[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN113066856A - 具有双层外延结构的Trench MOS肖特基整流器件及制造方法 - Google Patents

具有双层外延结构的Trench MOS肖特基整流器件及制造方法 Download PDF

Info

Publication number
CN113066856A
CN113066856A CN202110460839.3A CN202110460839A CN113066856A CN 113066856 A CN113066856 A CN 113066856A CN 202110460839 A CN202110460839 A CN 202110460839A CN 113066856 A CN113066856 A CN 113066856A
Authority
CN
China
Prior art keywords
layer
epitaxial
double
epitaxial layer
epitaxial structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110460839.3A
Other languages
English (en)
Inventor
高耿辉
田洪光
黄福成
李晓婉
曲艳凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Lucky Microelectronics Co ltd
Original Assignee
Xiamen Lucky Microelectronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Lucky Microelectronics Co ltd filed Critical Xiamen Lucky Microelectronics Co ltd
Priority to CN202110460839.3A priority Critical patent/CN113066856A/zh
Publication of CN113066856A publication Critical patent/CN113066856A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • H01L29/8725Schottky diodes of the trench MOS barrier type [TMBS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提出一种具有双层外延结构的Trench MOS肖特基整流器件及制造方法,其特征在于:带有双层外延结构,其上下两层N型掺杂外延层的掺杂浓度和厚度不同。该方案在保障保证反向电压和反向漏电特性的前提下,实现了正向压降;并通过双层外延结构,由于上层外延浓度低的特点改善了反向偏置下势垒金属附近电场强度;下层外延浓度高可以降低正向导通时提电阻。

Description

具有双层外延结构的Trench MOS肖特基整流器件及制造方法
技术领域
本发明属于电子元器件技术领域,尤其涉及一种具有双层外延结构的Trench MOS肖特基整流器件及制造方法。
背景技术
肖特基二级管,为了降低自身的能耗,不断追求更的正向压降、提高反向电压和降低反向电流,Trench MOS 肖特基能很多好的解决了反向电压高和反向电流低的特性,但无论正向还是反向都受外延电阻率和厚度的影响,为了保证反向电压和反向漏电特性,正向压降已经没有进行提升空间。
发明内容
针对现有技术的缺陷和不足,本发明提出一种具有双层外延结构的Trench MOS肖特基整流器件及制造方法。
本发明具体采用以下技术方案:
一种双层外延结构,应用于制造Trench MOS肖特基整流器件,其特征在于:上下两层N型掺杂外延层的掺杂浓度和厚度不同。
进一步地,所述外延层的掺杂材料为硅。
进一步地,位于下方生长于N型衬底上的第一外延层的掺杂浓度低于位于上方的第二外延层。
进一步地,所述第一外延层的厚度范围为0.5um-2.0 um,电阻率为0.05Ω∙cm-0.3Ω∙cm;所述第二外延层厚度范围为2.0um-5.0 um,电阻率0.15Ω∙cm-0.5Ω∙cm。
以及,一种具有双层外延结构的Trench MOS肖特基整流器件,其特征在于:带有双层外延结构,其上下两层N型掺杂外延层的掺杂浓度和厚度不同。
进一步地,所述外延层的掺杂材料为硅。
进一步地,位于下方生长于N型衬底上的第一外延层的掺杂浓度低于位于上方的第二外延层。
进一步地,所述第一外延层的厚度范围为0.5um-2.0 um,电阻率为0.05Ω∙cm-0.3Ω∙cm;所述第二外延层厚度范围为2.0um-5.0 um,电阻率0.15Ω∙cm-0.5Ω∙cm。
进一步地,所述第二外延层上沿横向间隔设置有若干个纵向的沟槽,所述沟槽自第二外延层的上表面向下延伸;
每个所述沟槽的底部以及两内侧壁热生长或淀积有绝缘介质;
在每个沟槽内淀积有多晶;
所述外延层的上方设置有势垒金属层和传导金属层。
以及,一种具有双层外延结构的Trench MOS肖特基整流器件的制造方法,其特征在于,包括以下步骤:
步骤S1:在N型衬底上分两次进行外延生长,形成两层不同电阻率和厚度的N型外延层;
步骤S2:在第二外延层上沿横向间隔刻蚀形成若干个纵向的沟槽,所述沟槽自外延层的上表面向下延伸;
步骤S3:在每个沟槽的底部以及两内侧壁热生长或淀积绝缘介质;
步骤S4:在每个沟槽内淀积多晶,并且回刻至外延层上表面;
步骤S5:分别在外延层的上表面依次淀积势垒金属和传导金属。
与现有技术相比,本发明及其优选方案在保障保证反向电压和反向漏电特性的前提下,实现了正向压降;并通过双层外延结构,由于上层外延浓度低的特点改善了反向偏置下势垒金属附近电场强度;下层外延浓度高可以降低正向导通时提电阻。
附图说明
下面结合附图和具体实施方式对本发明进一步详细的说明:
图1为本发明实施例双层外延结构的Trench MOS肖特基整流器件的截面示意图;
图中:1-衬底;2-第一外延层;3-第二外延层;4-背面金属层;5-正面金属层;6-反向偏压形成的MOS耗尽区;7-肖特基势垒区;8-多晶;9-势垒金属;10-栅氧化层。
具体实施方式
为让本专利的特征和优点能更明显易懂,下文特举实施例,作详细说明如下:
本实施例的要点在于:所用的材料分两次进行外延生长,先生长的N型外延层命名为layer-1,其厚度范围为0.5um-2.0 um,电阻率0.05Ω∙cm-0.3Ω∙cm;后生长的N型外延层命名为layer-2,其厚度范围为2.0um-5.0 um,电阻率0.15Ω∙cm-0.5Ω∙cm;并在其上面进一步制备Trench MOS肖特基整流器件。
其中,两次外延生长的掺杂浓度和厚度不同。外延层的掺杂材料为硅,优选采用N型多晶硅。
在反向电压下,layer-2层上的Trench MOS管体效应开始工作,加的反向电压越大,阈值电压越大;在加正向电压时,电流通过势垒layer-2 layer-1层进行导通,由于layer-1层比layer-2层电阻率低提高了过电流能力,从而降低了大电流下的正向电压。
作为进一步的优选方案,位于下方生长于N型衬底上的第一外延层的掺杂浓度低于位于上方的第二外延层。通过双层外延结构,由于layer-2外延浓度低的特点改善了反向偏置下势垒金属附近电场强度;layer-1外延浓度高可以降低正向导通时提电阻。
以上器件的制造方法主要包括以下步骤:
步骤S1:在N型衬底上分两次进行外延生长,形成两层不同电阻率和厚度的N型外延层;
步骤S2:在第二外延层上通过干法刻蚀沿横向间隔刻蚀形成若干个纵向的沟槽,所述沟槽自外延层的上表面向下延伸;
步骤S3:在每个沟槽的底部以及两内侧壁热生长或淀积绝缘介质;
步骤S4:在每个沟槽内淀积多晶,并且回刻至外延层上表面;
步骤S5:分别在外延层的上表面依次淀积势垒金属和传导金属。
经过以上步骤的制备,形成了包括:背面金属层4、衬底1、第一外延层2、第二外延层3、正面金属层5、多晶8、势垒金属9、以及栅氧化层10的Trench MOS肖特基整流器件结构,并在器件中形成了反向偏压形成的MOS耗尽区6和肖特基势垒区7。
本专利不局限于上述最佳实施方式,任何人在本专利的启示下都可以得出其它各种形式的具有双层外延结构的Trench MOS肖特基整流器件及制造方法,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本专利的涵盖范围。

Claims (10)

1.一种双层外延结构,应用于制造Trench MOS肖特基整流器件,其特征在于:上下两层N型掺杂外延层的掺杂浓度和厚度不同。
2.根据权利要求1所述的双层外延结构,其特征在于:所述外延层的掺杂材料为硅。
3.根据权利要求1所述的双层外延结构,其特征在于:位于下方生长于N型衬底上的第一外延层的掺杂浓度高于位于上方的第二外延层。
4.根据权利要求3所述的双层外延结构,其特征在于:所述第一外延层的厚度范围为0.5um-2.0 um,电阻率为0.05Ω∙cm-0.3Ω∙cm;所述第二外延层厚度范围为2.0um-5.0 um,电阻率0.15Ω∙cm-0.5Ω∙cm。
5.一种具有双层外延结构的Trench MOS肖特基整流器件,其特征在于:带有双层外延结构,其上下两层N型掺杂外延层的掺杂浓度和厚度不同。
6.根据权利要求1所述的具有双层外延结构的Trench MOS肖特基整流器件,其特征在于:所述外延层的掺杂材料为硅。
7.根据权利要求1所述的具有双层外延结构的Trench MOS肖特基整流器件,其特征在于:位于下方生长于N型衬底上的第一外延层的掺杂浓度低于位于上方的第二外延层。
8.根据权利要求7所述的具有双层外延结构的Trench MOS肖特基整流器件,其特征在于:所述第一外延层的厚度范围为0.5um-2.0 um,电阻率为0.05Ω∙cm-0.3Ω∙cm;所述第二外延层厚度范围为2.0um-5.0 um,电阻率0.15Ω∙cm-0.5Ω∙cm。
9.根据权利要求8所述的具有双层外延结构的Trench MOS肖特基整流器件,其特征在于:所述第二外延层上沿横向间隔设置有若干个纵向的沟槽,所述沟槽自第二外延层的上表面向下延伸;
每个所述沟槽的底部以及两内侧壁热生长或淀积有绝缘介质;
在每个沟槽内淀积有多晶;
所述外延层的上方设置有势垒金属层和传导金属层。
10.一种具有双层外延结构的Trench MOS肖特基整流器件的制造方法,其特征在于,包括以下步骤:
步骤S1:在N型衬底上分两次进行外延生长,形成两层不同电阻率和厚度的N型外延层;
步骤S2:在第二外延层上沿横向间隔刻蚀形成若干个纵向的沟槽,所述沟槽自外延层的上表面向下延伸;
步骤S3:在每个沟槽的底部以及两内侧壁热生长或淀积绝缘介质;
步骤S4:在每个沟槽内淀积多晶,并且回刻至外延层上表面;
步骤S5:分别在外延层的上表面依次淀积势垒金属和传导金属。
CN202110460839.3A 2021-04-27 2021-04-27 具有双层外延结构的Trench MOS肖特基整流器件及制造方法 Pending CN113066856A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110460839.3A CN113066856A (zh) 2021-04-27 2021-04-27 具有双层外延结构的Trench MOS肖特基整流器件及制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110460839.3A CN113066856A (zh) 2021-04-27 2021-04-27 具有双层外延结构的Trench MOS肖特基整流器件及制造方法

Publications (1)

Publication Number Publication Date
CN113066856A true CN113066856A (zh) 2021-07-02

Family

ID=76567807

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110460839.3A Pending CN113066856A (zh) 2021-04-27 2021-04-27 具有双层外延结构的Trench MOS肖特基整流器件及制造方法

Country Status (1)

Country Link
CN (1) CN113066856A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612567A (en) * 1996-05-13 1997-03-18 North Carolina State University Schottky barrier rectifiers and methods of forming same
US20090309181A1 (en) * 2008-06-12 2009-12-17 Force Mos Technology Co. Ltd. Trench schottky with multiple epi structure
CN102598264A (zh) * 2009-11-11 2012-07-18 罗伯特·博世有限公司 用于电子电路的保护元件
CN105633172A (zh) * 2014-10-31 2016-06-01 中航(重庆)微电子有限公司 肖特基势垒二极管及其制备方法
CN109390233A (zh) * 2017-08-08 2019-02-26 天津环鑫科技发展有限公司 一种沟槽式肖特基的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612567A (en) * 1996-05-13 1997-03-18 North Carolina State University Schottky barrier rectifiers and methods of forming same
US20090309181A1 (en) * 2008-06-12 2009-12-17 Force Mos Technology Co. Ltd. Trench schottky with multiple epi structure
CN102598264A (zh) * 2009-11-11 2012-07-18 罗伯特·博世有限公司 用于电子电路的保护元件
CN105633172A (zh) * 2014-10-31 2016-06-01 中航(重庆)微电子有限公司 肖特基势垒二极管及其制备方法
CN109390233A (zh) * 2017-08-08 2019-02-26 天津环鑫科技发展有限公司 一种沟槽式肖特基的制造方法

Similar Documents

Publication Publication Date Title
US8003991B2 (en) Silicon carbide MOS field effect transistor with built-in Schottky diode and method for fabrication thereof
US6518152B2 (en) Method of forming a trench schottky rectifier
KR20120031071A (ko) 도핑농도가 가변적인 vjfet와 다이오드 및 그 제조방법
CN110112206A (zh) 一种氧化镓结型场效应晶体管
CN107425068B (zh) 一种碳化硅Trench MOS器件及其制作方法
CN103681779A (zh) 一种场效应晶体管结构及其制作方法
JP2003318413A (ja) 高耐圧炭化珪素ダイオードおよびその製造方法
CN103811542A (zh) 一种锡化物超晶格势垒半导体晶体管
CN107658215A (zh) 一种碳化硅器件及其制作方法
JP2018137425A (ja) パターニングされたエミッタを有する多接合太陽電池及び該太陽電池の製造方法
CN103137688B (zh) 一种沟槽mos结构半导体装置及其制造方法
CN206116405U (zh) 一种低欧姆接触的InP MOS HEMT器件
CN116598340B (zh) 一种SiC MOSFET及其制作工艺方法
CN113066856A (zh) 具有双层外延结构的Trench MOS肖特基整流器件及制造方法
CN112018162B (zh) 一种4H-SiC侧栅集成SBD MOSFET器件及其制备方法
CN108231898A (zh) 一种低导通电阻的碳化硅功率半导体器件
JP2000049363A (ja) ショットキーダイオード及びその製造方法
CN111261725A (zh) 一种新型的超低压降肖特基二极管及其制备方法
CN110534582A (zh) 一种具有复合结构的快恢复二极管及其制造方法
CN115775730A (zh) 一种准垂直结构GaN肖特基二极管及其制备方法
CN211743165U (zh) 一种半导体功率器件结构
CN106653610A (zh) 一种改良的沟槽超势垒整流器件及其制造方法
CN207624707U (zh) 金刚石肖特基二极管
US20090250750A1 (en) Trench gate power mosfet
CN216597598U (zh) 一种高性能sgt mosfet器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210702