein the yield of HXJE66 is the highest and reaches 19.17mg/L. It was shown that the combination of CgppA and SppapBC allows for efficient synthesis of PAPA.
Wherein, the formula of the MM culture medium is as follows: glucose 10g/L, yeast extract 1g/L, na 2 HPO 4 ·6g/L,KH 2 PO 4 3g/L,NaCl 0.5g/L,NH 4 Cl 2g/L,MgSO 4 ·7H 2 O 0.5g/L,CaCl 2 15mg/L, thiamine-HCl 50mg/L and trace elements 1mL/L.
Example 2 construction of recombinant Strain HXJE71
The synthesis of PAPA starts with chorismate, which is a compound that is a point of divergence in the basal metabolism of escherichia coli, and is a precursor in the synthesis of aromatic amino acids as well as certain aromatic compounds. Generating phenylpyruvic acid by chorismate mutase/prephenate dehydratase PheA, and transamination to form phenylalanine; and forming p-hydroxyphenylpyruvate under the action of chorismate mutase/prephenate dehydrogenase TyrA so as to form tyrosine. In the synthetic route of tryptophan, anthranilic acid is formed under the action of anthranilate synthase TrpE, and tryptophan is generated through a series of enzyme catalytic reactions. In addition, the aminodeoxychorismate can be catalyzed by 4-aminodeoxychorismate lyase PabC to form p-aminobenzoic acid. Therefore, in order to reduce the consumption of chorismate, it is necessary to interrupt the synthesis of aromatic amino acids (phenylalanine, tyrosine, tryptophan) and p-aminobenzoic acid in E.coli, and thus, the deletion of pheA, tyrA, trpE and pabC genes in E.coli was selected (FIG. 1).
The invention adopts a lambda-red homologous recombination technology to knock out a target gene, and takes the knock-out of pheA/tyrA as an example. The linearized pIJ773 vector fragment is used as a template, and the pheA-tyrA-del-F/R is used for PCR to obtain a fragment containing an FRT site and a Ai Bola resistance gene, and the two ends of the fragment contain sequences of pheA/tyrR at the two ends of a genome. The fragment was electroporated into E.coli MG1655 (DE 3) competent containing pIJ790 plasmid and plated on plates containing 50. Mu.g/mL Ai Bola resistance. PCR verification is carried out on the grown single clone by using a primer pheA-tyrA-val-F/R, and a correct clone is screened out. To further erase the Ai Bola resistance gene on the genome, the BT340 plasmid containing FLP recombinase was electroporated into the correctly verified strain, plated on LA plates without resistance, and incubated at 42 ℃. The grown monoclonals were screened by replica plating, i.e., the monoclonals were first plated on plates containing 50. Mu.g/mL Ai Bola and then on plates without resistance, and both plates were incubated overnight at 37 ℃. Colonies which do not grow on the resistant plates but grow on the non-resistant plates are selected, PCR verification is carried out by using the primer pheA-tyrA-val-F/R (figure 3), and finally, mutant strains with target genes and resistant genes knocked out successfully are screened. The trpE and pabC genes were deleted in the same manner, and the information of the primers is shown in Table 1. The resulting mutant was designated HXJE70.
The recombinant plasmid containing the genes CgpA and SppapbC constructed in example 1 was electrotransferred into HXJE70 to obtain a recombinant strain HXJE71 capable of synthesizing PAPA. By using the fermentation method and the detection method described in example 1, the PAPA yield of the recombinant strain HXJE71 was calculated to be 68.68mg/L, which is about 3.5 times the HXJE66 yield.
TABLE 1 primers and sequences used in the present invention
Example 3 construction of recombinant Strain HXJE72
In the chorismate synthesis pathway, the first rate-limiting enzyme is DAHP synthase. The enzyme has three isoenzymes in E.coli: aroG, aroF and AroH. The enzyme activity accounts for 80%, 20% and 1% respectively. In order to enhance the chorismate synthesis pathway, the present invention selects overexpression of aroG gene. Whereas the enzyme activity of AroG is feedback-inhibited by phenylalanine, so that a mutant AroG resistant to feedback inhibition is finally selected fbr . The gene is inserted into a BamHI/HindIII enzyme cutting site of a pACYCDuet vector to construct over-expressed aroG fbr The recombinant plasmid of (1). The plasmid is electrically transferred into a recombinant strain HXJE71 to obtain a strain HXJE72. The results of the liquid phase assay using the fermentation and assay methods described in example 1 are shown in FIG. 4. The PAPA yield of the recombinant strain HXJE72 was calculated to be 752.63mg/L, which is about 11 times the HXJE71 yield (Table 2).
TABLE 2 PAPA production by different recombinant strains
The foregoing description of specific embodiments of the present invention has been presented. It is to be understood that the present invention is not limited to the specific embodiments described above, and that various changes and modifications may be made by one skilled in the art within the scope of the appended claims without departing from the spirit of the invention.
Sequence listing
<110> Shanghai university of transportation
<120> construction method of recombinant escherichia coli for high-yield p-aminophenylalanine
<130> KAG45913
<160> 26
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2121
<212> DNA
<213> precious bundled filament actinomycetes (Actinosynnema Presotium)
<400> 1
atgcgtaccc tgctgattga taatcatgat agttatacct acaacctgtt ccatctgctg 60
gccggcgttg ttggtgcacc gccgctggtg ctgagcaatg atgatccgcg ctggagcacc 120
ctggatgttg atggcttcga tgcaattgtg gtgagcccgg gtccgggcca tccgggtaga 180
gaacgtgatc tgggtgcagc acgcagcatt gttgcaggcg ccagtgttcc gctgctgggc 240
gtgtgtctgg gtcatcaggc aattggcctg ctggcaggtg ccccggttgt gagcgcaccg 300
cgtcctcgtc atggtcatct gaccagtgtg cagcatgatg gtctggatct gttcgatggc 360
gtgccgcagg gcttcaccgc agttcgttat catagcctgt gtgttccgag tgatgcactg 420
ccggcagaac tggtggccac cgcctgggct gaagatggcg ttctgatggg tctgcgccat 480
cgtagccgcc cgctgtgggg tgttcagttc catccggaaa gcattgcaag tgaacatggt 540
gccctgctgg ttgaaaactt cgtgaaactg gccgaaaaag ttgcagccga tcgtggtcgt 600
gatctgcgtg cagccccgtg ggcacgcagc ggtggtagag gtgccggtcg ccctggcgca 660
ggtaccgcac ctgttcgccg cgcagccgca cgtccttggc gtgttcgtca tcgtgaactg 720
gatcatgaag ttgataccgc cgccgccttc accgccctgt tcgcagaaag cgcacatagc 780
ttctggctgg atagcagcct ggtggaagaa ggcctgagtc gcttcagctt cctgggtgca 840
ccgcagggtc cggatggcga agtgctggtg tatgatgtgg atgaaggtct gcgtgttcat 900
gccggcgaaa gcagccgcga tgaaccgggt accgtgttcg atgcactgcg cgaacgtctg 960
cgcgttccgg ttctggatcg cccggaactg ccgttcgatc tggttggcgg ttatgtgggc 1020
ttcttcggtt atgaactgaa aagcgatctg ggcgcaccga cccgtcatcg tgccaccacc 1080
ccggatgccg catggatggc ctgtacccgt ctggttgttg ttgatcatga acgtcgccgc 1140
acccatctgc tggcactgag tcgcagtgat gatgatggcg aacagctggc ctggctggcc 1200
gatgcagaac gtcgtattac cgatctgcgt ccgccgccgc gtcgcgcacc tgagggtggt 1260
ggtggtgatc cgcgcccggg tctggttcgt gaacgccctg attatctggc agatgttgaa 1320
gaatgccgcc gccagctgcg tgcaggcgaa agctatgaaa tctgtctgac cacccgcttc 1380
gcactgccgg cgatgccgga ccctctggct gcttatctgg cacagcgtct ggccaatccg 1440
gccccgtatg catcattcct gcgtctgccg ggtgttgcag tgctgagcag tagtccggaa 1500
cgcttcctgc gcgttgaacg tgatggtcat gtggaaagca aaccgattaa aggtaccgca 1560
gcacgtagcg ccgatccgga tgcagatcgt cgtctgcgcg ccggtctgac cgatgatccg 1620
aaagttctgg cagaaaatct gatgattgtg gatctgctgc gcaatgatct gggtcgtgtg 1680
tgtgaaattg gtagcgttcg tgtgccgagt tatatgcgtg ttgaaagcta tgccaccgtt 1740
catcagctgg tgagtaccgt gcgtggcaaa ctgcgtgccg atgttgatgt tattgattgc 1800
gttcgtgcat gcttcccggg tggcagcatg accggtgcac cgaaagaacg caccatggaa 1860
attattgatc gcctggaaac caccccgcgc ggcgtgtata gcggcgctct gggcttcctg 1920
ggtctgggcg gtaccgcaga tctgaatatt gttattcgta ccgccgtggc aaccgaagat 1980
ggtgtgctga ttggtgccgg cggtgccatt gtgctggata gtgatccggc cgccgaattc 2040
gatgaaatgc tgctgaaaag cctggccccg ctgcgcggcc tgaccgacga cttacgtccg 2100
gcaccgcgtc gcattccgta a 2121
<210> 2
<211> 1256
<212> DNA
<213> precious Actinosynnema Presition
<400> 2
cttagcgtgg cagaagtgct gggtcctttt cgcgaacgca ttaatcagct ggatgaacag 60
ctggcagaag tggtggcagc cagattacgt gtttgcgccg aagttgcagc cgttaaaaaa 120
cagaaaggca ttccgatgat gcagccggat cgcgttgatg cagttcgtga agcctatgcc 180
gcccgtggta gtagaatggg tattagcccg gaattcatgc gccagctggc cgcaatgatt 240
gtggcagaag catgtcgcgt ggaagatgaa attattgatg gtgacaccga aagtcatcag 300
cgcgtgattt aagtcgacga aggagatata ccgttcctct ggaaccgagt cgtagcgaaa 360
ccgcacatcc ggaaccgaca cgttttgccc gtgttgtggt tattggtggc gcaggtcagg 420
ttggtcgctt attacgtgcc ctgtttccgg gcagcaccga agttacaagt gtggatgttg 480
tgaccagcgc aggcgatggt gctcctagtt tagtggccga tgcaacccgc cctgatgcag 540
cattacgcgc agcattaggt gccgctgatg cagttgtgct ggcattaccg gaaggtccgg 600
ctttagcagc aatgagtgcc tgcgcaccgc tgttacctcc tggtgcatta ctggtggaaa 660
ccctgagtgt taaacatgca gccgcagaac tggcaaccgc cttagcagca cgtcatgctc 720
tgcaggcatg cggtttaaat ccgatgtttg ccccggaact gggctttagt ggtcgtgcag 780
tggccttagt tccgattgca ccgggtcctc gtgtggatgc actggaaaga ctgattggcg 840
cagcaggtgg ccgtgttgca agagttagcc ctgatgaaca tgatcgcgca gcaagtgtta 900
tgcaggccgc aacacatgcc gccgttttag cactgggtca tgttgtggca accagtggcg 960
ttagcccgga tgttctggtg gaactggcac ctcctccgca tagaaccgtg ttagcactgc 1020
tggcccgtat tagcggcggt gttcctgaag tttatcgtga tgtgcaggcc ggcaatccgg 1080
atgcacctga agttcgtgca cgtatgagcg gttttctgct gggtctgggc gatctggcaa 1140
gtgatcctga tcgctttgcc cgctgtctgg ctgaactgag tgcagcactg ggtgaacagg 1200
caggtccttt acgcgcacat tgccgtgctc tgtttgaagc aaccccgaaa agctaa 1256
<210> 3
<211> 2160
<212> DNA
<213> Streptomyces pristinaespiralis
<400> 3
gtgcgcaccg tgcgaaccct gctgatcgac aactacgact cgttcaccta caacctcttc 60
cagatgctgg ccgaggtgaa cggcgccgct ccgctcgtcg tccgcaacga cgacacccgc 120
acctggcagg ccctggcgcc gggcgacttc gacaacgtcg tcgtctcacc cggccccggc 180
caccccgcca ccgacaccga cctgggcctc agccgccggg tgatcaccga atgggacctg 240
ccgctgctcg gggtgtgcct gggccaccag gccctgtgcc tgctcgccgg cgccgccgtc 300
gtccacgcac ccgaaccctt tcacggccgc accagcgaca tccgccacga cgggcagggc 360
ctgttcgcga acatcccctc cccgctgacc gtggtccgct accactcgct gaccgtccgg 420
caactgcccg ccgacctgcg cgccaccgcc cacaccgccg acgggcagct gatggccgtc 480
gcccaccgcc acctgccccg cttcggcgtg cagttccacc ccgaatcgat cagcagcgaa 540
cacggccacc ggatgctcgc caacttccgc gacctgtccc tgcgcgcggc cggccaccgc 600
cccccgcaca ccgaacgcat acccgcaccc gcacccgccc ccgcccccgc ccccgcaccg 660
gcaccgcccg cgtccgcgcc ggtgggggag taccggctgc atgtgcgcga ggtcgcctgc 720
gtgcccgacg cggacgccgc gttcaccgcc ctgttcgccg acgccccggc ccggttctgg 780
ctcgacagca gccgcgtcga gccgggcctc gcccgcttca ccttcctcgg cgcccccgcc 840
ggcccgctcg gcgaacagat cacctacgac gtcgccgacc gggccgtgcg cgtcaaggac 900
ggttcaggcg gcgagacccg ccggcccggc accctcttcg accacctgga acacgaactg 960
gccgcccgcg ccctgcccgc caccggcctg cccttcgagt tcaacctcgg ctacgtcggc 1020
tacctcggct acgagaccaa ggccgacagc ggcggcgagg acgcccaccg cggcgaactg 1080
cccgacggcg ccttcatgtt cgccgaccgg atgctcgccc tcgaccacga acagggccgg 1140
gcctggctcc tggcactgag cagcacccga cggcccgcca ccgcacccgc cgccgaacgc 1200
tggctcaccg acgccgcccg gaccctcgcc accaccgccc cccgcccgcc cttcaccctg 1260
ctgcccgacg accaactgcc cgccctggac gtccactacc gccacagcct gccccgctac 1320
cgggaactgg tcgaggaatg ccgccgcctg atcaccgacg gcgagaccta cgaggtgtgc 1380
ctgacgaaca tgctccgggt gcccggccgg atcgacccgc tcaccgccta ccgcgccctg 1440
cgcaccgtca gccccgcccc ctacgccgcc tacctgcagt tccccggggc caccgtgctc 1500
agctcctcac ccgaacggtt cctgcgcatc ggcgcggacg gctgggcgga gtccaaaccc 1560
atcaagggca cccgcccccg cggcgccggc cccgcccagg acgccgccgt caaggcctcc 1620
ctcgccgcgg ccgagaagga ccgcagcgag aacctgatga tcgtcgacct ggtccgcaac 1680
gacctcggcc aggtctgcga catcggctcc gtccacgtac cgggcctgtt cgaggtggag 1740
acctacgcca ccgtccacca gctcgtcagc acggtccgcg gccgcctggc ggccgacgtc 1800
tcccgccccc gcgcggtacg ggccgccttc cccggcgggt cgatgaccgg cgcgcccaag 1860
gtccgcacca tgcagttcat cgaccggctc gagaagggcc cgcgcggcgt gtactcgggc 1920
gcgctgggct acttcgccct cagcggcgcg gccgacctca gcatcgtcat ccgcaccatc 1980
gtcgccaccg aggaggccgc caccatcggc gtgggcggcg ccgtcgtcgc cctgtccgac 2040
cccgacgacg aggtccgcga aatgctcctc aaggcgcaga ccaccctcgc cgccctgcgc 2100
caggcacacg cggccgccac cgcctcggac cgtgaactcc tggccggcag cctgcggtga 2160
<210> 4
<211> 1301
<212> DNA
<213> Streptomyces pristinaespiralis
<400> 4
atgaccccgc ccgccatccc cgccgccccg cccgccaccg ggcccgcccc cgccaccgac 60
cccctcgacg cgctgcgcgc ccgcctggac gccgcggacg ccgccctgct ggacgccgtc 120
cgcacacgcc tggacatctg cctgcgcatc ggcgagtaca agcgcctcca ccaggtgccg 180
atgatgcagc cccaccggat cgcccaggtc cacgccaacg ccgcccgcta cgccgccgac 240
cacggcatcg accccgcctt cctgcgcacc ctgtacgaca cgatcatcac cgagacctgc 300
cgcctcgagg acgagtggat cgcctccggc ggcgcccccg tccccacgcc cgtgcacgcg 360
tccgcgtccg cgcggggggc cgtgtcgtga gtcgacgaag gagatatacc atgaggggtg 420
gttcggtgtt cgggcgttgt gtggtggtgg gcggggccgg tgcggtgggc cgcatgttca 480
gccactggct ggtgcgttcg ggggtggcgg tgacctggct ggacgtggcc ggggccggtg 540
cggcggacgg ggtgcgggtg gtggccggtg atgtgcggcg gccggggccg gaggcggtcg 600
cggcgctggc ggcggcggac gtggtggtgc tggcggtgcc ggagccggtg gcgtgggagg 660
cggtggaggt gctggcgggg gtgatgcggc ccggtgcggt gctcgcggac accttgtcgg 720
tcaagagccg gatcgccggg cggctgcgtg aggcggcgcc ggggctgcag gcggtggggc 780
tgaacccgat gttcgccccc tcgctgggtc ttcaggggcg gccggtggcg gcggtggtgg 840
tcaccgacgg gcccggtgtg cgggccctgg tggagctggt ggccgggtgg ggggcccggg 900
tggtggagat gccggcgcgg cggcacgacg agctgaccgc cgcgcagcag gccgccacgc 960
atgccgcggt gctggccttc gggctgggcc tgggtgagct gtcggtggac gtgggggcgc 1020
tgcgggacag tgccccgccg ccgcatctgg cgatgctggc gctgctggcc cggatcgccg 1080
gcgggacgcc ggaggtgtat ttcgacatcc aggccgccaa ccccggcgcg ccggccgcgc 1140
ggcaggcgct gggccgcggc ctggtgcggc tggggcaggc cgtcgagagg ggcgacgagg 1200
agacgttcgc cgccctgttc gccgaactgc gcggtgtgct gggcgagcac ggtgcggagc 1260
tggaacggct gtgcgcgcgg atgttcaccg ccctgcactg a 1301
<210> 5
<211> 2061
<212> DNA
<213> Streptomyces venezuelae (Streptomyces venezuelae)
<400> 5
atgcgcacgc ttctgatcga caactacgac tcgttcaccc acaacctgtt ccagtacatc 60
ggcgaggcca ccgggcagcc ccccgtcgtc gtgcccaacg acgccgactg gtcgcggctg 120
cccctcgagg acttcgacgc gatcgtcgtg tccccgggcc ccggcagccc cgaccgggaa 180
cgggacttcg ggatcagccg ccgggcgatc accgacagcg gcctgcccgt cctcggcgtc 240
tgcctcggcc accagggcat cgcccagctc ttcggcggaa ccgtcggcct cgccccggaa 300
cccatgcacg gccgggtctc cgaggtgcgg cacaccggcg aggacgtctt ccggggcctc 360
ccctcgccgt tcaccgccgt gcgctaccac tccctggccg ccaccgacct ccccgacgag 420
ctcgaacccc tcgcctggag cgacgacggc gtcgtcatgg gcctgcggca ccgcgagaag 480
ccgctgtggg gcgtccagtt ccacccggag tccatcggca gcgacttcgg ccgggagatc 540
atggccaact tccgcgacct cgccctcgcc caccaccggg cacgtcgcga cgcggccgac 600
tccccgtacg aactccacgt gcgccgcgtc gacgtgctgc cggacgccga agaggtacgc 660
cgcggctgcc tgcccggcga gggcgccacg ttctggctgg acagcagctc cgtcctcgaa 720
ggcgcctcgc gcttctcctt cctcggcgac gaccgcggcc cgctcgccga gtacctcacc 780
taccgcgtcg ccgacggcgt cgtctccgtc cgcggctccg acggcaccac gacccggacg 840
cggcgaccct tcttcagcta cctggaggag cagctcgaac gccggcgggt ccccgtcgcc 900
cccgacctgc ccttcgagtt caacctcggc tacgtcggct acctcggcta cgagctgaag 960
gcggagacca ccggcgaccc cgcgcaccgg tccccgcacc ccgacgccgc gttcctcttc 1020
gccgaccgcg ccatcgccct cgaccaccag gaaggctgct gctacctgct ggccctcgac 1080
cgccggggcc acgacgacgg cgcccgcgcc tggctgcggg agacggccga gaccctcacc 1140
ggcctggccg tccgcgtccc ggccgagccg acccccgcca tggtcttcgg ggtccccgag 1200
gcggcggccg gcttcggccc cctggcccgc gcacgccacg acaaggacgc ctacctcaag 1260
cgcatcgacg agtgcctcaa ggagatccgc aacggcgagt cgtacgagat ctgcctgacc 1320
aacatggtca ccgcgccgac cgaggcgacg gccctgccgc tctactccgc gctgcgcgcc 1380
atcagccccg tcccgtacgg cgccctgctc gagttccccg agctgtcggt gctcagcgcc 1440
tcgcccgagc ggttcctcac gatcggcgcc gacggcggcg tcgagtccaa gcccatcaag 1500
gggacccgcc cccggggcgg caccgcggag gaggacgagc ggctccgcgc cgacctggcc 1560
ggccgggaga aggaccgggc cgagaacctg atgatcgtcg acctggtccg caacgacctc 1620
aacagcgtct gcgcgatcgg ctccgtccac gtgccccggc tcttcgaggt ggagacctac 1680
gcgcccgtgc accagctggt gtcgaccatc cggggacggc tgcggcccgg caccagcacc 1740
gccgcctgcg tacgcgccgc cttccccggc ggctccatga ccggcgcgcc caagaagcgc 1800
accatggaga tcatcgaccg cctggaggaa ggcccccggg gcgtctactc cggggcgctc 1860
ggatggttcg ccctcagcgg cgccgccgac ctcagcatcg tcatccgcac catcgtgctg 1920
gccgacggcc gggccgagtt cggcgtcggc ggggcgatcg tgtccctctc cgaccaggag 1980
gaggagttca ccgagaccgt ggtcaaggcc cgcgccatgg tcaccgccct cgacggcagc 2040
gcagtggcgg gcgcccgatg a 2061
<210> 6
<211> 1301
<212> DNA
<213> Streptomyces venezuelae (Streptomyces venezuelae)
<400> 6
atgaccgaac agaatgaact gcagcgtctg cgtgcagaac tggatgcact ggatggcacc 60
ctgctggata ccgttcgtcg tcgtattgat ctgggtgttc gtattgcacg ttataaaagc 120
cgtcatggtg ttccgatgat gcagcctggt cgtgttagcc tggttaaaga tcgtgcagca 180
cgttatgcag cagatcatgg tctggatgaa agttttctgg tgaatctgta tgatgtgatc 240
atcaccgaaa tgtgtcgtgt tgaggatctg gttatgagcc gtgaaagcct gaccgcagaa 300
gatcgtcgtt aagtcgacga aggagatata ccatgagcgg ttttccgcgt agcgttgttg 360
ttggtggtag cggtgcagtg ggtggtatgt ttgcaggtct gctgcgtgaa gcaggtagcc 420
gtaccctggt tgttgatctg gttccgcctc cgggtcgtcc ggatgcatgt ctggttggtg 480
atgttaccgc accgggtccg gaactggcag cagcactgcg tgatgccgat ctggtgctgc 540
tggccgttca tgaagatgtt gcactgaaag cagttgcacc ggttacccgt ctgatgcgtc 600
cgggtgcact gctggcagat accctgagcg ttcgtaccgg tatggcagca gagctggcag 660
cacatgcacc gggtgttcag catgttggtc tgaatccgat gtttgcaccg gcagcaggta 720
tgacaggccg tccggttgca gcagttgtta cccgtgatgg tcctggtgtg accgcactgc 780
tgcgtctggt tgaaggtggt ggtggtcgtc ctgttcgtct gacagccgaa gaacatgatc 840
gtaccaccgc agcaacccag gcactgaccc atgcagttct gctgagcttt ggtctggcac 900
tggcacgtct gggtgtggat gttcgtgcac tggcagccac cgcaccgcct ccgcatcaag 960
tactgctggc cctgctggca cgtgttctgg gtggtagtcc ggaagtttat ggtgatattc 1020
agcgtagcaa tccgcgtgca gcaagcgcac gtcgtgccct ggctgaagcc ctgcgtagct 1080
ttgcagcact ggttggagat gatcctgatc gtgccgatgc accaggtcgc gcagatgccc 1140
ctggtcatcc gggtggttgt gatggtgcag gtaatctgga tggtgttttt ggtgaactgc 1200
gtcgcctgat gggtcctgag ctggctgcag gccaggatca ttgtcaagaa ctgtttcgta 1260
ccctgcatcg taccgatgat gaaggtgaaa aagatcgcta a 1301
<210> 7
<211> 2070
<212> DNA
<213> Pseudomonas fluorescens (Pseudomonas fluorescens)
<400> 7
atgaaaattc tgctgattga caactttgat tcctttaccc aaaacatcgc tcagtatctg 60
tacgaagtga cgggcatctg cgccgacatt gtgaccaaca cggttaccta tgaacatctg 120
cagattgaac aatacgatgc cgtggttctg tccccgggtc cgggtcaccc gggcgaatat 180
ctggactttg gcgtctgcgg tcaggtgatc ctgcattcac cggtgccgct gctgggtatt 240
tgtctgggcc accaaggtat cgcccagttc ctgggcggta ccgttggtca tgcaccgacc 300
ccggtccacg gttatcgtag caaaattacc catagtggct ccggtctgtt tcgtgatctg 360
ccggaacaat tcgaagtcgt gcgctaccat tccctgatgt gcacccacct gccgcaggaa 420
ctgcgttgta cggcctggac cgaagaaggc gttgtcatgg caattgaaca cgaaagccgc 480
ccgatctggg gcgttcagtt tcatccggaa tctatcgata gtgaatatgg tcacgctctg 540
ctgtcgaact tcattggcat ggcgatcgaa cataacggta atcaccgtac gagcgcgacc 600
cagaacccgg atgcatcagc ttcggcgaat gaacattatc gtgctgtggg cggtctgctg 660
aatatgcagc tggcgtatcg cacctatccg ggtccgtttg acccgctggc cctgttcacc 720
caacgctacg cccaggatca tcacgcattt tggctggact ccgaaaaatc agaacgtccg 780
aacgcccgct attcgattat gggcagcggt caggcacaag gctctatccg tctgacgtac 840
gatgtgaata gcgaatctct gaccctggcg ggcccgaaag gtagtcgcat tgtcacgggt 900
gactttttca ccctgttttc ccaaatcgtg gaatcagtga acgtggccgt cccgcagtat 960
ctgccgtttg aattcaaagg cggtttcgtt ggctatatgg gttacgaact gaaagcactg 1020
accggcggta ataaagtgta tcgtagcggc cagccggatg ctggttttat gttcgcgccg 1080
catttctttg tttttgatca tcacgaccag acggtttacg aatgcatgat ttcggcaacc 1140
ggtcagagcc cgcaatggcc gcagctgctg accagcatga ccacgctgaa caatgctacc 1200
gatcgtcgtc cgtttgtgcc gggtgccgtc gatgaactgg aactgagtct ggaagacggt 1260
ccggatgact acatccgtaa agttaaacaa tccctgcagt atattacgga tggcgaatca 1320
tacgaaatct gcctgaccaa tcgtgcgcgc atgagttatt ccggtgaacc gctggccgca 1380
taccgtcgca tgcgtgaagc tagcccggtt ccgtatggcg cgtacctgtg ctttgattca 1440
ttctcggtcc tgagcgcgtc tccggaaacc tttctgcgta ttgacgaagg cggtctgatt 1500
gaatctcgcc cgatcaaagg tacccgtgcg cgctctaaag atccgagtga agaccaacgt 1560
ctgcgctctg atctgcaggc cagtaccaaa gaccgcgcag aaaacctgat gattgtcgat 1620
ctggtgcgtc atgacctgaa tcaggtgtgc cgcagtggtt ccgtgcatgt tccgcacatc 1680
tttgccgtcg aatcgttcag ctctgtgcat cagctggtta gcacggtccg tggccacctg 1740
cgcaacgata tttctaccat ggaagccatc cgtgcatgct ttccgggcgg tagtatgacg 1800
ggtgccccga aaaaacgtac catggaaatt atcgacggcc tggaaacctg tgcccgcggt 1860
gtttattccg gcgcactggg ttggatttca ttttcgggca gcgcagaact gtcaattgtg 1920
atccgcaccg ctgttctgca taaacagcaa gcggaattcg gtattggcgg tgctatcgtg 1980
gcgcacagcg atccgaatga agaactggaa gaaaccctgg tcaaagcaag cgtgccgtat 2040
tattcgttct atgccggtag tgaaaaatga 2070
<210> 8
<211> 1235
<212> DNA
<213> Pseudomonas fluorescens (Pseudomonas fluorescens)
<400> 8
atgaatatga ccgaacaccg ccacatgagc ccgaccacgc cgtctgccat cctgcaaccg 60
caacgcgacc aactggaccg tatcaacaac catctggttg atctgctggg cgaacgtatg 120
agtgtctgca tggatattgc ggaactgaaa gcggcccacg acattccgat gatgcagccg 180
caacgtatcg tgcaggttct ggatcaactg aaagacaaaa gctctaccgt gggtctgcgc 240
ccggactatg tccagagcgt gtttaaactg attatcgaag aaacgtgtat ccaggaagaa 300
caactgattc aacgccgtcg taaccagggt caacgctcgt gagtcgacga aggagatata 360
ccatgaacac gaacacggtg gtggtgctgg gcggcgctgg tctgattggc tccatgatct 420
ctcgcatcct gaaacagtac ggctactttg tgcgtgtggt tgatcgtcgc ccggccgaat 480
tcgaatgcga atatcatgaa atggatgtca ccaaaccgtt taacgacacc ggtgccgtgt 540
tccgtaatgc taccgccgtc gtgtttgcac tgccggaaag cgtggccgtt tctgcaattc 600
cgtgggttac cacgttcctg agctctgaag ttgtcctgat cccgacgtgt tcagtgcagg 660
gtccgtttta caaagctctg aaagccgcgg caccgcgtca accgtttgtc ggtgtgaacc 720
cgatgttcag tccgaaactg tccgttcagg gtcgttcagt tgcggtctgc gtggaagata 780
cccaggctgc gcagaccttt attgaacgcc atctgatgga agctggcatg aaaatccgtc 840
gcatgacccc gtcggcgcat gacgaactga tggctctgtg ccaggcgctg ccgcatgcag 900
caattctggg ctttggtatg gccctggcaa aaagttccgt ggatatggac atcgttgccg 960
aagtcatgcc gccgccaatg cgtaccatga tggcactgct gagccgcatt ctggtgaacc 1020
cgccggaagt ttattgggat atccagctgg aaaatgacca ggctacggcg caacgtgatg 1080
ccctggttca cggtctggaa cgcctgcagg aaaatattgt cgaacaagat tacgaacgct 1140
ttaaatctga cctgcaatca gtgtcgaccg cactgggtaa acgcctgaac gctggtgccg 1200
tggattgtca acacctgttt tccctgctga actaa 1235
<210> 9
<211> 1884
<212> DNA
<213> Corynebacterium glutamicum (Corynebacterium glutamicum)
<400> 9
gtggttttgt cagaggatgt catgcgcgtt ttaattattg ataattatga ttctttcacg 60
tttaatctcg ccacctatgt ggaagaggtt acgggtcagg cacctgtggt ggtgcctaat 120
gatcaagaaa tagatgagat gcttttcgac gccgtcatcc tctcacctgg cccgggccac 180
gccggcgttg cggctgattt tggtatctgt gcaggcgtca ttgagcgtgc acgcgttccg 240
attttgggtg tgtgtttagg ccaccagggc attgcgttgg cctatggcgg tgatgttgat 300
ttggcgccca ggccggtcca cggtgaggtt tcgcagatca cccatgatgg ttcaggttta 360
tttgcaggca tccctgaaac gtttgaggcg gtgcgttatc actcgatggt ggcaacccgc 420
ttgccggagt cattgaaagc tacagctacc agcgatgatg gtttgatcat ggcattggca 480
catgaagtgc ttccgcagtg gggtgtgcaa tttcatccgg aatctattgg tggacaattc 540
ggccatcaga tcattaagaa cttccttaat ttagcgcgca catatcgctg gcaactcacg 600
gagaaaacta ttccgctcag cgttgattca gcagcggttt ttgaaacatt ctttgcccat 660
tcctcccatg ctttttggct cgatgatgcc caaggaacca gctatcttgg tgatgccagc 720
ggtcctctcg cacgcacaaa aacccataat gtcggcgagg gggatttctt cacctggcta 780
aaggaggatc tcgccgccaa ctcagttgcg cccggtcaag gttttcgtct tggctgggtt 840
ggttacgttg gttatgagct taaagcggaa gctggcgcac gggctgcgca cacttcgagt 900
cttccggatg cgcacctcat ttttgccgat cgcgccatcg cagtggaatc ggatcaggtt 960
cggttgctgg cgttggggga gcaggacgag tggtttgaag aaaccatcaa gaagctgcat 1020
aatcttgtcg ccccgcggat acctgcgtcc ggacacctcg ctttgcaggt tcgagattcc 1080
aaagatgagt atctcgacaa aattcgcaga gcccaggagc tgattactcg cggcgaatcg 1140
tatgaaatct gcctgaccac aaaacttcag ggcaccactg atgtggcccc tctggctgcc 1200
tatctagcac tgcgtggggc caatcccacc gcttatggtg cgtatcttca gctgggggat 1260
acctctattt tgagttcctc gccggagcgg ttcatcacca ttgattcggc agggtatgtg 1320
gaatcaaagc ccattaaagg caccaggccg cgtgggcgaa cagcgcaaga agaccaagaa 1380
atcattgctg agctgcgcag taatcctaaa gatcgtgcag aaaacttgat gatcgtggat 1440
ttggtccgca acgacttagc ccgcggcgct ttgcccacca cagttaaaac atccaagctc 1500
ttcgacgtcg aaacctacgc cacagtccac caacttgtca gcaccgtctc tgcagagttg 1560
gggccacgca gtccgattga gtgcgtgcgc gcagcattcc ccggtggttc gatgactggt 1620
gccccaaagc tgcgcaccat ggagatcatc gatgagctgg aggcagctcc tcgcggtatt 1680
tactcaggtg gcttgggata tttttccctc gacggcgcag ttgatctctc catggtgatc 1740
agaactctcg tcatccagaa caatcacgtg gagtacggag tgggcggtgc acttcttgct 1800
ctgtctgatc cggaggctga gtgggaggaa atccgcgtta aatcacggcc tctgctgaat 1860
ttgtttgggg ttgaattccc atga 1884
<210> 10
<211> 1053
<212> DNA
<213> Escherichia coli (Escherichia coli)
<400> 10
atgaattatc agaacgacga tttacgcatc aaagaaatca aagagttact tcctcctgtc 60
gcattgctgg aaaaattccc cgctactgaa aatgccgcga atacggttgc ccatgcccga 120
aaagcgatcc ataagatcct gaaaggtaat gatgatcgcc tgttggttgt gattggccca 180
tgctcaattc atgatcctgt cgcggcaaaa gagtatgcca ctcgcttgct ggcgctgcgt 240
gaagagctga aagatgagct ggaaatcgta atgcgcgtct attttgaaaa gccgcgtacc 300
acggtgggct ggaaagggct gattaacgat ccgcatatgg ataatagctt ccagatcaac 360
gacggtctgc gtatagcccg taaattgctg cttgatatta acgacagcgg tctgccagcg 420
gcaggtgagt ttctcgatat gatcacccta caatatctcg ctgacctgat gagctggggc 480
gcaattggcg cacgtaccac cgaatcgcag gtgcaccgcg aactggcatc agggctttct 540
tgtccggtcg gcttcaaaaa tggcaccgac ggtacgatta aagtggctat cgatgccatt 600
aatgccgccg gtgcgccgca ctgcttcctg tccgtaacga aatgggggca ttcggcgatt 660
gtgaatacca gcggtaacgg cgattgccat atcattctgc gcggcggtaa agagcctaac 720
tacagcgcga agcacgttgc tgaagtgaaa gaagggctga acaaagcagg cctgccagca 780
caggtgatga tcgatttcag ccatgctaac tcgtccaaac aattcaaaaa gcagatggat 840
gtttgtgctg acgtttgcca gcagattgcc ggtggcgaaa aggccattat tggcgtgatg 900
gtggaaagcc atctggtgga aggcaatcag agcctcgaga gcggggagcc gctggcctac 960
ggtaagagca tcaccgatgc ctgcatcggc tgggaagata ccgatgctct gttacgtcaa 1020
ctggcgaatg cagtaaaagc gcgtcgcggg taa 1053
<210> 11
<211> 70
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
tcaggatctg aacgggcagc tgacggctcg cgtggcttaa gaggtttatt attccgggga 60
<210> 12
<211> 70
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
aggcctccca aatcgggggg ccttttttat tgataacaaa aaggcaacac ttgtaggctg 60
<210> 13
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
gtatccgtaa ccgatgcctg ca 22
<210> 14
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
tgaatgggag gcgtttcgtc gt 22
<210> 15
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
gaagttccta ttcttcaaat agtataggaa cttcgaagtt cccg 44
<210> 16
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
gaagttccta tactatttga agaataggaa cttcggaata ggaa 44
<210> 17
<211> 71
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 17
gataaggagc cggtatgttc ttaattaacg gtcataagca ggaatcgctg gaagttccta 60
ttcttcaaat a 71
<210> 18
<211> 72
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 18
acactttttt catgactaat tcgggcgctc acaaagtggg gctaaatatt cgaagttcct 60
atactatttg aa 72
<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
<210> 20
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
atacccagta ccaccagcaa t 21
<210> 21
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 21
gaagttccta ttcttcaaaa ggtataggaa cttcgaagtt cccg 44
<210> 22
<211> 44
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 22
gaagttccta taccttttga agaataggaa cttcggaata ggaa 44
<210> 23
<211> 60
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 23
agaataacaa tgcaaacaca aaaaccgact ctcgaacagg aagttcctat tcttcaaaag 60
<210> 24
<211> 57
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 24
tgtcagccat cagaaagtct cctgtgcatg atgcgcggtg aagttcctat acctttt 57
<210> 25
<211> 27
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 25
gacaattaat catcgaacta gttaact 27
<210> 26
<211> 26
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 26
caagcgggtg aggagttccg gcatac 26
Claims (4)
1. A construction method of Escherichia coli engineering bacteria for synthesizing p-aminophenylalanine is characterized in that key enzyme required in a PAPA synthesis path is expressed in Escherichia coli; the key enzymes comprise 4-aminodeoxy-chorismate synthetase PapA, 4-aminodeoxy-chorismate mutase PapB and 4-aminodeoxy prephenate dehydratase PapC;
the key enzymes select the synthetic pathway of PAPA from different hosts, including Streptomyces pristinaespiralisStreptomyces pristinaespiralisIs/are as followspapB、papCGene and Corynebacterium glutamicumCorynebacterium glutamicumIspapAA gene;
the method comprises the following steps:
s1, carrying out codon optimization and total synthesis on the key enzyme genes; obtaining nucleotide sequences respectively shown as SEQ ID No.4 in sequenceSppapBCGene, shown as SEQ ID No.9CgpapAA gene;
s2, construction of a peptide containingCgpapA-SppapBCIntroducing the plasmid of the gene into Escherichia coli MG1655 (DE 3) to obtain a recombinant strain;
s3, carrying out genetic engineering transformation on the recombinant strain to knock out the chorismate mutase/prephenate dehydratase genepheAChorismate mutase/prephenate dehydrogenase genetyrAAnthranilic acid synthase genetrpEAnd 4-aminodeoxychorismate lyase genepabC;
S4、Overexpressing a 3-deoxy-D-arabinoheptulose-7-phosphate synthase-encoding gene in the genetically engineered strain obtained in step S3aroG fbr ;aroG fbr The nucleotide sequence of the gene is shown as SEQ ID No. 10.
2. The escherichia coli engineering bacteria constructed according to the construction method of the escherichia coli engineering bacteria for synthesizing p-aminophenylalanine in claim 1.
3. An Escherichia coli engineering bacterium for synthesizing p-aminophenylalanine, wherein the engineering bacterium is Escherichia coli (Escherichia coli) HXJE72 with the preservation number of CGMCC No.21810.
4. The recombinant plasmid for constructing escherichia coli engineering bacteria for synthesizing p-aminophenylalanine is characterized by containingCgpapAAndSppapBCrecombinant plasmids of the genes;CgpapAthe gene sequence is shown as SEQ ID No.9,SppapBCthe gene sequence is shown in SEQ ID No. 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110271292.2A CN113151129B (en) | 2021-03-12 | 2021-03-12 | Construction method of recombinant escherichia coli for high-yield p-aminophenylalanine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110271292.2A CN113151129B (en) | 2021-03-12 | 2021-03-12 | Construction method of recombinant escherichia coli for high-yield p-aminophenylalanine |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113151129A CN113151129A (en) | 2021-07-23 |
CN113151129B true CN113151129B (en) | 2022-10-18 |
Family
ID=76887054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110271292.2A Active CN113151129B (en) | 2021-03-12 | 2021-03-12 | Construction method of recombinant escherichia coli for high-yield p-aminophenylalanine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113151129B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1377407A (en) * | 1999-09-29 | 2002-10-30 | 明治制果株式会社 | Transformant producing secondary metabolite modified with functional group and novel biosynthesis genes |
CN1509334A (en) * | 2001-03-22 | 2004-06-30 | �����Ƹ���ʽ���� | Transformant producing PF1022 substance derivatives, process for producing same and novel/biosynthesis gene |
CN106471120A (en) * | 2014-03-20 | 2017-03-01 | 国立研究开发法人科学技术振兴机构 | The method that anil is prepared from carbon source by fermentation method |
-
2021
- 2021-03-12 CN CN202110271292.2A patent/CN113151129B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1377407A (en) * | 1999-09-29 | 2002-10-30 | 明治制果株式会社 | Transformant producing secondary metabolite modified with functional group and novel biosynthesis genes |
CN1509334A (en) * | 2001-03-22 | 2004-06-30 | �����Ƹ���ʽ���� | Transformant producing PF1022 substance derivatives, process for producing same and novel/biosynthesis gene |
CN106471120A (en) * | 2014-03-20 | 2017-03-01 | 国立研究开发法人科学技术振兴机构 | The method that anil is prepared from carbon source by fermentation method |
Non-Patent Citations (3)
Title |
---|
A noncanonical amino acid-based relay system for site-specific protein labeling;Chen Y et al.;《Chemical Communications》;20181231(第52期);第7188页左栏第3段第1-10行,图1 * |
Chen Y et al..A noncanonical amino acid-based relay system for site-specific protein labeling.《Chemical Communications》.2018,(第52期),第7188页左栏第3段第1-10行,图1. * |
Production of p-amino-L-phenylalanine (L-PAPA) from glycerol by metabolic grafting of Escherichia coli;Behrouz Mohammadi Nargesi et al.;《Microbial Cell Factories》;20180921;第17卷(第149期);摘要结果部分 * |
Also Published As
Publication number | Publication date |
---|---|
CN113151129A (en) | 2021-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2199853C (en) | Microorganisms and methods for overproduction of dahp by cloned pps gene | |
US8569066B2 (en) | Genetically engineered recombinant Escherichia coli producing L-tryptophan having originally L-phenylalanine productivity, and method for producing L-tryptophan using the microorganism | |
US5985617A (en) | Microorganisms and methods for overproduction of DAHP by cloned PPS gene | |
US5168056A (en) | Enhanced production of common aromatic pathway compounds | |
EP1149911A2 (en) | Amino acid producing strains belonging to the genus Escherichia and method for producing amino acid | |
EP0763127A1 (en) | Deblocking the common pathway of aromatic amino acid synthesis | |
EP0136359A1 (en) | Process for preparing l-histidine | |
EP0263515A2 (en) | Process for producing L-tyrosine | |
MXPA97002011A (en) | Microorganisms and methods for overproduction of dahp by clonedpps | |
KR20000048776A (en) | Preparation of d-amino acids by direct fermentative means | |
US6316232B1 (en) | Microbial preparation of substances from aromatic metabolism/I | |
US5407824A (en) | Recombinant coryneform bacterium for producing L-tryptophan | |
EP0338474B1 (en) | Process for producing L-tryptophan | |
JPS6066989A (en) | Production of l-arginine | |
WO2023065725A1 (en) | Bacterial genome multiplex editing method based on double-stranded dna recombination engineering and application thereof | |
EP0183175B1 (en) | Coryneform bacteria carrying recombinant dna and a process for producing aromatic amino acids using said bacteria | |
CN113151129B (en) | Construction method of recombinant escherichia coli for high-yield p-aminophenylalanine | |
EP0183006B1 (en) | A recombinant dna-molecule, coryneform bacteria carrying recombinant dna and process for producing an aromatic amino acid by using the same | |
KR100359131B1 (en) | Method of Blocking Aromatic Amino Acid Synthesis Pathway | |
EP0487333A2 (en) | Process for producing L-tryptophan and L-threonine | |
EP0180192B1 (en) | Novel plasmids | |
Kim et al. | Effects of tktA, $ aroF^{FBR} $ and aroL Expression in the Tryptophan-Producing Escherichia coli | |
CN113677795B (en) | Novel DAHP synthetase | |
Gillane et al. | Biosynthesis of novel non-proteinogenic amino acids β-hydroxyenduracididine and β-methylphenylalanine in Escherichia coli | |
MX2011003857A (en) | The invention refers to novel strains of the escherichia coli bacterium with genetic modifications resulting in a high capacity. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |