CN113140630B - Preparation method of p-type nitride gate of enhancement mode HEMT and method of using same to prepare enhancement mode nitride HEMT - Google Patents
Preparation method of p-type nitride gate of enhancement mode HEMT and method of using same to prepare enhancement mode nitride HEMT Download PDFInfo
- Publication number
- CN113140630B CN113140630B CN202110389654.8A CN202110389654A CN113140630B CN 113140630 B CN113140630 B CN 113140630B CN 202110389654 A CN202110389654 A CN 202110389654A CN 113140630 B CN113140630 B CN 113140630B
- Authority
- CN
- China
- Prior art keywords
- type nitride
- layer
- gate
- protective layer
- hemt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 295
- 238000002360 preparation method Methods 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims description 86
- 239000010410 layer Substances 0.000 claims abstract description 362
- 239000011241 protective layer Substances 0.000 claims abstract description 183
- 238000003795 desorption Methods 0.000 claims abstract description 74
- 238000005530 etching Methods 0.000 claims abstract description 74
- 230000004888 barrier function Effects 0.000 claims abstract description 53
- 239000000463 material Substances 0.000 claims abstract description 18
- 239000003989 dielectric material Substances 0.000 claims abstract description 9
- 230000008569 process Effects 0.000 claims description 51
- 238000001039 wet etching Methods 0.000 claims description 27
- 238000001312 dry etching Methods 0.000 claims description 25
- 230000003647 oxidation Effects 0.000 claims description 18
- 238000007254 oxidation reaction Methods 0.000 claims description 18
- 229910002704 AlGaN Inorganic materials 0.000 claims description 17
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 10
- 238000000151 deposition Methods 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims 12
- 238000001259 photo etching Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 description 28
- 238000000137 annealing Methods 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 238000000206 photolithography Methods 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 8
- 238000001755 magnetron sputter deposition Methods 0.000 description 8
- 239000002344 surface layer Substances 0.000 description 8
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 239000013067 intermediate product Substances 0.000 description 7
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 7
- 238000001451 molecular beam epitaxy Methods 0.000 description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 229910052718 tin Inorganic materials 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
技术领域Technical field
本发明涉及增强型高电子迁移率晶体管技术领域,具体涉及一种增强型HEMT的p型氮化物栅的制备方法,以及将该制备p型氮化物栅的方法应用在增强型氮化物HEMT的制备中,以制备出高可靠性的增强型氮化物HEMT的方法。The present invention relates to the technical field of enhancement-mode high electron mobility transistors, and specifically relates to a method for preparing a p-type nitride gate of an enhancement-mode HEMT, and applying the method for preparing a p-type nitride gate to the preparation of an enhancement-mode nitride HEMT. in order to prepare a highly reliable enhancement-mode nitride HEMT.
背景技术Background technique
第三代半导体材料由于具有较宽的禁带宽度,用于电源开关时,与传统的Si基电源开关相比具有更高的击穿电压。当这些具有较宽的禁带宽度的第三代半导体材料用于高电子迁移率晶体管(High Electron Mobility Transistor,简称HEMT)时,可利用第三代半导体材料固有的极化特性(自发极化和压电极化),产生高浓度、高电子迁移率的二维电子气(Two-dimensional electron gas,简称2DEG),使得HEMT具有更高的击穿电压和更小的开态电阻,由此可以制得尺寸更小的HEMT。但是,也正由于HEMT器件异质结处强烈极化效应的产生,在正常状态下2DEG难以被耗尽,因而HEMT器件通常都属于耗尽型(常开型)器件,需要配合提供负压的栅极驱动电路才能关断HEMT,这在极大地增加电路的复杂性的同时降低了HEMT的实用性。The third-generation semiconductor material has a wider band gap and has a higher breakdown voltage when used in power switches than traditional Si-based power switches. When these third-generation semiconductor materials with wider bandgaps are used in high electron mobility transistors (HEMTs for short), the inherent polarization characteristics (spontaneous polarization and Piezoelectric polarization), producing a two-dimensional electron gas (2DEG) with high concentration and high electron mobility, which makes the HEMT have a higher breakdown voltage and smaller on-state resistance, which can Create smaller HEMTs. However, due to the strong polarization effect at the heterojunction of HEMT devices, 2DEG is difficult to be depleted under normal conditions. Therefore, HEMT devices are usually depletion mode (normally open) devices and need to be matched with a device that provides negative voltage. A gate drive circuit is required to turn off the HEMT, which greatly increases the complexity of the circuit and reduces the practicality of the HEMT.
为此,目前比较常用的解决方案是通过在栅极所在的位置设置p型氮化物栅来耗尽栅极下方的2DEG,得到在零栅偏压下处于关断状态的增强型(又称常关型)HEMT。目前,在栅极所在位置设置p型氮化物栅比较常用的方式是采用刻蚀法,但是,采用刻蚀法制备p型氮化物栅时,一般是利用干法刻蚀p型氮化物栅极区域以外的大面积p型氮化物,这类刻蚀工艺的均匀性控制十分困难,易出现因p型氮化物栅刻蚀深度不够导致的欠刻蚀,或出现因刻蚀深度超过p型氮化物栅厚度时损伤势垒层造成的过刻蚀,无论是欠刻蚀还是过刻蚀,都会降低增强型HEMT的导通电流,显著影响其工作性能。To this end, a commonly used solution is to deplete the 2DEG under the gate by setting a p-type nitride gate where the gate is located, thereby obtaining an enhancement mode (also known as normal) that is in the off state under zero gate bias. OFF type) HEMT. Currently, the most common way to set a p-type nitride gate at the location of the gate is to use etching. However, when etching is used to prepare a p-type nitride gate, dry etching of the p-type nitride gate is generally used. For large areas of p-type nitride outside the area, it is very difficult to control the uniformity of this type of etching process. Under-etching is prone to occur due to insufficient etching depth of the p-type nitride gate, or due to the etching depth exceeding the p-type nitride gate. Over-etching caused by damage to the barrier layer when the thickness of the compound gate is increased, whether it is under-etching or over-etching, will reduce the on-current of the enhancement-mode HEMT and significantly affect its operating performance.
发明内容Contents of the invention
为了解决采用现有的刻蚀工艺制备增强型HEMT的p型氮化物栅时,易因欠刻蚀或过刻蚀导致增强型HEMT出现栅极泄漏、电流崩溃和阈值电压不稳定的问题,发明人经过大量的研究和实验,发现采用高温热脱附工艺可以选择性去除p型氮化物层,并且采用高温热脱附工艺去除p型氮化物层时,能够有效控制刻蚀的选择性,以保证在完全去除p型氮化物栅极区域以外的p型氮化物的情况下,不会损伤下层的势垒层。In order to solve the problem of gate leakage, current collapse and threshold voltage instability in the enhancement HEMT due to under-etching or over-etching when the p-type nitride gate of the enhancement HEMT is prepared using the existing etching process, the invention was invented After a lot of research and experiments, people found that the p-type nitride layer can be selectively removed using a high-temperature thermal desorption process, and when using a high-temperature thermal desorption process to remove the p-type nitride layer, the etching selectivity can be effectively controlled to It is ensured that the underlying barrier layer will not be damaged when the p-type nitride outside the p-type nitride gate region is completely removed.
为此,根据本发明的一个方面,提供了一种增强型HEMT的p型氮化物栅的制备方法,在制备p型氮化物栅时,该p型氮化物栅的制备方法是通过高温热脱附去除栅极区域以外的p型氮化物层,且该p型氮化物栅的制备方法还包括在外延结构的制备过程中,在势垒层和p型氮化物层之间制备第一保护层,其中,第一保护层的厚度范围设置为1nm-5nm,且采用热脱附温度高于p型氮化物层的热脱附温度的材料;在对栅极区域以外的p型氮化物层进行高温热脱附之前,还在栅极区域的p型氮化物层上制备第二保护层,其中,第二保护层采用耐高温介质材料。To this end, according to one aspect of the present invention, a method for preparing a p-type nitride gate of an enhancement mode HEMT is provided. When preparing the p-type nitride gate, the preparation method of the p-type nitride gate is through high-temperature thermal dehydration. The p-type nitride layer outside the gate region is additionally removed, and the preparation method of the p-type nitride gate also includes preparing a first protective layer between the barrier layer and the p-type nitride layer during the preparation process of the epitaxial structure. , wherein the thickness range of the first protective layer is set to 1nm-5nm, and a material with a thermal desorption temperature higher than that of the p-type nitride layer is used; the p-type nitride layer outside the gate region is processed Before high-temperature thermal desorption, a second protective layer is also prepared on the p-type nitride layer in the gate region, where the second protective layer uses a high-temperature resistant dielectric material.
在本发明实施例中,将高温热脱附工艺应用到去除栅极区域以外的p型氮化物层中,并结合第一保护层和第二保护层的特别设计,例如对第一保护层和第二保护层的结构和性能的选取、对第一保护层和第二保护层设置位置的选取等,使得在利用本发明实施例的制备方法制备p型氮化物栅时,能够在第一保护层和第二保护层的保护作用下,通过高温热脱附对栅极区域以外的p型氮化物层进行选择性刻蚀,并且可以在完全去除栅极区域以外的p型氮化物层的情况下,不对p型氮化物层下的势垒层以及p型氮化物层造成破坏,从而可以实现可重复且一致性较好的刻蚀效果,进而可以保证增强型氮化物HEMT性能的可靠性。另外,本发明实施例中优选将第一保护层的厚度控制在5nm以下,既便于第一保护层的制备,又可以避免由于第一保护层厚度过大而导致的因应力突变而开裂或导致其下方的异质结开裂等不良;而且,由于第一保护层的厚度较薄,便于在高温热脱附后通过其他刻蚀方法去除,以便在势垒层上制备源电极和漏电极。In the embodiment of the present invention, a high-temperature thermal desorption process is applied to remove the p-type nitride layer outside the gate region, combined with special designs of the first protective layer and the second protective layer, for example, the first protective layer and the second protective layer are specially designed. The selection of the structure and performance of the second protective layer, the selection of the placement positions of the first protective layer and the second protective layer, etc., enable the p-type nitride gate to be prepared in the first protective layer when the preparation method of the embodiment of the present invention is used. Under the protection of the second protective layer and the second protective layer, the p-type nitride layer outside the gate area is selectively etched through high-temperature thermal desorption, and the p-type nitride layer outside the gate area can be completely removed. Without causing damage to the barrier layer and p-type nitride layer under the p-type nitride layer, repeatable and consistent etching effects can be achieved, thereby ensuring the reliability of the enhanced nitride HEMT performance. In addition, in the embodiment of the present invention, it is preferable to control the thickness of the first protective layer to less than 5 nm, which not only facilitates the preparation of the first protective layer, but also avoids cracking or causing cracking due to stress mutation due to excessive thickness of the first protective layer. There are defects such as cracking of the heterojunction below it; and, because the thickness of the first protective layer is thin, it is easy to remove it through other etching methods after high-temperature thermal desorption, so as to prepare the source electrode and the drain electrode on the barrier layer.
在一些实施方式中,p型氮化物层为p-GaN层;高温热脱附的温度范围为500℃-1000℃。示例性的,高温热脱附在金属有机化合物化学气相沉淀(Metal-organic ChemicalVapor Deposition,简称MOCVD)设备、管式退火炉或高温退火炉等高温处理设备中进行。In some embodiments, the p-type nitride layer is a p-GaN layer; the temperature range of high-temperature thermal desorption is 500°C-1000°C. For example, high-temperature thermal desorption is performed in high-temperature processing equipment such as Metal-organic Chemical Vapor Deposition (MOCVD) equipment, tubular annealing furnaces, or high-temperature annealing furnaces.
由于p-GaN层的热脱附温度为850℃-1000℃,因此,p-GaN层的未覆盖第二保护层的部分(也即p-GaN层的栅极区域以外的部分),在温度为500℃-1000℃的高温环境下放置一段时间,可以完全被去除;且由于第一保护层采用热脱附温度比p-GaN层的热脱附温度更高的材料,而第二保护层采用耐高温介质材料,因而在温度为500℃-1000℃的条件下进行高温热脱附可以避免第二保护层和第一保护层被去除,从而保护栅极区域内的p-GaN层和势垒层在高温热脱附过程中不被破坏。在优选实施例中,在高温热脱附过程中不引入Ga源(例如Ga原子流)和N源(例如N原子流),以提高栅极区域以外的p-GaN层的脱附效率。Since the thermal desorption temperature of the p-GaN layer is 850°C-1000°C, the portion of the p-GaN layer that is not covered by the second protective layer (that is, the portion other than the gate region of the p-GaN layer), is at a temperature of It can be completely removed by being placed in a high temperature environment of 500℃-1000℃ for a period of time; and because the first protective layer uses a material with a higher thermal desorption temperature than the p-GaN layer, the second protective layer High-temperature resistant dielectric materials are used, so high-temperature thermal desorption at a temperature of 500°C-1000°C can prevent the second protective layer and the first protective layer from being removed, thereby protecting the p-GaN layer and potential in the gate area. The barrier layer is not destroyed during high temperature thermal desorption. In a preferred embodiment, Ga source (eg, Ga atomic flow) and N source (eg, N atomic flow) are not introduced during the high-temperature thermal desorption process to improve the desorption efficiency of the p-GaN layer outside the gate region.
在一些实施方式中,第一保护层为AlN层或AlGaN层,AlGaN层的Al组分在0.5-1之间,即在第一保护层为AlGaN层时,第一保护层为高Al组分的AlGaN层。In some embodiments, the first protective layer is an AlN layer or an AlGaN layer, and the Al composition of the AlGaN layer is between 0.5 and 1. That is, when the first protective layer is an AlGaN layer, the first protective layer has a high Al composition. AlGaN layer.
由于AlN和高Al组分的AlGaN的热脱附温度均高于GaN的热脱附温度,在p型氮化物与势垒层之间设置AlN或高Al组分的AlGaN作为第一保护层,在通过高温热脱附去除栅极区域以外的p型GaN层时,可以将刻蚀的终点控制在第一保护层,不仅可以获得一致性较好的刻蚀效果,而且,可以避免第一保护层下方的势垒层在去除栅极区域以外的p型GaN层时受损。Since the thermal desorption temperatures of AlN and AlGaN with high Al composition are both higher than that of GaN, AlN or AlGaN with high Al composition is set as the first protective layer between the p-type nitride and the barrier layer. When removing the p-type GaN layer outside the gate area through high-temperature thermal desorption, the end point of the etching can be controlled at the first protective layer. Not only can a more consistent etching effect be obtained, but also the first protection layer can be avoided. The barrier layer underneath the layer is damaged when removing the p-type GaN layer outside the gate area.
在一些实施方式中,第二保护层为Si3N4层、SiO2层、AlN层或HfO2层等耐高温介质层,其厚度范围为50nm-200nm。由此,可以保证通过干法刻蚀或湿法腐蚀去除第二保护层,同时,能够保证在进行温度为500℃-1000℃的高温热脱附时,第二保护层不会被去除。一般的,可以通过CVD技术制备Si3N4层,通过磁控溅射设备制备SiO2层、AlN层或HfO2层。而且,由于第二保护层的厚度为50nm-200nm,既可以保护p型氮化物层在高温热脱附过程中不会受损,而且,高温热脱附完成后能够较快地去除第二保护层。In some embodiments, the second protective layer is a high temperature resistant dielectric layer such as Si 3 N 4 layer, SiO 2 layer, AlN layer or HfO 2 layer, and its thickness ranges from 50 nm to 200 nm. This ensures that the second protective layer can be removed by dry etching or wet etching, and at the same time, it can be ensured that the second protective layer will not be removed during high-temperature thermal desorption at a temperature of 500°C to 1000°C. Generally, the Si 3 N 4 layer can be prepared by CVD technology, and the SiO 2 layer, AlN layer or HfO 2 layer can be prepared by magnetron sputtering equipment. Moreover, since the thickness of the second protective layer is 50nm-200nm, it can not only protect the p-type nitride layer from being damaged during the high-temperature thermal desorption process, but also the second protection layer can be removed quickly after the high-temperature thermal desorption is completed. layer.
在一些实施方式中,在对栅极区域以外的p型氮化物层进行高温热脱附之前,还包括对栅极区域以外的p型氮化物层进行刻蚀处理,直至栅极区域以外的p型氮化物层的残余厚度小于30nm。In some embodiments, before performing high-temperature thermal desorption of the p-type nitride layer outside the gate region, it also includes etching the p-type nitride layer outside the gate region until the p-type nitride layer outside the gate region is The residual thickness of the nitride layer is less than 30 nm.
由于p型氮化物栅的厚度一般在100nm左右,如果栅极区域以外的厚度为100nm的p型氮化物层都需要通过高温热脱附去除,所耗费的去除时间较长,本发明实施例在进行高温热脱附前,将栅极区域以外的p型氮化物层的厚度控制在30nm以下,可以极大地减少高温热脱附的时间,同时还能够避免因长期处于高温环境而对其他层(如第一保护层和势垒层等)造成损伤。Since the thickness of the p-type nitride gate is generally about 100nm, if the p-type nitride layer with a thickness of 100nm outside the gate area needs to be removed through high-temperature thermal desorption, the removal time will be long. In the embodiment of the present invention, Before performing high-temperature thermal desorption, controlling the thickness of the p-type nitride layer outside the gate area to less than 30nm can greatly reduce the time of high-temperature thermal desorption. It can also avoid damage to other layers due to long-term exposure to high-temperature environments. Such as the first protective layer and barrier layer, etc.) causing damage.
在其中一些实施方式中,在栅极区域的p型氮化物层上制备第二保护层实现为包括:在将栅极区域以外的p型氮化物层刻蚀至残余厚度小于30nm之后,在p型氮化物层上制备第二保护层;在栅极区域的第二保护层上覆盖掩膜层;以及通过刻蚀处理去除栅极区域以外的第二保护层。In some embodiments, preparing the second protective layer on the p-type nitride layer in the gate region includes: after etching the p-type nitride layer outside the gate region to a residual thickness of less than 30 nm, A second protective layer is prepared on the nitride layer; a mask layer is covered on the second protective layer in the gate region; and the second protective layer outside the gate region is removed by etching.
在本实施方式中,示例性的,在p型氮化物层栅上生长第二保护层是通过LPCVD技术实现。通过刻蚀处理去除栅极区域以外的第二保护层具体实现为采用湿法腐蚀或干法刻蚀去除栅极区域以外的第二保护层。In this embodiment, the growth of the second protective layer on the p-type nitride layer gate is achieved by LPCVD technology. The removal of the second protective layer outside the gate region by etching is specifically implemented by using wet etching or dry etching to remove the second protective layer outside the gate region.
在另一些实施方式中,在栅极区域的p型氮化物层上制备第二保护层实现为包括:在制备p型氮化物层之后,直接在p型氮化物层上制备第二保护层;以及在对p型氮化物层进行刻蚀处理之前,定义栅极区域掩膜范围,通过刻蚀处理去除定义的栅极区域以外的第二保护层。In other embodiments, preparing the second protective layer on the p-type nitride layer in the gate region includes: after preparing the p-type nitride layer, directly preparing the second protective layer on the p-type nitride layer; Before etching the p-type nitride layer, a gate region mask range is defined, and the second protective layer outside the defined gate region is removed by etching.
在本实施方式中,示例性的,在p型氮化物层上沉积第二保护层可以通过MOCVD技术、分子束外延(Molecular beam epitaxy,简称MBE)技术、磁控溅射技术或低压力化学气相沉积(Low Pressure Chemical Vapor Deposition,简称LPCVD)技术实现。优选的,采用MOCVD技术或MBE技术制备第二保护层,由此,可以在完成p型氮化物层的外延生长时,直接外延生长第二保护层,而无需更换设备。而且,在p型氮化物层上制备第二保护层,再在栅极区域外刻蚀得到残余厚度小于30nm的p型氮化物层时,第二保护层可以充当掩膜的作用,保护栅极区域内的p型氮化物层不被去除,从而可以减少设置掩膜的次数,减少制备工序,提高制备效率。在本实施方式中,示例性的,通过光刻曝光的方式定义栅极区域掩膜范围;使用干法刻蚀去除栅极区域外的第二保护层。由于在本实施方式中,栅极区域以外的p型氮化物层未经刻蚀时,其厚度较厚,且由于栅极区域以外的p型氮化物层最终是需要完全去除的,因此,即使在通过刻蚀速率较高的干法刻蚀去除栅极区域以外的第二保护层时,对栅极区域以外的p型氮化物层造成损伤,也不会影响最终制得的增强型HEMT的p型氮化物栅的性能,由此,本实施方式通过采用干法刻蚀去除栅极区域外的第二保护层,可以在保证制得的增强型HEMT的p型氮化物栅的性能的前提下,提高制备效率。In this embodiment, for example, the second protective layer can be deposited on the p-type nitride layer through MOCVD technology, molecular beam epitaxy (MBE) technology, magnetron sputtering technology or low pressure chemical vapor phase. Deposition (Low Pressure Chemical Vapor Deposition, referred to as LPCVD) technology is realized. Preferably, MOCVD technology or MBE technology is used to prepare the second protective layer. Therefore, when the epitaxial growth of the p-type nitride layer is completed, the second protective layer can be directly epitaxially grown without changing equipment. Moreover, when a second protective layer is prepared on the p-type nitride layer and then etched outside the gate area to obtain a p-type nitride layer with a residual thickness of less than 30 nm, the second protective layer can act as a mask to protect the gate. The p-type nitride layer in the area is not removed, thereby reducing the number of mask settings, reducing the preparation process, and improving the preparation efficiency. In this embodiment, for example, the mask range of the gate region is defined by photolithography exposure; dry etching is used to remove the second protective layer outside the gate region. In this embodiment, the thickness of the p-type nitride layer outside the gate region is relatively thick when it is not etched, and the p-type nitride layer outside the gate region needs to be completely removed eventually. Therefore, even if When the second protective layer outside the gate region is removed by dry etching with a high etching rate, damage to the p-type nitride layer outside the gate region will not affect the performance of the final enhancement mode HEMT. Therefore, in this embodiment, by using dry etching to remove the second protective layer outside the gate region, the performance of the p-type nitride gate of the enhanced HEMT can be guaranteed. to improve preparation efficiency.
在一些实施方式中,对栅极区域以外的p型氮化物层进行刻蚀处理,直至栅极区域以外的p型氮化物层的残余厚度小于30nm,是采用低功率干法刻蚀。由于低功率干法刻蚀的刻蚀速率较低,便于控制刻蚀后残余的p型氮化物的厚度。In some embodiments, low-power dry etching is used to etch the p-type nitride layer outside the gate region until the residual thickness of the p-type nitride layer outside the gate region is less than 30 nm. Since the etching rate of low-power dry etching is low, it is easy to control the thickness of the remaining p-type nitride after etching.
在一些实施方式中,对栅极区域以外的p型氮化物层进行刻蚀处理,直至栅极区域以外的p型氮化物层的残余厚度小于30nm,是采用等离子氧化结合湿法腐蚀,且湿法腐蚀采用的酸为稀盐酸。其中,在本发明实施例中,第二保护层优选采用耐稀盐酸腐蚀的材料。In some embodiments, the p-type nitride layer outside the gate region is etched until the residual thickness of the p-type nitride layer outside the gate region is less than 30 nm. Plasma oxidation combined with wet etching is used, and wet etching is used. The acid used for etching is dilute hydrochloric acid. Among them, in the embodiment of the present invention, the second protective layer is preferably made of a material resistant to corrosion by dilute hydrochloric acid.
示例性的,等离子氧化结合湿法腐蚀可以实现为:首先,使用含氧气氛生成等离子体,对p型氮化物层的表面进行氧化处理,然后,使用稀盐酸去除氧化层,重复等离子氧化和湿法腐蚀过程,直至待刻蚀的p型氮化物层的厚度被刻蚀至30nm以下。由于等离子氧化结合湿法腐蚀的方法刻蚀p型氮化物层时,需要重复多次才能完成,从而,可以通过控制等离子氧化和湿法腐蚀的次数来较好地控制完成刻蚀后残余的p型氮化物的厚度。For example, plasma oxidation combined with wet etching can be implemented as follows: first, use an oxygen-containing atmosphere to generate plasma, oxidize the surface of the p-type nitride layer, then use dilute hydrochloric acid to remove the oxide layer, and repeat plasma oxidation and wet etching. The etching process is carried out until the thickness of the p-type nitride layer to be etched is etched below 30 nm. Since plasma oxidation combined with wet etching is used to etch the p-type nitride layer, it needs to be repeated many times to complete. Therefore, the residual p after etching can be better controlled by controlling the number of plasma oxidation and wet etching. type nitride thickness.
根据本发明的一个方面,提供了一种增强型氮化物HEMT的制备方法,其包括以下步骤:According to one aspect of the present invention, a preparation method of enhanced nitride HEMT is provided, which includes the following steps:
步骤S101:采用前述的增强型HEMT的p型氮化物栅的制备方法制得增强型HEMT的p型氮化物栅;Step S101: Prepare a p-type nitride gate of the enhancement-mode HEMT using the aforementioned preparation method of a p-type nitride gate of the enhancement-mode HEMT;
步骤S102:去除第二保护层,以及去除源电极区域和漏电极区域的第一保护层;Step S102: Remove the second protective layer and remove the first protective layer in the source electrode region and the drain electrode region;
步骤S103:在源电极区域和漏电极区域的势垒层上分别制备源电极和漏电极,在p型氮化物栅上制备栅电极。Step S103: Prepare a source electrode and a drain electrode on the barrier layer of the source electrode region and the drain electrode region respectively, and prepare a gate electrode on the p-type nitride gate.
由于高温热脱附对p型氮化物层的选择性刻蚀,去除栅极区域以外的p型氮化物层之后,对势垒层的表面造成的损伤较小,使得势垒层表面界态密度较小,从而,在势垒层上生长的源电极和漏电极更易形成欧姆接触。并且,由于第二保护层在高温热脱附时可以避免p型氮化物栅脱附,避免p型氮化物栅的表面因高温受到损伤,在p型氮化物栅上生长的栅电极更易形成欧姆接触或肖特基接触。由此,通过本发明实施例制备得到的增强型HEMT的稳定性更好。Due to the selective etching of the p-type nitride layer by high-temperature thermal desorption, after the p-type nitride layer outside the gate area is removed, the damage to the surface of the barrier layer is small, resulting in a lower boundary state density on the surface of the barrier layer. Therefore, the source electrode and the drain electrode grown on the barrier layer are more likely to form ohmic contact. Moreover, since the second protective layer can prevent the p-type nitride gate from being desorbed during thermal desorption at high temperatures and prevent the surface of the p-type nitride gate from being damaged due to high temperature, the gate electrode grown on the p-type nitride gate is more likely to form ohmic contact or Schottky contact. Therefore, the enhanced HEMT prepared by the embodiment of the present invention has better stability.
在一些实施例中,源电极和漏电极均可以采用Ti、Al、Ni、Au、Cr、P、Pt和TiN中的至少两种组合而成,选定的材质生长在势垒层上之后经过退火形成欧姆接触。In some embodiments, both the source electrode and the drain electrode can be made of at least two combinations of Ti, Al, Ni, Au, Cr, P, Pt and TiN. The selected material is grown on the barrier layer and then Annealing forms ohmic contact.
在一些实施例中,形成欧姆接触的退火工艺为:在0℃-1000℃的空气或氮气环境下放置10s-1h。In some embodiments, the annealing process to form the ohmic contact is: placing in an air or nitrogen environment of 0°C-1000°C for 10s-1h.
在一些实施例中,栅电极可以采用Ti、Al、Ni、Au、Pd、Pt、TiN和W中的至少两种组合而成,选定的材质生长在p型氮化物栅上之后形成肖特基接触或欧姆接触。In some embodiments, the gate electrode can be made of at least two combinations of Ti, Al, Ni, Au, Pd, Pt, TiN, and W. The selected material is grown on the p-type nitride gate to form Schott. base contact or ohmic contact.
在一些实施例中,p型氮化物栅上形成的栅电极的肖特基接触可以通过退火进行改善。示例性的,改善肖特基接触的退火工艺为:在0℃-500℃的空气或氮气环境下放置10s-1h。In some embodiments, the Schottky contact of the gate electrode formed on the p-type nitride gate can be improved by annealing. For example, the annealing process to improve Schottky contact is: placing in an air or nitrogen environment of 0°C-500°C for 10s-1h.
在一些实施方式中,在步骤S102中是通过BOE去除第二保护层。通过BOE对第二保护层选择性刻蚀,可以避免在去除第二保护层时,对p型氮化物栅的表面造成损伤。In some embodiments, in step S102, the second protective layer is removed by BOE. Selective etching of the second protective layer through BOE can avoid damage to the surface of the p-type nitride gate when removing the second protective layer.
在一些实施方式中,在步骤S102中是采用掩膜刻蚀处理去除源电极区域和漏电极区域的第一保护层。在势垒层上生长源电极和漏电极之前通过掩膜刻蚀工艺去除源电极和漏电极区域的第一保护层,使得在势垒层上生长的源电极和漏电极更易形成欧姆接触。由于本发明实施例在制备p型氮化物栅时,将第一保护层的厚度范围控制在1nm-5nm,因而第一保护层在起到保护势垒层不受损的同时,也不会对制备出的增强型HEMT的性能产生影响,因而在制备增强型HEMT的过程中,只需要去除源电极和漏电极区域的第一保护层即可,不需要将整个第一保护层去除,不但能够进一步有效保护势垒层的表面界面态密度,而且也不会增加增强型HEMT的制备工艺的复杂性,能够以较简约的工艺流程制备出更高稳定性的增强型HEMT。In some embodiments, in step S102, a mask etching process is used to remove the first protective layer in the source electrode region and the drain electrode region. Before growing the source electrode and the drain electrode on the barrier layer, the first protective layer in the source electrode and drain electrode regions is removed through a mask etching process, so that the source electrode and the drain electrode grown on the barrier layer can more easily form ohmic contact. Since the thickness of the first protective layer is controlled in the range of 1 nm to 5 nm when preparing the p-type nitride gate in the embodiment of the present invention, the first protective layer not only protects the barrier layer from damage, but also does not cause damage to the barrier layer. The performance of the prepared enhanced HEMT is affected. Therefore, in the process of preparing the enhanced HEMT, only the first protective layer in the source electrode and drain electrode regions needs to be removed. There is no need to remove the entire first protective layer. Not only can It further effectively protects the surface interface state density of the barrier layer, and does not increase the complexity of the preparation process of the enhanced HEMT. It can prepare a higher-stability enhanced HEMT with a simpler process.
在一些实施方式中,在步骤S103之后还包括步骤S104:在源电极、漏电极、栅电极、p型氮化物栅和第二保护层的表面沉积绝缘介质层,并通过光刻和腐蚀工艺将绝缘介质层的与源电极、漏电极和栅电极对应的位置去除,直至露出源电极、漏电极和栅电极。In some embodiments, after step S103, step S104 is also included: depositing an insulating dielectric layer on the surface of the source electrode, drain electrode, gate electrode, p-type nitride gate and second protective layer, and using photolithography and etching processes to The positions of the insulating dielectric layer corresponding to the source electrode, drain electrode and gate electrode are removed until the source electrode, drain electrode and gate electrode are exposed.
沉积在增强型氮化物HEMT的表面的绝缘介质层能够降低外部环境,例如辐照对2DEG和P型氮化物栅的影响,保证增强型氮化物HEMT工作的稳定性和可靠性。The insulating dielectric layer deposited on the surface of the enhancement nitride HEMT can reduce the impact of external environments, such as radiation, on 2DEG and P-type nitride gates, ensuring the stability and reliability of the enhancement nitride HEMT operation.
在一些实施例中,绝缘介质层为SiO2层、SiNx层或HfO2层或聚酰亚胺层。In some embodiments, the insulating dielectric layer is a SiO 2 layer, a SiN x layer, a HfO 2 layer, or a polyimide layer.
附图说明Description of the drawings
图1为本发明第一种实施方式的增强型HEMT的p型氮化物栅制备方法的流程示意图;Figure 1 is a schematic flow chart of a p-type nitride gate preparation method for an enhancement mode HEMT according to the first embodiment of the present invention;
图2为本发明第二种实施方式的增强型HEMT的p型氮化物栅制备方法的流程示意图;Figure 2 is a schematic flow chart of a p-type nitride gate preparation method for an enhancement mode HEMT according to the second embodiment of the present invention;
图3为本发明第三种实施方式的增强型HEMT的p型氮化物栅制备方法的流程示意图;Figure 3 is a schematic flow chart of a p-type nitride gate preparation method for an enhancement mode HEMT according to the third embodiment of the present invention;
图4是一种实施方式的以中间产物的结构示意图形式展示的与图2中各工艺步骤对应的增强型HEMT的p型氮化物栅的制备方式示意图;Figure 4 is a schematic diagram of the preparation method of the p-type nitride gate of the enhancement mode HEMT corresponding to each process step in Figure 2, shown in the form of a schematic structural diagram of an intermediate product according to one embodiment;
图5是另一种实施方式的以中间产物的结构示意图形式展示的与图2中各工艺步骤对应的增强型HEMT的p型氮化物栅的制备方式示意图;Figure 5 is a schematic diagram of the preparation method of the p-type nitride gate of the enhancement mode HEMT corresponding to each process step in Figure 2, shown in the form of a schematic structural diagram of an intermediate product according to another embodiment;
图6为步骤S0的一实施方式的具体实现方法流程示意图;Figure 6 is a schematic flowchart of a specific implementation method of an embodiment of step S0;
图7是一种实施方式的以中间产物的结构示意图形式展示的与图3中各工艺步骤对应的增强型HEMT的p型氮化物栅的制备方式示意图;Figure 7 is a schematic diagram of the preparation method of the p-type nitride gate of the enhancement mode HEMT corresponding to each process step in Figure 3, shown in the form of a schematic structural diagram of an intermediate product according to one embodiment;
图8是另一种实施方式的以中间产物的结构示意图形式展示的与图3中各工艺步骤对应的增强型HEMT的p型氮化物栅的制备方式示意图;Figure 8 is a schematic diagram of the preparation method of the p-type nitride gate of the enhancement mode HEMT corresponding to each process step in Figure 3, shown in the form of a schematic structural diagram of an intermediate product according to another embodiment;
图9为本发明一实施方式的增强型氮化物HEMT的制备方法的流程示意图;Figure 9 is a schematic flow chart of a preparation method of an enhancement-mode nitride HEMT according to an embodiment of the present invention;
图10为以图7或图8制得的增强型HEMT的p型氮化物栅为坯料,以中间产物的结构示意图形式展示的与图9中各工艺步骤对应的增强型HEMT的p型氮化物栅的制备方式示意图;Figure 10 shows the p-type nitride gate of the enhancement-mode HEMT produced in Figure 7 or 8 as a blank, and shows the p-type nitride of the enhancement-mode HEMT corresponding to each process step in Figure 9 in the form of a schematic structural diagram of the intermediate product. Schematic diagram of how the gate is prepared;
图11为本发明另一实施方式的增强型氮化物HEMT的制备方法的流程示意图;Figure 11 is a schematic flow chart of a preparation method of an enhancement nitride HEMT according to another embodiment of the present invention;
图12为以图7或图8制得的增强型HEMT的p型氮化物栅为坯料,以中间产物的结构示意图形式展示的与图11中各工艺步骤对应的增强型HEMT的p型氮化物栅的制备方式示意图;Figure 12 shows the p-type nitride gate of the enhancement-mode HEMT produced in Figure 7 or Figure 8 as a blank. The p-type nitride of the enhancement-mode HEMT corresponding to each process step in Figure 11 is shown in the form of a schematic structural diagram of the intermediate product. Schematic diagram of how the gate is prepared;
31、衬底;32、缓冲层;33、沟道层;331、插入层;34、势垒层;35、第一保护层;36、p型氮化物层;37、第二保护层;38、掩膜;391、栅电极;392、源电极;393、漏电极;394、绝缘介质层。31. Substrate; 32. Buffer layer; 33. Channel layer; 331. Insertion layer; 34. Barrier layer; 35. First protective layer; 36. P-type nitride layer; 37. Second protective layer; 38 , mask; 391, gate electrode; 392, source electrode; 393, drain electrode; 394, insulating dielectric layer.
具体实施方式Detailed ways
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。It should be noted that, as long as there is no conflict, the embodiments and features in the embodiments of this application can be combined with each other.
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”,不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。在本文中所用的术语一般为本领域技术人员常用的术语,如果与常用术语不一致,以本文中的术语为准。It should also be noted that in this article, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that these entities or operations There is no such actual relationship or sequence between them. Furthermore, the terms "comprises" and "comprising" include not only those elements but also other elements not expressly listed or elements inherent to such process, method, article or apparatus. Without further limitation, an element defined by the statement "comprising..." does not exclude the presence of additional identical elements in a process, method, article, or device that includes the stated element. The terms used in this article are generally terms commonly used by those skilled in the art. If there is any inconsistency with the commonly used terms, the terms in this article shall prevail.
在本文中,术语“外延结构”包括单晶衬底,以及采用其他材料在衬底上依次生长的与衬底的晶向相同的单晶层。In this article, the term "epitaxial structure" includes a single crystal substrate, as well as single crystal layers with the same crystallographic orientation as the substrate that are sequentially grown on the substrate using other materials.
在本文中,术语“热脱附”是指通过直接或间接的热量交换方式,使外延结构的热脱附温度低于热脱附处理温度的表面层受热与外延结构的次表面层分离、并将表面层去除的过程。其中,外延结构的表面层和次表面层用于表示外延结构在其生长方向上的维度,次表面层为采用与表面层不同的材料生长形成的与表面层相邻的层。In this article, the term "thermal desorption" refers to the separation of the surface layer of the epitaxial structure whose thermal desorption temperature is lower than the thermal desorption treatment temperature from the sub-surface layer of the epitaxial structure through direct or indirect heat exchange, and The process of removing the surface layer. Among them, the surface layer and subsurface layer of the epitaxial structure are used to represent the dimensions of the epitaxial structure in its growth direction, and the subsurface layer is a layer adjacent to the surface layer formed by growing using a material different from the surface layer.
在本文中,术语“热脱附温度”是指热脱附处理过程中,表面层从次表面层上分离的温度,该温度即为表面层材料的热脱附温度。In this article, the term "thermal desorption temperature" refers to the temperature at which the surface layer is separated from the subsurface layer during the thermal desorption treatment. This temperature is the thermal desorption temperature of the surface layer material.
在本文中,术语“高温热脱附”是指热脱附温度在500℃以上的热脱附处理过程。In this article, the term "high temperature thermal desorption" refers to a thermal desorption treatment process with a thermal desorption temperature above 500°C.
在本文中,术语“介质材料”是指与相接触的物质所采用的材料不同的材料。As used herein, the term "dielectric material" refers to a material that is different from that of the substances in contact.
在本文中,术语“耐高温介质材料”是指介质材料的热分解温度在1000℃以上。In this article, the term "high temperature resistant dielectric material" refers to a dielectric material whose thermal decomposition temperature is above 1000°C.
在本文中,术语“热分解温度”是指在温度升高过程中,化合物刚开始发生分解时的温度。In this article, the term "thermal decomposition temperature" refers to the temperature at which decomposition of a compound begins to occur during a temperature increase.
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, rather than all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.
根据本发明的一个方面,提供了一种增强型HEMT的p型氮化物栅的制备方法,本发明实施例以“外延结构”包括衬底,以及在衬底上外延生长的缓冲层、沟道层、势垒层和p型氮化物层为例,对增强型HEMT的p型氮化物栅的制备方法进行详细说明。According to one aspect of the present invention, a method for preparing a p-type nitride gate of an enhancement mode HEMT is provided. The embodiment of the present invention includes an "epitaxial structure" including a substrate, a buffer layer and a channel epitaxially grown on the substrate. Taking the layer, barrier layer and p-type nitride layer as examples, the preparation method of the p-type nitride gate of the enhancement mode HEMT is described in detail.
其中,在本发明实施例中,在制备p型氮化物栅时,是通过高温热脱附来去除栅极区域以外的p型氮化物层的,且该p型氮化物栅的制备方法还包括在外延结构的制备过程中,在势垒层和p型氮化物层之间制备厚度范围设置为1nm-5nm且热脱附温度高于p型氮化物层的热脱附温度的第一保护层,以便在给势垒层提供保护的同时,提高第一保护层的制备效率,并且可以避免厚度过大的第一保护层因应力突变而开裂或导致其下方的异质结开裂;在对栅极区域以外的p型氮化物层进行高温热脱附之前,还在栅极区域的p型氮化物层上制备第二保护层,其中,第二保护层采用耐高温介质材料。由此可以通过高温热脱附对栅极区域以外的p型氮化物层进行选择性刻蚀;且当栅极区域以外的p型氮化物层去除后,可以较快地去除栅极区域以外的第一保护层,以便在势垒层上制备源电极和漏电极。Among them, in the embodiment of the present invention, when preparing the p-type nitride gate, the p-type nitride layer outside the gate region is removed through high-temperature thermal desorption, and the preparation method of the p-type nitride gate also includes During the preparation process of the epitaxial structure, a first protective layer with a thickness in the range of 1 nm to 5 nm and a thermal desorption temperature higher than that of the p-type nitride layer is prepared between the barrier layer and the p-type nitride layer. , in order to improve the preparation efficiency of the first protective layer while providing protection for the barrier layer, and to prevent the excessively thick first protective layer from cracking due to sudden stress changes or causing the heterojunction below it to crack; Before the p-type nitride layer outside the electrode region is subjected to high-temperature thermal desorption, a second protective layer is also prepared on the p-type nitride layer in the gate region, where the second protective layer is made of a high-temperature resistant dielectric material. As a result, the p-type nitride layer outside the gate region can be selectively etched through high-temperature thermal desorption; and after the p-type nitride layer outside the gate region is removed, the p-type nitride layer outside the gate region can be removed quickly. A first protective layer to prepare source and drain electrodes on the barrier layer.
图1示意性地显示了强型HEMT的p型氮化物栅制备方法的第一种实施方式的流程示意图,参考图1所示,该增强型HEMT的p型氮化物栅的制备方法具体包括以下步骤:Figure 1 schematically shows a flow chart of a first embodiment of a method for preparing a p-type nitride gate for an enhanced HEMT. Referring to Figure 1, the method for preparing a p-type nitride gate for an enhanced HEMT specifically includes the following. step:
步骤S1:在势垒层上先沉积第一保护层,再在第一保护层上沉积p型氮化物层;Step S1: first deposit a first protective layer on the barrier layer, and then deposit a p-type nitride layer on the first protective layer;
步骤S2:在栅极区域的p型氮化物层上设置第二保护层;Step S2: Set a second protective layer on the p-type nitride layer in the gate region;
步骤S3:通过高温热脱附对栅极区域以外的p型氮化物层进行选择性刻蚀,在栅极区域内的p型氮化物层形成p型氮化物栅。Step S3: Selectively etch the p-type nitride layer outside the gate region through high-temperature thermal desorption to form a p-type nitride gate on the p-type nitride layer in the gate region.
其中,在步骤S1中的势垒层可以是通过在衬底上依次外延生长缓冲层、沟道层和势垒层形成的。作为p型氮化物层的其中一种实施例,p型氮化物层为p-GaN层。Wherein, the barrier layer in step S1 may be formed by sequentially epitaxially growing a buffer layer, a channel layer and a barrier layer on the substrate. As one embodiment of the p-type nitride layer, the p-type nitride layer is a p-GaN layer.
在步骤S3中,高温热脱附的热脱附温度范围优选为500℃-1000℃,以便在高温热脱附去除栅极区域以外的p-GaN层时不会去除第二保护层和第一保护层。在优选实施例中,在高温热脱附过程中不引入Ga源(例如Ga原子流)和N源(例如N原子流),以提高栅极区域以外的p-GaN层的脱附效率。示例性的,高温热脱附在MOCVD设备、管式退火炉或高温退火炉等高温处理设备中进行。In step S3, the thermal desorption temperature range of high-temperature thermal desorption is preferably 500°C-1000°C, so that the second protective layer and the first protective layer will not be removed when the p-GaN layer outside the gate region is removed by high-temperature thermal desorption. The protective layer. In a preferred embodiment, Ga source (eg, Ga atomic flow) and N source (eg, N atomic flow) are not introduced during the high-temperature thermal desorption process to improve the desorption efficiency of the p-GaN layer outside the gate region. For example, high-temperature thermal desorption is performed in high-temperature processing equipment such as MOCVD equipment, tubular annealing furnaces, or high-temperature annealing furnaces.
示例性的,第一保护层采用的材料为AlN或Al组分在0.5-1之间的AlGaN,由此,沉积的第一保护层可以为AlN层或Al组分在0.5-1之间的AlGaN层。在步骤S3中,在通过高温热脱附去除栅极区域以外的p型GaN层时,可以将刻蚀的终点控制在第一保护层。For example, the material used for the first protective layer is AlN or AlGaN with an Al component between 0.5-1. Therefore, the deposited first protective layer can be an AlN layer or an AlGaN layer with an Al component between 0.5-1. AlGaN layer. In step S3, when removing the p-type GaN layer outside the gate region through high-temperature thermal desorption, the end point of etching can be controlled at the first protective layer.
示例性的,第二保护层选用的耐高温介质材料为Si3N4或SiO2或AlN或HfO2,由此,设置的第二保护层相应可以为Si3N4层、SiO2层、AlN层或HfO2层等耐高温介质层,其厚度范围为50nm-200nm。由此,可以保证通过干法刻蚀或湿法腐蚀来去除第二保护层,同时,能够保证在进行温度为500℃-1000℃的高温热脱附时,第二保护层不会被去除。示例性的,在p型氮化物层上沉积第二保护层可以通过MOCVD技术、MBE技术、磁控溅射技术或LPCVD技术实现。一般的,可以通过CVD技术制备Si3N4层,通过磁控溅射设备制备SiO2层、AlN层或HfO2层。而且,由于第二保护层的厚度为50nm-200nm,既可以保护p型氮化物层在高温热脱附过程中不会受损,而且,在高温热脱附完成后也能够较快地去除第二保护层。For example, the high temperature resistant dielectric material selected for the second protective layer is Si 3 N 4 or SiO 2 or AlN or HfO 2. Therefore, the second protective layer provided can be a Si 3 N 4 layer, a SiO 2 layer, The thickness of high temperature resistant dielectric layers such as AlN layer or HfO 2 layer ranges from 50nm to 200nm. This ensures that the second protective layer can be removed by dry etching or wet etching, and at the same time, it can be ensured that the second protective layer will not be removed during high-temperature thermal desorption at a temperature of 500°C to 1000°C. For example, depositing the second protective layer on the p-type nitride layer can be achieved by MOCVD technology, MBE technology, magnetron sputtering technology or LPCVD technology. Generally, the Si 3 N 4 layer can be prepared by CVD technology, and the SiO 2 layer, AlN layer or HfO 2 layer can be prepared by magnetron sputtering equipment. Moreover, since the thickness of the second protective layer is 50nm-200nm, it can not only protect the p-type nitride layer from being damaged during the high-temperature thermal desorption process, but also can quickly remove the second protective layer after the high-temperature thermal desorption is completed. Second protective layer.
优选的,采用MOCVD技术或MBE技术制备第二保护层,由此,可以在完成p型氮化物层的外延生长时,直接外延生长第二保护层,而无需更换设备。在这种情况下,本发明实施例的步骤S2具体可以实现为包括:先在p型氮化物层上制备第二保护层;之后再定义栅极区域掩膜范围;接着,再通过刻蚀处理去除定义的栅极区域以外的第二保护层。而在步骤S3中,在通过高温热脱附对栅极区域以外的p型氮化物层进行选择性刻蚀时,以及在对栅极区域外刻蚀得到残余厚度小于30nm的p型氮化物层时(在优选实施例中还会在步骤S3之前对p型氮化物层进行刻蚀处理,将在下文对此种优选实现例进行更详细阐述),第二保护层可以充当掩膜的作用,保护栅极区域内的p型氮化物层不被去除,从而,可以减少设置掩膜的次数,减少制备工序,提高制备效率。在本实施方式中,示例性的,通过光刻曝光的方式定义栅极区域掩膜范围;使用干法刻蚀去除栅极区域外的第二保护层。由于在本实施方式中,第二保护层是直接制备在p型氮化物层上的,即在完成p型氮化物层的外延生长时直接外延生长第二保护层,栅极区域以外的p型氮化物层未经刻蚀,其厚度较厚,即使在通过刻蚀速率较高的干法刻蚀去除栅极区域以外的第二保护层时,对栅极区域以外的p型氮化物层造成损伤,由于栅极区域以外的p型氮化物层最终需要完全去除,因此,不会影响最终制得的增强型HEMT的p型氮化物栅的性能,由此,本实施方式通过采用干法刻蚀去除栅极区域外的第二保护层,可以在保证制得的增强型HEMT的p型氮化物栅的性能的前提下,提高制备效率。Preferably, MOCVD technology or MBE technology is used to prepare the second protective layer. Therefore, when the epitaxial growth of the p-type nitride layer is completed, the second protective layer can be directly epitaxially grown without changing equipment. In this case, step S2 of the embodiment of the present invention can be specifically implemented by: first preparing a second protective layer on the p-type nitride layer; then defining the gate region mask range; and then etching Remove the second protective layer outside the defined gate area. In step S3, when the p-type nitride layer outside the gate region is selectively etched through high-temperature thermal desorption, and when the p-type nitride layer outside the gate region is etched, a p-type nitride layer with a residual thickness less than 30 nm is obtained. (In the preferred embodiment, the p-type nitride layer will also be etched before step S3, and this preferred implementation will be described in more detail below), the second protective layer can act as a mask, The p-type nitride layer in the gate region is protected from being removed, thereby reducing the number of mask settings, reducing the preparation process, and improving the preparation efficiency. In this embodiment, for example, the mask range of the gate region is defined by photolithography exposure; dry etching is used to remove the second protective layer outside the gate region. Since in this embodiment, the second protective layer is directly prepared on the p-type nitride layer, that is, when the epitaxial growth of the p-type nitride layer is completed, the second protective layer is directly epitaxially grown. The nitride layer is not etched and its thickness is relatively thick. Even when the second protective layer outside the gate area is removed by dry etching with a high etching rate, it will cause damage to the p-type nitride layer outside the gate area. Damage, since the p-type nitride layer outside the gate area needs to be completely removed eventually, it will not affect the performance of the p-type nitride gate of the final enhancement mode HEMT. Therefore, this embodiment uses dry etching. Etching away the second protective layer outside the gate region can improve the preparation efficiency while ensuring the performance of the p-type nitride gate of the enhanced HEMT.
在优选实施方式中,在对栅极区域以外的p型氮化物层进行高温热脱附之前,还包括对栅极区域以外的p型氮化物层进行刻蚀处理,直至栅极区域以外的p型氮化物层的残余厚度小于30nm。以极大地减少高温热脱附的时间,从而避免高温热脱附对势垒层造成损伤。In a preferred embodiment, before performing high-temperature thermal desorption of the p-type nitride layer outside the gate region, it further includes etching the p-type nitride layer outside the gate region until the p-type nitride layer outside the gate region is The residual thickness of the nitride layer is less than 30 nm. This can greatly reduce the time of high-temperature thermal desorption, thereby avoiding damage to the barrier layer caused by high-temperature thermal desorption.
在一些实施方式中,对栅极区域以外的p型氮化物层进行刻蚀处理,直至栅极区域以外的p型氮化物层的残余厚度小于30nm,是采用低功率干法刻蚀。由于低功率干法刻蚀的刻蚀速率较低,便于控制刻蚀后残余的p型氮化物的厚度。In some embodiments, low-power dry etching is used to etch the p-type nitride layer outside the gate region until the residual thickness of the p-type nitride layer outside the gate region is less than 30 nm. Since the etching rate of low-power dry etching is low, it is easy to control the thickness of the remaining p-type nitride after etching.
在其他实现例中,对栅极区域以外的p型氮化物层进行刻蚀处理,直至栅极区域以外的p型氮化物层的残余厚度小于30nm,是采用等离子氧化结合湿法腐蚀,且湿法腐蚀采用的酸为稀盐酸,这种情况下,第二保护层优选采用耐稀盐酸腐蚀的材料,如Si3N4。In other implementation examples, the p-type nitride layer outside the gate area is etched until the residual thickness of the p-type nitride layer outside the gate area is less than 30 nm. Plasma oxidation combined with wet etching is used, and wet etching is used. The acid used for etching is dilute hydrochloric acid. In this case, the second protective layer is preferably made of a material resistant to dilute hydrochloric acid corrosion, such as Si 3 N 4 .
示例性的,等离子氧化结合湿法腐蚀可以实现为:首先,使用含氧气氛生成等离子体,对p型氮化物层的表面进行氧化处理,然后,使用稀盐酸去除氧化层,重复等离子氧化和湿法腐蚀过程,直至待刻蚀的p型氮化物层的厚度被刻蚀至30nm以下。由于等离子氧化结合湿法腐蚀的方法刻蚀p型氮化物层时,需要重复多次才能完成,从而,可以通过控制等离子氧化和湿法腐蚀的次数来控制完成刻蚀后残余的p型氮化物的厚度。For example, plasma oxidation combined with wet etching can be implemented as follows: first, use an oxygen-containing atmosphere to generate plasma, oxidize the surface of the p-type nitride layer, then use dilute hydrochloric acid to remove the oxide layer, and repeat plasma oxidation and wet etching. The etching process is carried out until the thickness of the p-type nitride layer to be etched is etched below 30 nm. Since plasma oxidation combined with wet etching is used to etch the p-type nitride layer, it needs to be repeated many times to complete. Therefore, the remaining p-type nitride after etching can be controlled by controlling the number of plasma oxidation and wet etching. thickness of.
其中,对栅极区域以外的p型氮化物层进行刻蚀处理,直至栅极区域以外的p型氮化物层的残余厚度小于30nm,这一工艺过程,可以在图1所示的步骤S2之前进行,也可以在图1所示的步骤S2之后进行,本发明实施例对此不进行限制。Among them, the p-type nitride layer outside the gate area is etched until the residual thickness of the p-type nitride layer outside the gate area is less than 30 nm. This process can be performed before step S2 shown in Figure 1 It may also be performed after step S2 shown in FIG. 1 , and this is not limited in the embodiment of the present invention.
以在图1所示的步骤S2之后进行为例,图2示意性地显示了本发明另一实施方式的增强型HEMT的p型氮化物栅的制备方法,如图2所示,在本发明实施例中,该方法包括:Taking step S2 shown in Figure 1 as an example, Figure 2 schematically shows a method for preparing a p-type nitride gate of an enhancement mode HEMT according to another embodiment of the present invention. As shown in Figure 2, in the present invention In an embodiment, the method includes:
步骤S1:在势垒层上先沉积第一保护层,再在第一保护层上沉积p型氮化物层;Step S1: first deposit a first protective layer on the barrier layer, and then deposit a p-type nitride layer on the first protective layer;
步骤S2:在栅极区域的p型氮化物层上设置第二保护层;Step S2: Set a second protective layer on the p-type nitride layer in the gate region;
步骤S0:对栅极区域以外的p型氮化物层进行刻蚀处理,直至栅极区域以外的p型氮化物层的残余厚度小于30nm;Step S0: Etch the p-type nitride layer outside the gate area until the residual thickness of the p-type nitride layer outside the gate area is less than 30 nm;
步骤S3:通过高温热脱附对栅极区域以外的p型氮化物层进行选择性刻蚀,在栅极区域内的p型氮化物层形成p型氮化物栅。Step S3: Selectively etch the p-type nitride layer outside the gate region through high-temperature thermal desorption to form a p-type nitride gate on the p-type nitride layer in the gate region.
在本发明实施例中步骤S1和步骤S3的具体实现可以参照图1所示实施例的相关描述进行实现,而在步骤S2中,在栅极区域的p型氮化物层上制备第二保护层可以实现为包括:在制备p型氮化物层之后,直接在p型氮化物层上制备第二保护层;以及在对p型氮化物层进行刻蚀处理之前,定义栅极区域掩膜范围,通过刻蚀处理去除定义的栅极区域以外的第二保护层。In the embodiment of the present invention, the specific implementation of steps S1 and step S3 can be implemented with reference to the relevant description of the embodiment shown in Figure 1, and in step S2, a second protective layer is prepared on the p-type nitride layer in the gate region It can be implemented by: after preparing the p-type nitride layer, directly preparing a second protective layer on the p-type nitride layer; and before etching the p-type nitride layer, defining the gate region mask range, The second protective layer outside the defined gate area is removed by an etching process.
在本实施方式中,由于第二保护层可以在外延生长p型氮化物层之后继续外延生长得到,优选的,可以采用MOCVD或MBE这些常用的外延生长技术来制备第二保护层,从而可以避免在完成p型氮化物层的外延生长之后更换制备设备,提高制备效率。In this embodiment, since the second protective layer can be obtained by epitaxial growth after epitaxial growth of the p-type nitride layer, it is preferred to use common epitaxial growth technologies such as MOCVD or MBE to prepare the second protective layer, thereby avoiding After completing the epitaxial growth of the p-type nitride layer, the preparation equipment is replaced to improve preparation efficiency.
示例性的,在步骤S2中具体可以通过光刻曝光的方式定义栅极区域掩膜范围,并使用干法刻蚀去除栅极区域外的第二保护层。For example, in step S2, the mask range of the gate region may be defined through photolithography exposure, and dry etching may be used to remove the second protective layer outside the gate region.
示例性的,在步骤S0中,对栅极区域以外的p型氮化物层进行刻蚀处理具体可以实现为在低功率干法刻蚀或等离子氧化结合湿法腐蚀条件下进行。在本实施例中,由于第二保护层还需要在高温热脱附过程中充当栅极区域内的p型氮化物层的掩膜,为了避免第二保护层在步骤S0的刻蚀处理过程中受损,导致其在高温热脱附过程中对栅极区域内的p型氮化物层的保护能力减弱,优选的,在步骤S0中是采用刻蚀速率较低且不会对第二保护层造成损伤的低功率干法刻蚀去除栅极区域以外的p型氮化物层。For example, in step S0, etching the p-type nitride layer outside the gate region may be performed under low-power dry etching or plasma oxidation combined with wet etching conditions. In this embodiment, since the second protective layer also needs to act as a mask for the p-type nitride layer in the gate region during the high-temperature thermal desorption process, in order to prevent the second protective layer from being used during the etching process in step S0 Damage, resulting in weakening of its ability to protect the p-type nitride layer in the gate region during the high-temperature thermal desorption process. Preferably, in step S0, a lower etching rate is used and does not damage the second protective layer. Damaging low-power dry etching removes the p-type nitride layer outside the gate area.
以在图1所示的步骤S2之前对栅极区域以外的p型氮化物层进行刻蚀处理,直至栅极区域以外的p型氮化物层的残余厚度小于30nm为例,图3示意性地显示了本发明另一实施方式的增强型HEMT的p型氮化物栅的制备方法,如图3所示,在本发明实施例中,该方法包括:Taking the example of etching the p-type nitride layer outside the gate region until the residual thickness of the p-type nitride layer outside the gate region is less than 30 nm before step S2 shown in Figure 1, Figure 3 schematically illustrates A method for preparing a p-type nitride gate of an enhancement mode HEMT according to another embodiment of the present invention is shown, as shown in Figure 3. In this embodiment of the present invention, the method includes:
步骤S1:在势垒层上先沉积第一保护层,再在第一保护层上沉积p型氮化物层;Step S1: first deposit a first protective layer on the barrier layer, and then deposit a p-type nitride layer on the first protective layer;
步骤S0:对栅极区域以外的p型氮化物层进行刻蚀处理,直至栅极区域以外的p型氮化物层的残余厚度小于30nm;Step S0: Etch the p-type nitride layer outside the gate area until the residual thickness of the p-type nitride layer outside the gate area is less than 30 nm;
步骤S2:在栅极区域的p型氮化物层上设置第二保护层;Step S2: Set a second protective layer on the p-type nitride layer in the gate region;
步骤S3:通过高温热脱附对栅极区域以外的p型氮化物层进行选择性刻蚀,在栅极区域内的p型氮化物层形成p型氮化物栅。Step S3: Selectively etch the p-type nitride layer outside the gate region through high-temperature thermal desorption to form a p-type nitride gate on the p-type nitride layer in the gate region.
在本发明实施例下,步骤S2实现为包括:在将栅极区域以外的p型氮化物层刻蚀至残余厚度小于30nm之后,在p型氮化物层上制备第二保护层;在栅极区域的第二保护层上覆盖掩膜层;以及通过刻蚀处理去除栅极区域以外的第二保护层。示例性的,在p型氮化物层栅上生长第二保护层是通过LPCVD技术实现。其中,是采用湿法腐蚀或干法刻蚀去除栅极区域以外的第二保护层的。Under the embodiment of the present invention, step S2 is implemented by: after etching the p-type nitride layer outside the gate area to a residual thickness of less than 30 nm, preparing a second protective layer on the p-type nitride layer; Covering the second protective layer in the region with a mask layer; and removing the second protective layer outside the gate region through etching. For example, growing the second protective layer on the p-type nitride layer gate is achieved by LPCVD technology. Among them, wet etching or dry etching is used to remove the second protective layer outside the gate region.
示例性的,参考图6所示,在该实施方式下步骤S0的具体操作步骤可以实现为包括以下步骤:For example, with reference to FIG. 6 , in this embodiment, the specific operation steps of step S0 can be implemented to include the following steps:
步骤S21':通过光刻曝光的方式定义栅极区域掩膜范围;Step S21': Define the gate area mask range through photolithography exposure;
步骤S22':通过第二刻蚀对栅极区域以外的p型氮化物层进行刻蚀,直至在栅极区域以外残余厚度小于30nm的p型氮化物层。Step S22': Etch the p-type nitride layer outside the gate region through the second etching until the p-type nitride layer with a thickness less than 30 nm remains outside the gate region.
示例性的,在步骤S22'中,第二刻蚀可以也在低功率干法刻蚀或等离子氧化结合湿法腐蚀条件下进行。在本实施例中,由于p型氮化物层上未覆盖第二保护层,进行第二刻蚀时,无需担心第二刻蚀的刻蚀工艺会对第二保护层造成损伤,由此,第二刻蚀选用低功率干法刻蚀或等离子氧化结合湿法腐蚀工艺均可。具体的,等离子氧化结合湿法腐蚀可以实现为:首先,使用含氧气氛生成等离子体,对栅极区域以外的p型氮化物层的表面进行氧化处理,然后,使用稀盐酸去除氧化层,重复等离子氧化和湿法腐蚀过程,直至待刻蚀的p型氮化物层的厚度被刻蚀至30nm以下。For example, in step S22', the second etching may also be performed under low-power dry etching or plasma oxidation combined with wet etching conditions. In this embodiment, since the p-type nitride layer is not covered with the second protective layer, when performing the second etching, there is no need to worry that the etching process of the second etching will cause damage to the second protective layer. Therefore, the second protective layer For the second etching, low-power dry etching or plasma oxidation combined with wet etching can be used. Specifically, plasma oxidation combined with wet etching can be achieved as follows: first, use an oxygen-containing atmosphere to generate plasma to oxidize the surface of the p-type nitride layer outside the gate area, then use dilute hydrochloric acid to remove the oxide layer, and repeat Plasma oxidation and wet etching processes are performed until the thickness of the p-type nitride layer to be etched is etched below 30nm.
作为一种优选实现例,本发明上述实施例的p型氮化物层可以为p-GaN层。第二保护层为Si3N4层,在p型氮化物层上生长第二保护层的方法可以采用MOCVD技术、MBE技术、磁控溅射技术或LPCVD技术。As a preferred implementation example, the p-type nitride layer in the above embodiment of the present invention may be a p-GaN layer. The second protective layer is a Si 3 N 4 layer. The method of growing the second protective layer on the p-type nitride layer can adopt MOCVD technology, MBE technology, magnetron sputtering technology or LPCVD technology.
由此,在第一保护层和第二保护层的保护作用下,通过高温热脱附对栅极区域以外的p型氮化物层进行选择性刻蚀,可以在完全去除栅极区域以外的p型氮化物层的情况下,不对p型氮化物层以及其下的势垒层造成破坏,从而可以实现可重复且一致性较好的刻蚀效果,而且可以保证增强型氮化物HEMT性能的可靠性。Therefore, under the protection of the first protective layer and the second protective layer, the p-type nitride layer outside the gate region is selectively etched through high-temperature thermal desorption, and the p-type nitride layer outside the gate region can be completely removed. In the case of the p-type nitride layer, it does not cause damage to the p-type nitride layer and the barrier layer below it, so that repeatable and consistent etching effects can be achieved, and the reliability of the enhanced nitride HEMT performance can be ensured. sex.
作为优选的实施方式,在沟道层和势垒层之间还设有插入层,插入层采用AlN层,其厚度为1nm-5nm。由此,可以提高2DEG的浓度。As a preferred embodiment, an insertion layer is also provided between the channel layer and the barrier layer. The insertion layer is an AlN layer with a thickness of 1 nm to 5 nm. Thereby, the concentration of 2DEG can be increased.
以下结合具体的实施例对图2所示实施方式的增强型HEMT的p型氮化物栅的制备方法进行示例性说明。The preparation method of the p-type nitride gate of the enhancement mode HEMT in the embodiment shown in FIG. 2 will be exemplified below with reference to specific examples.
实施例1Example 1
本实施例的制备方法步骤及在各步骤下对应产生的中间产物的结构参考图4所示:The preparation method steps of this embodiment and the structure of the intermediate product corresponding to each step are shown in Figure 4:
第一步,采用MOCVD技术在衬底31上依次外延生长缓冲层32、沟道层33、势垒层34、第一保护层35和p型氮化物层36,如图4中(a)图所示;其中,衬底为蓝宝石衬底,缓冲层为AlGaN/GaN缓冲层,沟道层为GaN层且其厚度为50nm,第一保护层为AlN层且厚度为1nm,势垒层为AlGaN层,p型氮化物层为p-GaN层;沟道层与势垒层之间形成具有2DEG的异质结;In the first step, MOCVD technology is used to sequentially epitaxially grow the buffer layer 32, the channel layer 33, the barrier layer 34, the first protective layer 35 and the p-type nitride layer 36 on the substrate 31, as shown in (a) of Figure 4 As shown; where the substrate is a sapphire substrate, the buffer layer is an AlGaN/GaN buffer layer, the channel layer is a GaN layer and its thickness is 50nm, the first protective layer is an AlN layer and its thickness is 1nm, and the barrier layer is AlGaN layer, the p-type nitride layer is a p-GaN layer; a heterojunction with 2DEG is formed between the channel layer and the barrier layer;
第二步,采用MOCVD技术在p型氮化物层上继续外延生长第二保护层37,如图4中(b)图所示,其中,第二保护层为Si3N4层且其厚度为200nm;In the second step, MOCVD technology is used to continue to epitaxially grow the second protective layer 37 on the p-type nitride layer, as shown in (b) of Figure 4, where the second protective layer is a Si 3 N 4 layer and its thickness is 200nm;
第三步,通过光刻曝光定义栅极区域掩膜38的范围,如图4中(c)图所示;The third step is to define the range of the gate area mask 38 through photolithography exposure, as shown in (c) of Figure 4;
第四步,使用干法刻蚀去除栅极区域以外的第二保护层,直至露出栅极区域以外的p型氮化物层,如图4中(d)图所示;The fourth step is to use dry etching to remove the second protective layer outside the gate area until the p-type nitride layer outside the gate area is exposed, as shown in (d) of Figure 4;
第五步,去除第二保护层上方的掩膜,如图4中(e)图所示;The fifth step is to remove the mask above the second protective layer, as shown in (e) of Figure 4;
第六步,使用低功率干法刻蚀工艺对栅极区域以外的p型氮化物层进行刻蚀,直至栅极区域以外的p型氮化物层的厚度为30nm以下,如图4中(f)图所示;The sixth step is to use a low-power dry etching process to etch the p-type nitride layer outside the gate area until the thickness of the p-type nitride layer outside the gate area is less than 30nm, as shown in Figure 4 (f ) as shown in the figure;
第七步,高温热脱附处理在MOCVD设备中进行,反应温度为500℃-1000℃,直至去除栅极区域以外的p型氮化物层,如图4中(g)图所示。In the seventh step, high-temperature thermal desorption treatment is performed in MOCVD equipment at a reaction temperature of 500°C-1000°C until the p-type nitride layer outside the gate area is removed, as shown in (g) of Figure 4.
实施例2Example 2
本实施例的具体实现方式与实施例1类似,区别之处主要在于:The specific implementation of this embodiment is similar to Embodiment 1, and the main differences are:
第一保护层为AlGaN层且其厚度为5nm,AlGaN层的Al组分为0.6;The first protective layer is an AlGaN layer with a thickness of 5 nm, and the Al composition of the AlGaN layer is 0.6;
在第二步中,采用磁控溅射技术在p型氮化物层上继续外延生长第二保护层,其中,第二保护层为SiO2层且其厚度为50nm;In the second step, magnetron sputtering technology is used to continue to epitaxially grow a second protective layer on the p-type nitride layer, where the second protective layer is a SiO 2 layer and its thickness is 50nm;
第七步中的高温热脱附处理在管式退火炉中进行,且反应过程中不得引入Ga原子流和N原子流。The high-temperature thermal desorption treatment in the seventh step is performed in a tubular annealing furnace, and the flow of Ga atoms and N atoms must not be introduced during the reaction process.
实施例3Example 3
参考图5所示,本实施例的具体实现方式与实施例1类似,区别之处主要在于:Referring to Figure 5, the specific implementation of this embodiment is similar to Embodiment 1, and the main differences are:
在沉积沟道层之后,以及沉积势垒层之前,还沉积有插入层331,如图5中(a)图所示,插入层为AlN层且其厚度均为1nm;After depositing the channel layer and before depositing the barrier layer, an insertion layer 331 is also deposited. As shown in (a) of Figure 5 , the insertion layer is an AlN layer and its thickness is 1 nm;
在第二步中,采用磁控溅射技术在p型氮化物层上继续外延生长第二保护层,如图5中(b)图所示,其中,第二保护层为AlN层且其厚度为80nm;In the second step, magnetron sputtering technology is used to continue to epitaxially grow a second protective layer on the p-type nitride layer, as shown in (b) of Figure 5, where the second protective layer is an AlN layer and its thickness is 80nm;
第七步中的高温热脱附处理在高温退火炉中进行。The high-temperature thermal desorption treatment in the seventh step is performed in a high-temperature annealing furnace.
以下结合具体的实施例对图3所示实施方式的增强型HEMT的p型氮化物栅的制备方法进行示例性说明。The preparation method of the p-type nitride gate of the enhancement mode HEMT in the embodiment shown in FIG. 3 will be exemplified below with reference to specific examples.
实施例4Example 4
本实施例的制备方法步骤参考图7所示:The preparation method steps of this embodiment are shown in Figure 7:
第一步,采用MOCVD技术在衬底上依次外延生长缓冲层、沟道层、插入层、势垒层、第一保护层和p型氮化物层,如图7中(a)图所示;其中,衬底为蓝宝石衬底,缓冲层为AlGaN/GaN缓冲层,沟道层为GaN层且其厚度为300nm,插入层和第一保护层为AlN层且两者的厚度均为5nm,势垒层为AlGaN层,p型氮化物层为p-GaN层;沟道层与势垒层之间形成具有2DEG的异质结;In the first step, MOCVD technology is used to sequentially epitaxially grow the buffer layer, channel layer, insertion layer, barrier layer, first protective layer and p-type nitride layer on the substrate, as shown in (a) of Figure 7; Among them, the substrate is a sapphire substrate, the buffer layer is an AlGaN/GaN buffer layer, the channel layer is a GaN layer and its thickness is 300nm, the insertion layer and the first protective layer are AlN layers and both have a thickness of 5nm. The barrier layer is an AlGaN layer, and the p-type nitride layer is a p-GaN layer; a heterojunction with 2DEG is formed between the channel layer and the barrier layer;
第二步,通过光刻曝光定义栅极区域掩膜范围,如图7中(b)图所示;In the second step, the gate area mask range is defined through photolithography exposure, as shown in (b) in Figure 7;
第三步,先使用含氧气氛生成等离子体,对栅极区域以外的p型氮化物层的表面进行氧化处理,然后,使用稀盐酸去除氧化层,重复等离子氧化和湿法腐蚀过程,直至栅极区域以外的p型氮化物层的厚度被刻蚀至30nm以下,如图7中(c)图所示;In the third step, an oxygen-containing atmosphere is first used to generate plasma to oxidize the surface of the p-type nitride layer outside the gate area. Then, dilute hydrochloric acid is used to remove the oxide layer, and the plasma oxidation and wet etching processes are repeated until the gate The thickness of the p-type nitride layer outside the polar region is etched to less than 30nm, as shown in (c) in Figure 7;
第四步,去除p型氮化物层上方的掩膜,如图7中(d)图所示;The fourth step is to remove the mask above the p-type nitride layer, as shown in (d) of Figure 7;
第五步,采用磁控溅射技术在p型氮化物层上生长第二保护层,如图7中(e)图所示,其中,第二保护层为HfO2层且其厚度为60nm;The fifth step is to use magnetron sputtering technology to grow a second protective layer on the p-type nitride layer, as shown in (e) of Figure 7, where the second protective layer is a HfO 2 layer and its thickness is 60nm;
第六步,再通过光刻曝光定义栅极区域掩膜范围,如图7中(f)图所示;The sixth step is to define the gate area mask range through photolithography exposure, as shown in (f) in Figure 7;
第七步,使用湿法腐蚀去除栅极区域以外的第二保护层,直至露出栅极区域以外的p型氮化物层,如图7中(g)图所示;The seventh step is to use wet etching to remove the second protective layer outside the gate area until the p-type nitride layer outside the gate area is exposed, as shown in (g) of Figure 7;
第八步,去除第二保护层上方的掩膜,如图7中(h)图所示;The eighth step is to remove the mask above the second protective layer, as shown in (h) in Figure 7;
第九步,采用MOCVD技术,在温度为500℃-1000℃,且未引入Ga原子流和N原子流的环境下进行高温热脱附,直至去除栅极区域以外的p型氮化物层,如图7中(i)图所示。The ninth step is to use MOCVD technology to perform high-temperature thermal desorption at a temperature of 500°C-1000°C without introducing Ga atomic flow and N atomic flow until the p-type nitride layer outside the gate area is removed, such as As shown in (i) of Figure 7.
实施例5Example 5
参考图8所示,本实施例的具体实现方式与实施例4类似,区别之处主要在于:Referring to Figure 8, the specific implementation of this embodiment is similar to Embodiment 4, and the main differences are:
在沉积沟道层之后,直接沉积势垒层,如图8中(a)图所示。After depositing the channel layer, the barrier layer is directly deposited, as shown in (a) of Figure 8 .
图9示意性地显示了本发明第一种实施方式的增强型氮化物HEMT的制备方法流程,该方法在制备增强型氮化物HEMT的过程中,采用前述增强型HEMT的p型氮化物栅的制备方法制得势垒层的表面无损伤的增强型HEMT的p型氮化物栅,并在此基础上制备增强型氮化物HEMT,得到性能稳定的增强型氮化物HEMT。Figure 9 schematically shows the process flow of the preparation method of the enhancement type nitride HEMT according to the first embodiment of the present invention. In the process of preparing the enhancement type nitride HEMT, the method uses the p-type nitride gate of the aforementioned enhancement type HEMT. The preparation method prepares a p-type nitride gate of an enhancement-mode HEMT without damage to the surface of the barrier layer, and prepares an enhancement-mode nitride HEMT on this basis to obtain an enhancement-mode nitride HEMT with stable performance.
如图9所示,第一种实施方式的增强型氮化物HEMT的制备方法包括以下步骤:As shown in Figure 9, the preparation method of the enhancement nitride HEMT of the first embodiment includes the following steps:
步骤S101:采用前述的增强型HEMT的p型氮化物栅的制备方法制得增强型HEMT的p型氮化物栅;Step S101: Prepare a p-type nitride gate of the enhancement-mode HEMT using the aforementioned preparation method of a p-type nitride gate of the enhancement-mode HEMT;
步骤S102:去除第二保护层,以及去除源电极区域和漏电极区域的第一保护层;Step S102: Remove the second protective layer and remove the first protective layer in the source electrode region and the drain electrode region;
步骤S103:在源电极区域和漏电极区域的势垒层上分别制备源电极和漏电极,在p型氮化物栅上制备栅电极。Step S103: Prepare a source electrode and a drain electrode on the barrier layer of the source electrode region and the drain electrode region respectively, and prepare a gate electrode on the p-type nitride gate.
在本发明实施例中,步骤S101的具体实现可以参照图1、图2或图3所示实施例的相关描述进行实现。In the embodiment of the present invention, the specific implementation of step S101 can be implemented with reference to the relevant description of the embodiment shown in Figure 1, Figure 2 or Figure 3.
示例性的,在步骤S102中,采用缓冲氧化物刻蚀液(Buffered Oxide Etch,简称BOE)去除第二保护层,其中,第二保护层为Si3N4层。For example, in step S102, a buffered oxide etching solution (Buffered Oxide Etch, BOE for short) is used to remove the second protective layer, where the second protective layer is a Si 3 N 4 layer.
在步骤S103中,源电极和漏电极均可以采用Ti、Al、Ni、Au、Cr、P、Pt和TiN中的至少两种组合而成,选定的材质生长在势垒层上之后经过退火形成欧姆接触,形成欧姆接触的退火工艺为:在0℃-1000℃的空气或氮气环境下放置10s-1h。栅电极可以采用Ti、Al、Ni、Au、Pd、Pt、TiN和W中的至少两种组合而成,选定的材质生长在p型氮化物栅上之后形成肖特基接触或欧姆接触,p型氮化物栅上形成的栅电极的肖特基接触可以通过退火进行改善。示例性的,改善肖特基接触的退火工艺为:在0℃-500℃的空气或氮气环境下放置10s-1h。In step S103, both the source electrode and the drain electrode can be made of at least two combinations of Ti, Al, Ni, Au, Cr, P, Pt and TiN. The selected material is grown on the barrier layer and then annealed. To form ohmic contact, the annealing process to form ohmic contact is: place it in an air or nitrogen environment of 0℃-1000℃ for 10s-1h. The gate electrode can be made of at least two combinations of Ti, Al, Ni, Au, Pd, Pt, TiN and W. The selected material is grown on the p-type nitride gate to form Schottky contact or ohmic contact. The Schottky contact of the gate electrode formed on the p-type nitride gate can be improved by annealing. For example, the annealing process to improve Schottky contact is: placing in an air or nitrogen environment of 0°C-500°C for 10s-1h.
优选地,在步骤S102中是采用掩膜刻蚀处理去除源电极区域和漏电极区域的第一保护层。其中,去除源电极区域和漏电极区域的第一保护层优选安排在去除第二保护层之后,且安排在步骤S103之前。由于高温热脱附对p型氮化物层的选择性刻蚀,去除栅极区域以外的p型氮化物层之后,对势垒层的表面造成的损伤较小,使得势垒层表面界态密度较小,从而,在势垒层上生长的源电极和漏电极更易形成欧姆接触。由于第二保护层在高温热脱附时可以避免p型氮化物栅脱附,避免p型氮化物栅的表面因高温受到损伤,从而,在p型氮化物栅上生长的栅电极更易形成欧姆接触或肖特基接触。Preferably, in step S102, a mask etching process is used to remove the first protective layer in the source electrode region and the drain electrode region. Wherein, the removal of the first protective layer in the source electrode region and the drain electrode region is preferably arranged after the removal of the second protective layer and before step S103. Due to the selective etching of the p-type nitride layer by high-temperature thermal desorption, after the p-type nitride layer outside the gate area is removed, the damage to the surface of the barrier layer is small, resulting in a lower boundary state density on the surface of the barrier layer. Therefore, the source electrode and the drain electrode grown on the barrier layer are more likely to form ohmic contact. Since the second protective layer can prevent the p-type nitride gate from being desorbed during thermal desorption at high temperatures, it can prevent the surface of the p-type nitride gate from being damaged due to high temperature. Therefore, the gate electrode grown on the p-type nitride gate is more likely to form ohms. contact or Schottky contact.
以下结合具体的实施例对第一种实施方式的增强型氮化物HEMT的制备方法进行示例性说明。The preparation method of the enhanced nitride HEMT of the first embodiment is illustratively described below with reference to specific examples.
实施例6Example 6
参考图10所示,本实施例在通过实施例3的基础上继续进行实现:Referring to Figure 10, this embodiment continues to be implemented on the basis of Embodiment 3:
第八步,采用BOE去除第二保护层,如图10中(j1)图所示;The eighth step is to use BOE to remove the second protective layer, as shown in (j1) in Figure 10;
第九步,通过掩膜刻蚀工艺去除源电极和漏电极区域的第一保护层,如图10中(k1)图所示;In the ninth step, remove the first protective layer in the source electrode and drain electrode areas through a mask etching process, as shown in (k1) in Figure 10;
第十步,在气氛为空气的室温条件下,采用Ti、Al和Ni制备源电极392,采用Cr、P、Pt和TiN制备漏电极393,采用Au、Pd、Pt、TiN和W制备栅电极391,如图10中(m1)图所示;其中,源电极和漏电极与势垒层之间形成欧姆接触,栅电极与p型氮化物栅之间形成肖特基接触。In the tenth step, under room temperature conditions where the atmosphere is air, the source electrode 392 is prepared using Ti, Al and Ni, the drain electrode 393 is prepared using Cr, P, Pt and TiN, and the gate electrode is prepared using Au, Pd, Pt, TiN and W. 391, as shown in (m1) in Figure 10; where the source electrode and drain electrode form ohmic contact with the barrier layer, and the gate electrode and the p-type nitride gate form Schottky contact.
实施例7Example 7
本实施例的具体实现方式与实施例6类似,区别之处主要在于栅电极与p型氮化物栅之间形成欧姆接触。The specific implementation manner of this embodiment is similar to that of Embodiment 6, and the main difference lies in the formation of ohmic contact between the gate electrode and the p-type nitride gate.
实施例8Example 8
参考图10所示,本实施例的具体实现方式与实施例7类似,区别之处主要在于:Referring to Figure 10, the specific implementation of this embodiment is similar to Embodiment 7, and the main differences are:
在沉积沟道层之后,直接沉积势垒层,最终制得的增强型氮化物HEMT如图10中(m2)图所示。After depositing the channel layer, the barrier layer is directly deposited, and the final enhanced nitride HEMT is shown in (m2) in Figure 10.
图11示意性地显示了本发明第二种实施方式的增强型氮化物HEMT的制备方法流程。本实施方式在增强型氮化物HEMT的制备方法的第一种实施方式的基础上还包括以下步骤:Figure 11 schematically shows the flow chart of the preparation method of the enhanced nitride HEMT according to the second embodiment of the present invention. This implementation mode further includes the following steps based on the first implementation mode of the preparation method of the enhanced nitride HEMT:
步骤S104:在源电极、漏电极、栅电极、p型氮化物栅和第二保护层的表面沉积绝缘介质层394,并通过光刻和腐蚀工艺将绝缘介质层的与源电极、漏电极和栅电极对应的位置去除,直至露出源电极、漏电极和栅电极。示例性的,绝缘介质层为SiO2层、SiNx层或HfO2层或聚酰亚胺层。Step S104: Deposit an insulating dielectric layer 394 on the surfaces of the source electrode, drain electrode, gate electrode, p-type nitride gate and second protective layer, and connect the insulating dielectric layer 394 to the source electrode, drain electrode and the surface through photolithography and etching processes. The corresponding position of the gate electrode is removed until the source electrode, drain electrode and gate electrode are exposed. For example, the insulating dielectric layer is a SiO 2 layer, a SiN x layer, a HfO 2 layer or a polyimide layer.
由此,沉积在增强型氮化物HEMT的表面的绝缘介质层能够降低外部环境,例如辐照对2DEG和P型氮化物栅的影响,保证增强型氮化物HEMT工作的稳定性和可靠性。Therefore, the insulating dielectric layer deposited on the surface of the enhancement nitride HEMT can reduce the impact of external environments, such as radiation, on the 2DEG and P-type nitride gate, ensuring the stability and reliability of the enhancement nitride HEMT operation.
以下结合具体的实施例对第二种实施方式的增强型氮化物HEMT的制备方法进行示例性说明。The preparation method of the enhanced nitride HEMT of the second embodiment is illustratively described below with reference to specific examples.
实施例9Example 9
参考图12所示,本实施例在通过实施例6的基础上继续进行实现:Referring to Figure 12, this embodiment continues to be implemented on the basis of Embodiment 6:
第十一步,在源电极、漏电极、栅电极、p型氮化物栅和第二保护层的表面沉积绝缘介质层;其中,介质层为SiNx层,如图12中(n1)图所示。In the eleventh step, an insulating dielectric layer is deposited on the surface of the source electrode, drain electrode, gate electrode, p-type nitride gate and second protective layer; where the dielectric layer is a SiN x layer, as shown in (n1) in Figure 12 Show.
第十二步,通过光刻和腐蚀工艺将绝缘介质层的与源电极、漏电极和栅电极对应的位置去除,直至露出源电极、漏电极和栅电极,如图12中(o1)图所示。In the twelfth step, the positions of the insulating dielectric layer corresponding to the source electrode, drain electrode and gate electrode are removed through photolithography and etching processes until the source electrode, drain electrode and gate electrode are exposed, as shown in (o1) in Figure 12 Show.
实施例10Example 10
参考图12所示,本实施例的具体实现方式与实施例9类似,区别之处主要在于:Referring to Figure 12, the specific implementation of this embodiment is similar to Embodiment 9, and the main differences are:
在沉积沟道层之后,直接沉积势垒层,最终制得的增强型氮化物HEMT如图12中(o2)图所示。After depositing the channel layer, the barrier layer is directly deposited, and the final enhanced nitride HEMT is shown in (o2) in Figure 12.
在本发明的增强型HEMT的p型氮化物栅制备方法和增强型氮化物HEMT的制备方法中,采用MOCVD方法和MBE方法进行外延生长的具体工艺,光刻曝光定义栅极区域掩膜范围的具体工艺,干法刻蚀去除栅极区域以外的第二保护层的具体工艺,低功率干法刻蚀对栅极区域以外的p型氮化物层进行刻蚀的具体工艺,采用LPCVD方法在p型氮化物层上沉积第二保护层生长第二保护层的具体工艺,采用湿法腐蚀去除栅极区域以外的第二保护层的具体工艺,通过BOE去除第二保护层的具体工艺,采用掩膜刻蚀处理去除源电极区域和漏电极区域的第一保护层的具体工艺,在源电极区域和漏电极区域的势垒层上分别制备源电极和漏电极,和在p型氮化物栅上制备栅电极的具体工艺,以及在增强型氮化物HEMT的表面覆盖绝缘介质层的具体工艺可以参考现有技术常用的工艺,本发明对以上工艺的具体实现方式不作限定。In the p-type nitride gate preparation method of the enhancement mode HEMT and the preparation method of the enhancement mode nitride HEMT of the present invention, the MOCVD method and the MBE method are used for the specific process of epitaxial growth, and the photolithography exposure defines the gate area mask range. The specific process includes dry etching to remove the second protective layer outside the gate area, low-power dry etching to etch the p-type nitride layer outside the gate area, and the LPCVD method is used to etch the p-type nitride layer outside the gate area. The specific process of depositing a second protective layer on the nitride layer to grow the second protective layer, the specific process of removing the second protective layer outside the gate area by wet etching, the specific process of removing the second protective layer by BOE, using a mask The specific process of removing the first protective layer in the source electrode region and the drain electrode region by film etching, preparing the source electrode and the drain electrode respectively on the barrier layers of the source electrode region and the drain electrode region, and on the p-type nitride gate The specific process of preparing the gate electrode and covering the surface of the enhancement mode nitride HEMT with an insulating dielectric layer can refer to the commonly used processes in the prior art. The present invention does not limit the specific implementation of the above process.
采用等离子氧化结合湿法腐蚀方法对栅极区域以外的的p型氮化物层进行刻蚀的具体工艺可以参考公布号为CN112067402A中的具体工艺实现。The specific process of using plasma oxidation combined with wet etching to etch the p-type nitride layer outside the gate area can be implemented by referring to the specific process in publication number CN112067402A.
以上所述的仅是本发明的一些实施方式。对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。What is described above are only some embodiments of the present invention. For those of ordinary skill in the art, several modifications and improvements can be made without departing from the creative concept of the present invention, and these all belong to the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110389654.8A CN113140630B (en) | 2021-04-12 | 2021-04-12 | Preparation method of p-type nitride gate of enhancement mode HEMT and method of using same to prepare enhancement mode nitride HEMT |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110389654.8A CN113140630B (en) | 2021-04-12 | 2021-04-12 | Preparation method of p-type nitride gate of enhancement mode HEMT and method of using same to prepare enhancement mode nitride HEMT |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113140630A CN113140630A (en) | 2021-07-20 |
CN113140630B true CN113140630B (en) | 2023-09-26 |
Family
ID=76810797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110389654.8A Active CN113140630B (en) | 2021-04-12 | 2021-04-12 | Preparation method of p-type nitride gate of enhancement mode HEMT and method of using same to prepare enhancement mode nitride HEMT |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113140630B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114284357B (en) * | 2021-12-28 | 2025-02-11 | 广东省科学院半导体研究所 | N-polarity enhancement mode HEMT device structure and preparation method thereof |
WO2024026597A1 (en) * | 2022-07-31 | 2024-02-08 | Innoscience (suzhou) Semiconductor Co., Ltd. | Nitride-based semiconductordevice and method for manufacturing the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014090033A (en) * | 2012-10-29 | 2014-05-15 | Fujitsu Ltd | Compound semiconductor device and manufacturing method of the same |
CN104894645A (en) * | 2006-11-09 | 2015-09-09 | 莫门蒂夫性能材料股份有限公司 | Method associated with a crystalline composition and wafer |
CN109585545A (en) * | 2019-01-15 | 2019-04-05 | 中山大学 | A kind of novel enhancement type semiconductor devices and preparation method thereof |
-
2021
- 2021-04-12 CN CN202110389654.8A patent/CN113140630B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104894645A (en) * | 2006-11-09 | 2015-09-09 | 莫门蒂夫性能材料股份有限公司 | Method associated with a crystalline composition and wafer |
JP2014090033A (en) * | 2012-10-29 | 2014-05-15 | Fujitsu Ltd | Compound semiconductor device and manufacturing method of the same |
CN109585545A (en) * | 2019-01-15 | 2019-04-05 | 中山大学 | A kind of novel enhancement type semiconductor devices and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN113140630A (en) | 2021-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5156235B2 (en) | Fabrication method for nitride-based transistors | |
EP1771876B1 (en) | Methods of fabricating nitride-based transistors with a cap layer and a recessed gate | |
CN101901834B (en) | Field effect transistor and method for manufacturing the same | |
WO2009116281A1 (en) | Semiconductor device and manufacturing method for the same | |
CN103930978B (en) | Field-effect transistor and its manufacture method | |
WO2009116283A1 (en) | Semiconductor device and method for manufacturing said device | |
CN103548127A (en) | Semiconductor device and manufacturing method thereof | |
CN106033724A (en) | Group III nitride enhanced HEMT and its preparation method | |
US10700189B1 (en) | Semiconductor devices and methods for forming the same | |
JP5166576B2 (en) | GaN-based semiconductor device manufacturing method | |
CN113140630B (en) | Preparation method of p-type nitride gate of enhancement mode HEMT and method of using same to prepare enhancement mode nitride HEMT | |
CN104638010A (en) | Transversely turned-on GaN normally closed MISFET (Metal-insulator-semiconductor Field Effect Transistor) device and manufacturing method thereof | |
CN111584628B (en) | Enhanced GaN HEMT device and preparation method thereof | |
CN111937125B (en) | Field Effect Transistor | |
KR20190112523A (en) | Heterostructure Field Effect Transistor and production method thereof | |
US8350293B2 (en) | Field effect transistor and method of manufacturing the same | |
CN209487514U (en) | A GaN MISFET device with high-quality gate interface | |
CN112736137B (en) | Preparation method of p-type nitride gate of enhanced HEMT, enhanced nitride HEMT and preparation method thereof | |
JP5463529B2 (en) | Method for manufacturing field effect transistor | |
CN112310215B (en) | Enhanced high electron mobility transistor element and method of manufacturing the same | |
CN114843341A (en) | A kind of enhancement mode GaN power device and preparation method thereof | |
CN108695156B (en) | Method for improving III-nitride MIS-HEMT ohmic contact and MIS-HEMT device | |
CN113826212B (en) | Preparation method of semiconductor structure | |
JP2008258310A (en) | Nitride semiconductor device | |
KR100985470B1 (en) | High electron mobility transistor and manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |