CN113054165B - A negative pole piece of a zinc secondary battery and its preparation method and application - Google Patents
A negative pole piece of a zinc secondary battery and its preparation method and application Download PDFInfo
- Publication number
- CN113054165B CN113054165B CN202110272014.9A CN202110272014A CN113054165B CN 113054165 B CN113054165 B CN 113054165B CN 202110272014 A CN202110272014 A CN 202110272014A CN 113054165 B CN113054165 B CN 113054165B
- Authority
- CN
- China
- Prior art keywords
- zinc
- preparation
- pole piece
- negative pole
- hydrogel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims abstract description 153
- 239000011701 zinc Substances 0.000 title claims abstract description 149
- 229910052725 zinc Inorganic materials 0.000 title claims abstract description 149
- 238000002360 preparation method Methods 0.000 title claims abstract description 52
- 239000011241 protective layer Substances 0.000 claims abstract description 88
- 239000000017 hydrogel Substances 0.000 claims abstract description 77
- 150000003751 zinc Chemical class 0.000 claims abstract description 30
- 229910052751 metal Inorganic materials 0.000 claims abstract description 23
- 239000002184 metal Substances 0.000 claims abstract description 23
- 239000000499 gel Substances 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 238000000576 coating method Methods 0.000 claims abstract description 16
- 229920000642 polymer Polymers 0.000 claims abstract description 14
- 239000011248 coating agent Substances 0.000 claims abstract description 13
- 239000000463 material Substances 0.000 claims abstract description 12
- 238000001035 drying Methods 0.000 claims abstract description 9
- 238000002156 mixing Methods 0.000 claims abstract description 8
- 239000002904 solvent Substances 0.000 claims abstract description 8
- 229920001661 Chitosan Polymers 0.000 claims description 33
- QEORIOGPVTWFMH-UHFFFAOYSA-N zinc;bis(trifluoromethylsulfonyl)azanide Chemical compound [Zn+2].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QEORIOGPVTWFMH-UHFFFAOYSA-N 0.000 claims description 21
- 239000003792 electrolyte Substances 0.000 claims description 14
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 claims description 9
- 229960001763 zinc sulfate Drugs 0.000 claims description 9
- 229910000368 zinc sulfate Inorganic materials 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 239000003960 organic solvent Substances 0.000 claims description 8
- 239000007774 positive electrode material Substances 0.000 claims description 7
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical group COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 6
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 claims description 6
- 235000019253 formic acid Nutrition 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 5
- 239000003365 glass fiber Substances 0.000 claims description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 4
- CITILBVTAYEWKR-UHFFFAOYSA-L zinc trifluoromethanesulfonate Substances [Zn+2].[O-]S(=O)(=O)C(F)(F)F.[O-]S(=O)(=O)C(F)(F)F CITILBVTAYEWKR-UHFFFAOYSA-L 0.000 claims description 4
- 239000011230 binding agent Substances 0.000 claims description 3
- 238000003760 magnetic stirring Methods 0.000 claims description 3
- ZMLPZCGHASSGEA-UHFFFAOYSA-M zinc trifluoromethanesulfonate Chemical compound [Zn+2].[O-]S(=O)(=O)C(F)(F)F ZMLPZCGHASSGEA-UHFFFAOYSA-M 0.000 claims description 3
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims description 2
- 229920001817 Agar Polymers 0.000 claims description 2
- 239000002033 PVDF binder Substances 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 239000008272 agar Substances 0.000 claims description 2
- 239000001913 cellulose Substances 0.000 claims description 2
- 229920002678 cellulose Polymers 0.000 claims description 2
- 239000006258 conductive agent Substances 0.000 claims description 2
- 108010025899 gelatin film Proteins 0.000 claims description 2
- 238000010907 mechanical stirring Methods 0.000 claims description 2
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 claims description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 2
- 239000000661 sodium alginate Substances 0.000 claims description 2
- 235000010413 sodium alginate Nutrition 0.000 claims description 2
- 229940005550 sodium alginate Drugs 0.000 claims description 2
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 claims description 2
- 238000004528 spin coating Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 239000007864 aqueous solution Substances 0.000 claims 1
- 239000008151 electrolyte solution Substances 0.000 claims 1
- 239000012528 membrane Substances 0.000 claims 1
- 230000008021 deposition Effects 0.000 abstract description 10
- 238000005260 corrosion Methods 0.000 abstract description 8
- 230000007797 corrosion Effects 0.000 abstract description 8
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 17
- 238000012360 testing method Methods 0.000 description 13
- 210000001787 dendrite Anatomy 0.000 description 9
- 238000000151 deposition Methods 0.000 description 9
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 238000007086 side reaction Methods 0.000 description 5
- 230000032258 transport Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000011056 performance test Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 230000001351 cycling effect Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000012621 metal-organic framework Substances 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- -1 transition metal carbides Chemical class 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- DEYPYJQZSPUXOP-UHFFFAOYSA-M [O-2].[O-2].[O-2].[OH-].O.[V+5].[Zn+2] Chemical compound [O-2].[O-2].[O-2].[OH-].O.[V+5].[Zn+2] DEYPYJQZSPUXOP-UHFFFAOYSA-M 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012983 electrochemical energy storage Methods 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000037427 ion transport Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 208000032953 Device battery issue Diseases 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- QNDQILQPPKQROV-UHFFFAOYSA-N dizinc Chemical compound [Zn]=[Zn] QNDQILQPPKQROV-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- DCYOBGZUOMKFPA-UHFFFAOYSA-N iron(2+);iron(3+);octadecacyanide Chemical class [Fe+2].[Fe+2].[Fe+2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCYOBGZUOMKFPA-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 239000013154 zeolitic imidazolate framework-8 Substances 0.000 description 1
- MFLKDEMTKSVIBK-UHFFFAOYSA-N zinc;2-methylimidazol-3-ide Chemical compound [Zn+2].CC1=NC=C[N-]1.CC1=NC=C[N-]1 MFLKDEMTKSVIBK-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/244—Zinc electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/26—Processes of manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明属于锌二次电池技术领域,具体涉及一种锌二次电池的负极极片及其制备方法与应用。The invention belongs to the technical field of zinc secondary batteries, and in particular relates to a negative pole piece of a zinc secondary battery and a preparation method and application thereof.
背景技术Background technique
在目前已有的储能技术中,电化学储能技术由于具有效率高、寿命长、灵活性强和维护成本低等特点,被认为是最具有前景的储能技术。其中,电池由于具有循环寿命长、功率和能量密度高、维护简单以及高效便捷等特点,成为一种优异的可再生能源整合储能技术。目前市面上推广最广泛的锂离子电池,由于其电解液使用的有机电解质通常有毒、易燃阻碍了其发展。近些年来,水系锌离子电池(ZIB)由于成本低、安全性高、操作简单和环境友好等特点被认为是最具有潜力和应用前景的新型电化学储能装置。Among the existing energy storage technologies, electrochemical energy storage technology is considered to be the most promising energy storage technology due to its high efficiency, long life, strong flexibility and low maintenance cost. Among them, batteries have become an excellent renewable energy integrated energy storage technology due to their long cycle life, high power and energy density, simple maintenance, and high efficiency and convenience. Lithium-ion batteries that are currently the most widely promoted on the market are hindered by the fact that the organic electrolytes used in their electrolytes are usually toxic and flammable. In recent years, aqueous zinc-ion batteries (ZIBs) have been regarded as the most promising new electrochemical energy storage devices due to their low cost, high safety, simple operation, and environmental friendliness.
锌电池作为最古老的电池之一,与锂离子电池(LIB)相比,锌电池中为水系电解液,极大地解决了安全性的问题。最近,可再充电锌二次电池作为一种安全、环保的电化学系统而得到了复兴。几十年来,人们已经对锌离子电池进行了大量的研究,包括氧化钒,氧化锰,普鲁士蓝类似物和有机材料等的正极材料的研究已经相当成熟。相反,关于负极的研究迫切需要发展。在水性锌离子二次电池中,金属锌来源丰富,价格便宜,氧化还原电势低(相对于标准氢电极为-0.76V)和理论容量较高(820mAhg-1),而成为了负极的优秀候选者。CN107528066A公开了一种基于羰基化合物正极材料的水系锌离子电池及其制备方法,其中负极包含金属锌及其锌合金类。组装的水系锌离子电池的能量密度能够达到300瓦时每公斤(基于羰基正极材料),为大规模安全储能提供了可行的解决方案。CN111600081A公开了一种宽温度范围和长循环寿命的可充水系锌离子电池,所述电池中正极材料为聚苯胺等有机材料或可逆脱嵌锌离子的过渡金属化合物,负极材料包括金属锌片、锌箔、锌粉、粉末多孔锌电极、或锌合金。本发明的可充水系锌离子电池,可在-90~60℃的极宽温度范围下表现出较高的能量密度和长循环寿命,在极地考察、太空探索、深海探测等特殊场合及规模储能领域具有广阔应用前景。但锌金属作为负极有诸多缺点,例如存在锌枝晶、析氢反应和钝化等问题,对电池的容量、库伦效率以及循环性能产生不利影响。因此,对于锌离子电池负极材料的保护研究也是十分重要的。CN111900388A公开了一种锌离子电池负极材料,所述负极材料为表面沉积有保护层的含锌金属材料;其中,保护层的成分为MOF衍生物和过渡金属碳化物的混合物,所述MOF衍生物为ZIF-8在300~800℃下煅烧不少于2h的产物。该负极保护层具有高比表面积、均匀的锌沉积形貌以及优异的导电性,能够降低电极的极化以及有效抑制锌枝晶的生长,有效改善锌离子电池的电化学性能,但该负极材料保护层中的MOF衍生物需要在氮气保护下煅烧,生产条件苛刻,成本增加,且不能很好地阻止负极产生析氢反应,易被腐蚀。Zinc battery is one of the oldest batteries. Compared with lithium ion battery (LIB), zinc battery is an aqueous electrolyte, which greatly solves the problem of safety. Recently, rechargeable zinc secondary batteries have been revived as a safe and environmentally friendly electrochemical system. For decades, a great deal of research has been done on zinc-ion batteries, and the research on cathode materials including vanadium oxide, manganese oxide, Prussian blue analogs, and organic materials is quite mature. On the contrary, research on anodes is in urgent need of development. In aqueous zinc-ion secondary batteries, metal zinc is abundant in source, cheap, low redox potential (-0.76V relative to standard hydrogen electrode) and high theoretical capacity (820mAhg -1 ), making it an excellent candidate for negative electrode By. CN107528066A discloses an aqueous zinc ion battery based on a carbonyl compound positive electrode material and a preparation method thereof, wherein the negative electrode comprises metallic zinc and its zinc alloys. The assembled aqueous zinc-ion battery can achieve an energy density of 300 Wh/kg (based on carbonyl cathode material), providing a feasible solution for large-scale safe energy storage. CN111600081A discloses a water-rechargeable zinc ion battery with a wide temperature range and long cycle life. The positive electrode material in the battery is an organic material such as polyaniline or a transition metal compound that can reversibly deintercalate zinc ions, and the negative electrode material includes metal zinc flakes, Zinc foil, zinc powder, powdered porous zinc electrode, or zinc alloy. The water-rechargeable zinc-ion battery of the present invention can exhibit high energy density and long cycle life in a very wide temperature range of -90 to 60°C, and can be used in special occasions such as polar exploration, space exploration, deep sea exploration and large-scale storage. The energy field has broad application prospects. However, zinc metal as a negative electrode has many disadvantages, such as zinc dendrites, hydrogen evolution reaction and passivation, which adversely affect the capacity, coulombic efficiency and cycle performance of the battery. Therefore, it is also very important to study the protection of anode materials for zinc-ion batteries. CN111900388A discloses a negative electrode material for zinc ion batteries, the negative electrode material is a zinc-containing metal material with a protective layer deposited on the surface; wherein, the components of the protective layer are a mixture of MOF derivatives and transition metal carbides, the MOF derivatives It is the product of ZIF-8 calcined at 300~800℃ for not less than 2h. The anode protective layer has high specific surface area, uniform zinc deposition morphology and excellent electrical conductivity, which can reduce the polarization of the electrode and effectively inhibit the growth of zinc dendrites, and effectively improve the electrochemical performance of the zinc ion battery. The MOF derivatives in the protective layer need to be calcined under nitrogen protection, the production conditions are harsh, the cost is increased, and the negative electrode cannot be well prevented from generating hydrogen evolution reaction, and it is easily corroded.
因此,开发一种制备方法简单可行、具有均匀的锌沉积、耐腐蚀且高度稳定的锌负极具有重要的实际意义。Therefore, it is of great practical significance to develop a zinc anode with a simple and feasible preparation method, with uniform zinc deposition, corrosion resistance, and high stability.
发明内容SUMMARY OF THE INVENTION
针对现有技术的不足,本发明的目的在于提供一种锌二次电池的负极极片及其制备方法与应用,所述负极极片的含锌金属基片上设置保护层,该保护层包括水凝胶膜以及分散于水凝胶膜中的锌盐,可以有效地阻止锌离子的2D传输,使锌的沉积更加均匀致密。同时,该保护层具有较低的透水率,可有效抑制锌二次电池在充放电循环中的副反应,包括电解液造成的锌金属腐蚀和HER反应,从而起到大大提高锌二次电池循环性能和安全性的作用。In view of the deficiencies of the prior art, the purpose of the present invention is to provide a negative electrode pole piece of a zinc secondary battery and a preparation method and application thereof, wherein a protective layer is provided on the zinc-containing metal substrate of the negative electrode pole piece, and the protective layer includes water The gel film and the zinc salt dispersed in the hydrogel film can effectively prevent the 2D transport of zinc ions and make the zinc deposition more uniform and dense. At the same time, the protective layer has a low water permeability, which can effectively inhibit the side reactions of the zinc secondary battery during the charge-discharge cycle, including the zinc metal corrosion and HER reaction caused by the electrolyte, thereby greatly improving the cycle of the zinc secondary battery. The role of performance and security.
为达此目的,本发明采用以下技术方案:For this purpose, the present invention adopts the following technical solutions:
第一方面,本发明提供一种锌二次电池的负极极片,所述负极极片包括含锌金属基片以及设置于所述含锌金属基片的表面的保护层;所述保护层包括水凝胶膜以及分散于所述水凝胶膜中的锌盐。In a first aspect, the present invention provides a negative pole piece of a zinc secondary battery, the negative pole piece includes a zinc-containing metal substrate and a protective layer disposed on the surface of the zinc-containing metal substrate; the protective layer includes A hydrogel film and a zinc salt dispersed in the hydrogel film.
本发明提供的负极极片包括含锌金属基片以及设置于所述含锌金属基片的表面的保护层,保护层包括水凝胶膜以及分散于所述水凝胶膜中的锌盐,由于水凝胶膜以及锌盐的作用,可以有效地阻止锌离子的2D传输,使锌的沉积更加均匀致密,离子传导率高。同时该保护层具有较低的透水率,可有效抑制锌二次电池在充放电循环中的副反应,从而大大提高锌二次电池的循环性能和安全性。The negative pole piece provided by the present invention includes a zinc-containing metal substrate and a protective layer disposed on the surface of the zinc-containing metal substrate, and the protective layer includes a hydrogel film and a zinc salt dispersed in the hydrogel film, Due to the effect of the hydrogel film and zinc salts, the 2D transport of zinc ions can be effectively prevented, resulting in more uniform and dense zinc deposition and high ionic conductivity. At the same time, the protective layer has a low water permeability, which can effectively inhibit the side reaction of the zinc secondary battery during the charge-discharge cycle, thereby greatly improving the cycle performance and safety of the zinc secondary battery.
优选地,所述含锌金属基片的材料包括锌片和/或锌粉。Preferably, the material of the zinc-containing metal substrate includes zinc flakes and/or zinc powder.
优选地,所述水凝胶膜包括物理水凝胶膜或化学水凝胶膜,优选为物理水凝胶膜。Preferably, the hydrogel film includes a physical hydrogel film or a chemical hydrogel film, preferably a physical hydrogel film.
优选地,所述水凝胶膜的材料选自壳聚糖、海藻酸钠、聚丙烯酸钠或琼脂中的任意一种或至少两种的组合,进一步优选为壳聚糖。Preferably, the material of the hydrogel film is selected from any one or a combination of at least two of chitosan, sodium alginate, sodium polyacrylate or agar, more preferably chitosan.
优选地,所述保护层中水凝胶膜的质量以1kg计,所述锌盐的物质的量为0.25~5mol,例如可以为0.3mol、0.5mol、1.0mol、1.5mol、2.0mol、2.5mol、3.0mol、3.5mol、4.0mol或4.5mol,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。Preferably, the mass of the hydrogel film in the protective layer is based on 1 kg, and the amount of the zinc salt is 0.25-5 mol, for example, 0.3 mol, 0.5 mol, 1.0 mol, 1.5 mol, 2.0 mol, 2.5 mol. mol, 3.0mol, 3.5mol, 4.0mol or 4.5mol, as well as specific point values between the above-mentioned point values, limited by space and for the sake of simplicity, the present invention will not exhaustively list the specific point values included in the range.
优选地,所述锌盐包括硫酸锌、三氟甲基磺酸锌或双三氟甲基磺酰亚胺锌中的任意一种或至少两种的组合,进一步优选为双三氟甲基磺酰亚胺锌。Preferably, the zinc salt includes any one or a combination of at least two of zinc sulfate, zinc trifluoromethanesulfonate or zinc bis-trifluoromethanesulfonimide, more preferably bis-trifluoromethanesulfonate Zinc imide.
三种锌盐中,双三氟甲基磺酰亚胺锌的离子导率最强,锌沉积得最均匀。Among the three zinc salts, zinc bis-trifluoromethanesulfonimide has the strongest ionic conductivity and the most uniform zinc deposition.
优选地,所述保护层的厚度为1~20μm,例如可以为2μm、4μm、5μm、8μm、10μm、12μm、14μm、15μm、16μm、17μm、18μm或19μm,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值,优选为3~10μm。Preferably, the thickness of the protective layer is 1-20 μm, for example, 2 μm, 4 μm, 5 μm, 8 μm, 10 μm, 12 μm, 14 μm, 15 μm, 16 μm, 17 μm, 18 μm or 19 μm, and specific points between the above point values Due to space limitations and for the sake of simplicity, the present invention will not exhaustively list the specific point values included in the range, and it is preferably 3 to 10 μm.
本发明中,保护层的厚度过小,无法充分发挥阻止表面腐蚀的作用;保护层的厚度过大,会导致离子传输困难,造成过电位升高。In the present invention, if the thickness of the protective layer is too small, the effect of preventing surface corrosion cannot be fully exerted; if the thickness of the protective layer is too large, it will cause difficulty in ion transmission and increase the overpotential.
第二方面,本发明提供一种如第一方面所述的负极极片的制备方法,所述制备方法包括如下步骤:In a second aspect, the present invention provides a method for preparing a negative pole piece as described in the first aspect, the preparation method comprising the following steps:
(1)将凝胶聚合物、锌盐和溶剂混合,得到分散有锌盐的水凝胶;(1) mixing gel polymer, zinc salt and solvent to obtain a hydrogel dispersed with zinc salt;
(2)将步骤(1)得到的水凝胶涂覆于含锌金属基片上,干燥,得到所述负极极片。(2) Coating the hydrogel obtained in step (1) on a zinc-containing metal substrate, and drying, to obtain the negative electrode plate.
优选地,所述水凝胶中凝胶聚合物的质量浓度为18~40mg/mL,例如可以为19mg/mL、20mg/mL、22mg/mL、25mg/mL、30mg/mL、32mg/mL、34mg/mL、35mg/mL、36mg/mL、38mg/mL或39mg/mL,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值,优选为20~30mg/mL。Preferably, the mass concentration of the gel polymer in the hydrogel is 18-40 mg/mL, such as 19 mg/mL, 20 mg/mL, 22 mg/mL, 25 mg/mL, 30 mg/mL, 32 mg/mL, 34mg/mL, 35mg/mL, 36mg/mL, 38mg/mL or 39mg/mL, as well as the specific point values between the above-mentioned point values, limited by space and for the sake of simplicity, the present invention will not exhaustively list the ranges including: The specific point value of , preferably 20 to 30 mg/mL.
本发明中,凝胶聚合物的浓度决定了保护层的力学性能,凝胶聚合物的浓度过低时,不能成膜;凝胶聚合物浓度过高时,又会使水凝胶的粘度过大,使得最终形成的膜表面不均匀且更易引入气泡,使得最终形成的保护层不够均匀致密。In the present invention, the concentration of the gel polymer determines the mechanical properties of the protective layer. When the concentration of the gel polymer is too low, the film cannot be formed; when the concentration of the gel polymer is too high, the viscosity of the hydrogel will be too high. If it is too large, the surface of the finally formed film is uneven and bubbles are more likely to be introduced, so that the finally formed protective layer is not uniform and dense enough.
水凝胶中锌盐的浓度决定了保护层的离子导率,锌盐的浓度过低,锌离子传输困难,造成过电位增大;锌盐的浓度过高,则会导致锌盐无法溶解。The concentration of zinc salt in the hydrogel determines the ionic conductivity of the protective layer. If the concentration of zinc salt is too low, the transport of zinc ions is difficult, resulting in an increase in overpotential; if the concentration of zinc salt is too high, the zinc salt cannot be dissolved.
优选地,所述水凝胶中锌盐的摩尔浓度为0.01~0.1mol/L,例如可以为0.02mol/L、0.03mol/L、0.04mol/L、0.05mol/L、0.06mol/L、0.07mol/L、0.08mol/L或0.09mol/L,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。Preferably, the molar concentration of the zinc salt in the hydrogel is 0.01-0.1 mol/L, such as 0.02 mol/L, 0.03 mol/L, 0.04 mol/L, 0.05 mol/L, 0.06 mol/L, 0.07mol/L, 0.08mol/L or 0.09mol/L, as well as specific point values between the above-mentioned point values, limited by space and for the sake of simplicity, the present invention will not exhaustively list the specific point values included in the range.
优选地,所述溶剂为水与有机溶剂的组合物。Preferably, the solvent is a combination of water and an organic solvent.
优选地,所述有机溶剂为凝胶聚合物的良溶剂。Preferably, the organic solvent is a good solvent for the gel polymer.
优选地,所述凝胶聚合物为壳聚糖,所述有机溶剂为甲酸。Preferably, the gel polymer is chitosan, and the organic solvent is formic acid.
优选地,所述有机溶剂与水的质量比1:(50~500),例如可以为1:55、1:60、1:80、1:100、1:150、1:200、1:250、1:300、1:350、1:400、1:450或1:480等。Preferably, the mass ratio of the organic solvent to water is 1:(50-500), for example, it can be 1:55, 1:60, 1:80, 1:100, 1:150, 1:200, 1:250 , 1:300, 1:350, 1:400, 1:450 or 1:480, etc.
本发明中,所述混合的方法为搅拌;所述搅拌包括磁力搅拌和/或机械搅拌;In the present invention, the mixing method is stirring; the stirring includes magnetic stirring and/or mechanical stirring;
优选地,所述混合的时间为0.5~1h,例如可以为0.6h、0.7h、0.8h或0.9h,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。Preferably, the mixing time is 0.5-1h, for example, it can be 0.6h, 0.7h, 0.8h or 0.9h, and a specific point value between the above-mentioned point values. Due to space limitations and for the sake of brevity, the present invention The specific point values encompassed by the ranges are not exhaustively recited.
优选地,所述涂覆的方法选自旋涂、刷涂或刮涂,进一步优选为刮涂。Preferably, the coating method is selected from spin coating, brush coating or blade coating, more preferably blade coating.
优选地,所述刮涂的仪器为四面制备器。Preferably, the blade coating device is a four-sided preparation device.
优选地,所述四面制备器的设置厚度为10~500μm,例如可以为50μm、100μm、150μm、200μm、250μm、300μm、350μm、400μm、450μm或480μm,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值,进一步优选为75~150μm。Preferably, the set thickness of the four-sided preparation device is 10-500 μm, for example, it can be 50 μm, 100 μm, 150 μm, 200 μm, 250 μm, 300 μm, 350 μm, 400 μm, 450 μm or 480 μm, and specific point values between the above point values, Due to space limitations and for the sake of simplicity, the present invention will not exhaustively list the specific point values included in the range, and it is more preferably 75-150 μm.
优选地,所述干燥的温度为70~100℃,例如可以为75℃、80℃、85℃、90℃、95℃或98℃,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。Preferably, the drying temperature is 70-100°C, for example, it can be 75°C, 80°C, 85°C, 90°C, 95°C or 98°C, and the specific point values between the above-mentioned point values are limited by space and description. For the sake of brevity, the present invention will not exhaustively enumerate the specific value included in the range.
优选地,所述干燥的时间为4~10h,例如可以为5h、6h、7h、8h或9h,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。Preferably, the drying time is 4-10h, for example, it can be 5h, 6h, 7h, 8h or 9h, and the specific point value between the above-mentioned point values. Due to space limitations and for the sake of brevity, the present invention does not The specific point values included in the range are listed exhaustively.
第三方面,本发明提供一种锌二次电池,所述锌二次电池包括正极极片、如第一方面所述的负极极片、隔膜和电解液;所述隔膜设置于所述正极极片与负极极片之间。In a third aspect, the present invention provides a zinc secondary battery, the zinc secondary battery includes a positive pole piece, the negative pole piece according to the first aspect, a separator and an electrolyte; the separator is arranged on the positive pole between the plate and the negative pole plate.
优选地,所述正极极片包括钛箔集流体和正极膜片。Preferably, the positive electrode sheet includes a titanium foil current collector and a positive electrode diaphragm.
优选地,所述正极膜片的材料包括正极活性物质、导电剂和粘结剂。Preferably, the material of the positive electrode film includes a positive electrode active material, a conductive agent and a binder.
优选地,所述正极活性物质包括二氧化锰和/或五氧化二钒。Preferably, the positive active material includes manganese dioxide and/or vanadium pentoxide.
优选地,所述隔膜的材料包括玻璃纤维、纤维素或聚偏二氟乙烯中的任意一种或至少两种的组合。Preferably, the material of the separator includes any one or a combination of at least two of glass fiber, cellulose or polyvinylidene fluoride.
相对于现有技术,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)本发明在含锌金属基片上设置保护层,该保护层包括水凝胶膜以及分散于水凝胶膜中的锌盐。该保护层可以有效地阻止锌离子的2D传输,使锌的沉积更加均匀致密;同时该保护层具有较低的透水率,可有效抑制锌二次电池在充放电循环中的副反应,包括电解液造成的锌金属腐蚀和HER反应,设置有该保护层的锌二次电池的负极极片无枝晶的循环时间可长达800~1000h,从而起到大大提高锌二次电池循环性能和安全性的作用。(2)本发明提供的负极极片的制备方法简单,易于操作且成本较低。(1) In the present invention, a protective layer is provided on the zinc-containing metal substrate, and the protective layer includes a hydrogel film and a zinc salt dispersed in the hydrogel film. The protective layer can effectively prevent the 2D transport of zinc ions, so that the deposition of zinc is more uniform and dense; at the same time, the protective layer has a low water permeability, which can effectively inhibit the side reactions of zinc secondary batteries during charge-discharge cycles, including electrolysis. The zinc metal corrosion and HER reaction caused by the liquid, the dendrite-free cycle time of the negative pole piece of the zinc secondary battery provided with the protective layer can be as long as 800-1000h, thus greatly improving the cycle performance and safety of the zinc secondary battery. the role of sex. (2) The preparation method of the negative electrode pole piece provided by the present invention is simple, easy to operate and low cost.
附图说明Description of drawings
图1为实施例1提供的负极极片的表面SEM图;Fig. 1 is the surface SEM image of the negative pole piece provided in Example 1;
图2是实施例1提供的负极极片的横截面的SEM图;Fig. 2 is the SEM image of the cross section of the negative pole piece provided in Example 1;
图3是实施例1中所述负极极片在硫酸锌电解液中循环过后在负极极片上锌沉积的表面形貌的SEM图;Fig. 3 is the SEM image of the surface morphology of the zinc deposition on the negative pole piece after the negative pole piece described in Example 1 is circulated in the zinc sulfate electrolyte;
图4是对比例1中所述负极极片在硫酸锌电解液中循环过后在负极极片上锌沉积的表面形貌的SEM图;Fig. 4 is the SEM image of the surface morphology of the zinc deposition on the negative pole piece after the negative pole piece described in Comparative Example 1 is circulated in the zinc sulfate electrolyte;
图5是由实施例1中和对比例1中所述负极极片制得的对称电池在循环性能测试中得到的长循环性能曲线图;5 is a long cycle performance curve diagram obtained in the cycle performance test of the symmetrical battery prepared by the negative pole piece described in Example 1 and Comparative Example 1;
图6是实施例1和对比例1制备得到的锌-五氧化二钒全电池在2mol/L的硫酸锌电解液中的长循环性能曲线图及对应的库伦效率。6 is a graph showing the long-term cycle performance and the corresponding coulombic efficiency of the zinc-vanadium pentoxide full cells prepared in Example 1 and Comparative Example 1 in 2 mol/L zinc sulfate electrolyte.
具体实施方式Detailed ways
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。The technical solutions of the present invention are further described below through specific embodiments. It should be understood by those skilled in the art that the embodiments are only for helping the understanding of the present invention, and should not be regarded as a specific limitation of the present invention.
实施例1Example 1
本实施例提供一种锌二次电池的负极极片,所述负极极片包括锌片以及设置于所述锌片的表面的保护层;所述保护层包括壳聚糖水凝胶膜以及分散于水凝胶膜中的双三氟甲基磺酰亚胺锌,保护层的厚度为7μm。This embodiment provides a negative electrode plate of a zinc secondary battery, the negative electrode plate includes a zinc plate and a protective layer disposed on the surface of the zinc plate; the protective layer includes a chitosan hydrogel film and a Zinc bis-trifluoromethanesulfonimide in the hydrogel film with a protective layer thickness of 7 μm.
所述负极极片的制备方法如下:The preparation method of the negative pole piece is as follows:
首先用分析天平称取定量的双三氟甲基磺酰亚胺锌和壳聚糖粉末,加入到甲酸的稀溶液(体积比,甲酸:水=1:100)中,配置成含有20mg/mL壳聚糖,0.05mol/L双三氟甲基磺酰亚胺锌的凝胶,放置在磁力搅拌器上搅拌30min以促进壳聚糖的溶解,得到水凝胶;用移液枪移取水凝胶于锌片上,再用100μm设定厚度的四面制备器将凝胶均匀刮涂在干净的锌片表面,在80℃真空干燥箱中干燥6h后得到负极极片。并将干燥后的锌片裁切为直径12mm的小圆片,得到所述锌二次电池的负极极片。First, use an analytical balance to weigh quantitative zinc bis-trifluoromethanesulfonimide and chitosan powder, add them to a dilute solution of formic acid (volume ratio, formic acid:water=1:100), and prepare to contain 20 mg/mL Chitosan, 0.05mol/L bis-trifluoromethylsulfonimide zinc gel, placed on a magnetic stirrer and stirred for 30 minutes to promote the dissolution of chitosan to obtain a hydrogel; use a pipette to remove the hydrogel Glue on the zinc sheet, and then use a four-sided preparation device with a set thickness of 100 μm to evenly scrape the gel on the surface of the clean zinc sheet, and dry it in a vacuum drying oven at 80 °C for 6 hours to obtain a negative electrode. The dried zinc sheet was cut into small rounds with a diameter of 12 mm to obtain the negative electrode sheet of the zinc secondary battery.
采用扫描电子显微镜(SEM,仪器型号Hitachi S-4800,Japan)对制得的负极极片的表面以及横截面进行扫描电子显微镜测试,得到的扫描电镜图(SEM图)如图1和图2所示,从图2中可知,本实施例中保护层的厚度为7μm。Scanning electron microscope (SEM, instrument model Hitachi S-4800, Japan) was used to test the surface and cross-section of the prepared negative electrode piece. As can be seen from FIG. 2 , the thickness of the protective layer in this embodiment is 7 μm.
实施例2Example 2
本实施例提供一种锌二次电池的负极极片,其与实施例1的区别仅在于,保护层中的锌盐为双三氟甲基磺酸锌;其他材料、用量及制备方法均与实施例1相同。This embodiment provides a negative pole piece of a zinc secondary battery, which differs from Example 1 only in that the zinc salt in the protective layer is zinc bis-trifluoromethanesulfonate; other materials, dosages and preparation methods are the same as Example 1 is the same.
实施例3Example 3
本实施例提供一种锌二次电池的负极极片,所述负极极片包括锌片以及设置于所述基片的表面的保护层;所述保护层包括壳聚糖水凝胶膜以及分散于水凝胶膜中的双三氟甲基磺酰亚胺锌,保护层的厚度为7μm;其制备方法与实施例1的区别仅在于,水凝胶中壳聚糖的质量浓度为30mg/mL。This embodiment provides a negative electrode plate of a zinc secondary battery, the negative electrode plate includes a zinc plate and a protective layer disposed on the surface of the substrate; the protective layer includes a chitosan hydrogel film and a The thickness of the protective layer of zinc bis-trifluoromethanesulfonimide in the hydrogel film is 7 μm; the difference between its preparation method and Example 1 is only that the mass concentration of chitosan in the hydrogel is 30 mg/mL .
实施例4Example 4
本实施例提供一种锌二次电池的负极极片,所述负极极片包括锌片以及设置于所述锌片的表面的保护层;所述保护层包括壳聚糖水凝胶膜以及分散于水凝胶膜中的双三氟甲基磺酰亚胺锌,保护层的厚度为7μm;其制备方法与实施例1的区别仅在于:水凝胶中双三氟甲基磺酰亚胺锌的浓度为0.02mol/L。This embodiment provides a negative electrode plate of a zinc secondary battery, the negative electrode plate includes a zinc plate and a protective layer disposed on the surface of the zinc plate; the protective layer includes a chitosan hydrogel film and a For the zinc bis-trifluoromethylsulfonimide in the hydrogel film, the thickness of the protective layer is 7 μm; the difference between the preparation method and Example 1 is only that the zinc bis-trifluoromethylsulfonimide in the hydrogel is The concentration of 0.02mol/L.
实施例5Example 5
本实施例提供一种锌二次电池的负极极片,所述负极极片包括锌片以及设置于所述锌片的表面的保护层;所述保护层包括壳聚糖水凝胶膜以及分散于水凝胶膜中的双三氟甲基磺酰亚胺锌,保护层的厚度为7μm;其制备方法与实施例1的区别仅在于:水凝胶中双三氟甲基磺酰亚胺锌的浓度为0.1mol/L。This embodiment provides a negative electrode plate of a zinc secondary battery, the negative electrode plate includes a zinc plate and a protective layer disposed on the surface of the zinc plate; the protective layer includes a chitosan hydrogel film and a For the zinc bis-trifluoromethylsulfonimide in the hydrogel film, the thickness of the protective layer is 7 μm; the difference between the preparation method and Example 1 is only that the zinc bis-trifluoromethylsulfonimide in the hydrogel is The concentration of 0.1mol/L.
实施例6Example 6
本实施例提供一种锌二次电池的负极极片,所述负极极片包括锌片以及设置于所述锌片的表面的保护层;所述保护层包括壳聚糖水凝胶膜以及分散于水凝胶膜中的双三氟甲基磺酰亚胺锌,保护层的厚度为7μm,其制备方法与实施例1的区别仅在于:水凝胶中双三氟甲基磺酰亚胺锌的浓度为0.5mol/L。This embodiment provides a negative electrode plate of a zinc secondary battery, the negative electrode plate includes a zinc plate and a protective layer disposed on the surface of the zinc plate; the protective layer includes a chitosan hydrogel film and a The thickness of the protective layer of the zinc bis-trifluoromethanesulfonimide in the hydrogel film is 7 μm. The difference between the preparation method and Example 1 is only that the zinc bis-trifluoromethylsulfonimide in the hydrogel is The concentration of 0.5mol/L.
实施例7Example 7
本实施例提供一种锌二次电池的负极极片,所述负极极片包括锌片以及设置于所述锌片的表面的保护层;所述保护层包括壳聚糖水凝胶膜以及分散于水凝胶膜中的双三氟甲基磺酰亚胺锌,保护层的厚度为7μm,其制备方法与实施例1的区别仅在于:水凝胶中双三氟甲基磺酰亚胺锌的浓度为0.001mol/L。This embodiment provides a negative electrode plate of a zinc secondary battery, the negative electrode plate includes a zinc plate and a protective layer disposed on the surface of the zinc plate; the protective layer includes a chitosan hydrogel film and a The thickness of the protective layer of the zinc bis-trifluoromethanesulfonimide in the hydrogel film is 7 μm. The difference between the preparation method and Example 1 is only that the zinc bis-trifluoromethylsulfonimide in the hydrogel is The concentration of 0.001mol/L.
实施例8Example 8
本实施例提供一种锌二次电池的负极极片,所述负极极片包括锌片以及设置于所述锌片的表面的保护层;所述保护层包括壳聚糖水凝胶膜以及分散于水凝胶膜中的双三氟甲基磺酰亚胺锌,保护层的厚度为1μm;其制备方法与实施例1的区别仅在于:水凝胶中壳聚糖的质量浓度为18mg/mL。This embodiment provides a negative electrode plate of a zinc secondary battery, the negative electrode plate includes a zinc plate and a protective layer disposed on the surface of the zinc plate; the protective layer includes a chitosan hydrogel film and a The thickness of the protective layer of zinc bis-trifluoromethanesulfonimide in the hydrogel film is 1 μm; the difference between its preparation method and Example 1 is only that the mass concentration of chitosan in the hydrogel is 18 mg/mL .
实施例9Example 9
本实施例提供一种锌二次电池的负极极片,所述负极极片包括锌片以及设置于所述锌片的表面的保护层;所述保护层包括壳聚糖水凝胶膜以及分散于水凝胶膜中的双三氟甲基磺酰亚胺锌,保护层的厚度为20μm;其制备方法与实施例1的区别仅在于:水凝胶中壳聚糖的质量浓度为40mg/mL。This embodiment provides a negative electrode plate of a zinc secondary battery, the negative electrode plate includes a zinc plate and a protective layer disposed on the surface of the zinc plate; the protective layer includes a chitosan hydrogel film and a The thickness of the protective layer of zinc bis-trifluoromethanesulfonimide in the hydrogel film is 20 μm; the difference between its preparation method and Example 1 is only that the mass concentration of chitosan in the hydrogel is 40 mg/mL .
实施例10Example 10
本实施例提供一种锌二次电池的负极极片,所述负极极片包括锌片以及设置于所述锌片的表面的保护层;所述保护层包括壳聚糖水凝胶膜以及分散于水凝胶膜中的双三氟甲基磺酰亚胺锌,保护层的厚度为7μm;其制备方法与实施例1的区别仅在于:水凝胶中壳聚糖的浓度为80mg/mL。This embodiment provides a negative electrode plate of a zinc secondary battery, the negative electrode plate includes a zinc plate and a protective layer disposed on the surface of the zinc plate; the protective layer includes a chitosan hydrogel film and a The thickness of the protective layer of zinc bis-trifluoromethanesulfonimide in the hydrogel film is 7 μm; the difference between its preparation method and Example 1 is only that the concentration of chitosan in the hydrogel is 80 mg/mL.
实施例11Example 11
本实施例提供一种锌二次电池的负极极片,所述负极极片包括锌片以及设置于所述锌片的表面的保护层;所述保护层包括壳聚糖水凝胶膜以及分散于水凝胶膜中的双三氟甲基磺酰亚胺锌,保护层的厚度为7μm;其制备方法与实施例1的区别仅在于:水凝胶中壳聚糖的浓度为1mg/mL。This embodiment provides a negative electrode plate of a zinc secondary battery, the negative electrode plate includes a zinc plate and a protective layer disposed on the surface of the zinc plate; the protective layer includes a chitosan hydrogel film and a The thickness of the protective layer of zinc bis-trifluoromethanesulfonimide in the hydrogel film is 7 μm; the difference between its preparation method and Example 1 is only that the concentration of chitosan in the hydrogel is 1 mg/mL.
实施例12Example 12
本实施例提供一种锌二次电池的负极极片,所述负极极片包括锌片以及设置于所述锌片的表面的保护层;所述保护层包括壳聚糖水凝胶膜以及分散于水凝胶膜中的双三氟甲基磺酰亚胺锌,保护层的厚度为10μm;所述负极极片的制备方法与实施例1相同。This embodiment provides a negative electrode plate of a zinc secondary battery, the negative electrode plate includes a zinc plate and a protective layer disposed on the surface of the zinc plate; the protective layer includes a chitosan hydrogel film and a For the zinc bis-trifluoromethanesulfonimide in the hydrogel film, the thickness of the protective layer is 10 μm; the preparation method of the negative electrode plate is the same as that in Example 1.
对比例1Comparative Example 1
本对比例提供一种锌二次电池的负极极片,所述负极极片为锌片。This comparative example provides a negative pole piece of a zinc secondary battery, and the negative pole piece is a zinc piece.
所述负极极片的制备方法如下:The preparation method of the negative pole piece is as follows:
用砂纸将锌片表面简单打磨,直接将锌片裁切为直径12mm的小圆片,得到所述锌二次电池的负极极片。The surface of the zinc sheet was simply polished with sandpaper, and the zinc sheet was directly cut into small discs with a diameter of 12 mm to obtain the negative electrode piece of the zinc secondary battery.
将实施例1的负极极片和对比例1的负极极片在2mol/L硫酸锌电解液中经过40周循环后的,采用扫描电子显微镜(SEM,Hitachi S-4800,Japan;加速电压10kV)分别对其进行表面形貌的表征,得到的扫描电镜图如图3和4所示。The negative pole piece of Example 1 and the negative pole piece of Comparative Example 1 were cycled in 2mol/L zinc sulfate electrolyte for 40 weeks, using a scanning electron microscope (SEM, Hitachi S-4800, Japan; accelerating voltage 10kV) The surface morphology was characterized respectively, and the obtained SEM images were shown in Figures 3 and 4.
从图3和图4的对比中可以看出,含有保护层的锌负极表面循环40圈后,锌片的表面更加平整和致密,这说明保护层有效地改善了金属锌负极的沉积形貌,抑制了枝晶的产生,从而大大提高了电池的循环寿命和安全性能。对比对称电池的长循环性能,发现含有保护层的锌负极,对称电池的循环寿命得到了极大的提高。观察到没有锌负极表面保护层的对称电池的循环寿命很短,并且在40圈循环后,拆开电池,通发现锌片的表面发生严重点蚀现象,且锌的沉积为片状,锌片表面有很多的枝晶,在之后的循环中这些枝晶会继续生长并刺穿隔膜,造成电池短路,从而影响锌电池的循环寿命并产生安全隐患。从而可以得知,含有保护层的锌负极对称电池的循环寿命明显提高,且循环过电位明显低于普通锌片。这说明了保护层对锌枝晶生长有调控作用,并且对表面钝化造成的离子传输受阻问题有着极大的改善。From the comparison between Figure 3 and Figure 4, it can be seen that after the surface of the zinc anode with the protective layer is cycled for 40 cycles, the surface of the zinc flakes is smoother and denser, which shows that the protective layer effectively improves the deposition morphology of the metal zinc anode. The generation of dendrites is suppressed, thereby greatly improving the cycle life and safety performance of the battery. Comparing the long cycle performance of the symmetrical battery, it is found that the zinc anode containing the protective layer greatly improves the cycle life of the symmetrical battery. It was observed that the cycle life of the symmetrical battery without the protective layer on the surface of the zinc negative electrode was very short, and after 40 cycles, the battery was disassembled, and it was found that the surface of the zinc flakes had serious pitting corrosion, and the zinc was deposited in flakes, and the zinc flakes were disassembled. There are many dendrites on the surface, and these dendrites will continue to grow and pierce the separator in the subsequent cycles, resulting in a short circuit of the battery, thereby affecting the cycle life of the zinc battery and causing safety hazards. It can be seen that the cycle life of the zinc anode symmetrical battery containing the protective layer is significantly improved, and the cycle overpotential is significantly lower than that of ordinary zinc flakes. This shows that the protective layer can regulate the growth of zinc dendrites, and has a great improvement on the hindered ion transport caused by surface passivation.
对比例2Comparative Example 2
本对比例提供一种锌二次电池的负极极片。所述负极极片包括锌片以及位于所述锌片表面的保护层;所述保护层的材料为双三氟甲基磺酰亚胺锌。所述保护层的厚度为0.1μm。This comparative example provides a negative pole piece of a zinc secondary battery. The negative pole piece includes a zinc piece and a protective layer on the surface of the zinc piece; the material of the protective layer is zinc bis-trifluoromethanesulfonimide. The thickness of the protective layer is 0.1 μm.
所述负极极片的制备方法如下:The preparation method of the negative pole piece is as follows:
首先用分析天平称取定量的双三氟甲基磺酰亚胺锌粉末,配置成含有浓度为0.05mol/L双三氟甲基磺酰亚胺锌的溶液,然后用移液枪移取溶液于锌片上,再用四面制备器将溶液均匀涂抹在锌片表面,在80℃真空干燥箱中干燥6h后得到负极极片,并将干燥后的锌片裁切为直径12mm的小圆片,得到所述锌二次电池的负极极片。First, use an analytical balance to weigh quantitative zinc bis-trifluoromethanesulfonimide powder, prepare a solution containing zinc bis-trifluoromethylsulfonimide with a concentration of 0.05 mol/L, and then use a pipette to pipette the solution On the zinc flakes, the solution was evenly spread on the surface of the zinc flakes with a four-sided preparation device, and the negative pole pieces were obtained after drying in a vacuum drying oven at 80 °C for 6 hours. The negative pole piece of the zinc secondary battery was obtained.
对比例3Comparative Example 3
本对比例提供一种锌二次电池的负极极片。所述负极极片包括锌片以及位于所述锌片表面的保护层;所述保护层为壳聚糖水凝胶膜,保护层的厚度为7μm。This comparative example provides a negative pole piece of a zinc secondary battery. The negative pole piece includes a zinc piece and a protective layer on the surface of the zinc piece; the protective layer is a chitosan hydrogel film, and the thickness of the protective layer is 7 μm.
所述负极极片的制备方法如下:The preparation method of the negative pole piece is as follows:
首先用分析天平称取定量的壳聚糖粉末,加入到甲酸的稀溶液中,(体积比,甲酸:水=1:100)配置成含有20mg/mL壳聚糖的凝胶,放置在磁力搅拌器上搅拌30min以促进壳聚糖的溶解,得到水凝胶;然后用移液枪移取搅拌后的水凝胶于锌片上,再用100μm厚度的四面制备器将凝胶均匀涂覆在干净的裸锌片表面,在80℃真空干燥箱中干燥6h后得到负极极片,并将干燥后的锌片裁切为直径12mm的小圆片,得到所述锌二次电池的负极极片。First, weigh a quantitative amount of chitosan powder with an analytical balance, add it to a dilute solution of formic acid, (volume ratio, formic acid: water = 1:100) to form a gel containing 20 mg/mL chitosan, and place it under magnetic stirring. Stir on the device for 30 min to promote the dissolution of chitosan to obtain a hydrogel; then use a pipette to transfer the stirred hydrogel onto the zinc sheet, and then use a 100 μm thick four-sided preparation device to evenly coat the gel on a clean surface. The surface of the bare zinc sheet was dried in a vacuum drying oven at 80°C for 6 hours to obtain a negative electrode sheet, and the dried zinc sheet was cut into small discs with a diameter of 12 mm to obtain the negative electrode sheet of the zinc secondary battery.
性能测试与结果分析Performance testing and result analysis
1.对称电池循环性能测试:将实施例1-12与对比例1-3制备得到的两片相同的负极极片,2mol/L的硫酸锌电解液和玻璃纤维隔膜组装成锌-锌对称电池进行循环性能测试,得到无枝晶循环时间(如表1所示)以及实施例1和对比例1制备得到的对称电池在该电解液中的长循环性能曲线图(如图5所示)。测试条件为:采用新威电池测试系统,进行长时间的充放电循环测试,循环电流密度为0.5mA/cm2,循环的锌金属的量控制为0.5mAh/cm2,测试温度为25℃。1. Cyclic performance test of symmetrical battery: Two identical negative pole pieces prepared in Example 1-12 and Comparative Example 1-3, 2mol/L zinc sulfate electrolyte and glass fiber separator were assembled into a zinc-zinc symmetrical battery The cycle performance test was carried out to obtain the dendrite-free cycle time (as shown in Table 1) and the long cycle performance curves of the symmetrical batteries prepared in Example 1 and Comparative Example 1 in the electrolyte (as shown in Figure 5). The test conditions are as follows: a long-term charge-discharge cycle test is performed using the Xinwei battery test system, the cycle current density is 0.5mA/cm 2 , the amount of zinc metal circulated is controlled at 0.5mAh/cm 2 , and the test temperature is 25°C.
表1Table 1
根据表1数据可知,所述无枝晶循环时间,是指负极极片循环过程中无枝晶产生的循环时间。从实施例1与对比例1的数据结果可知,不对负极极片进行处理,其结果对比非常显著,不添加保护层的锌片在循环至60h时,就发生了严重的枝晶和点蚀现象,造成对称电池短路,因此印证了添加保护层是必要的。According to the data in Table 1, the dendrite-free cycle time refers to the cycle time during which no dendrites are generated during the cycle of the negative pole piece. From the data results of Example 1 and Comparative Example 1, it can be seen that the negative pole piece is not treated, and the results are compared very significantly. When the zinc piece without the protective layer is cycled to 60h, serious dendrites and pitting phenomenon occur. , resulting in a short circuit of the symmetrical battery, so it is necessary to add a protective layer.
从实施例1与对比例2和3数据结果对比可知,仅存在壳聚糖或者双三氟甲基磺酰亚胺锌形成的极片表面保护层不够致密且不能均匀覆盖锌负极表面,故而在循环的过程中,表面未被保护到的部分容易首当其冲成为枝晶形成的位点,并进一步造成循环寿命的缩短和库伦效率的降低。其中单独添加双三氟甲基磺酰亚胺锌作为保护层,不能起到阻止表面腐蚀导致电池的失效。另外,单独添加壳聚糖作为保护层,由于锌离子传输困难,所以电池在循环至300h以上时,表面会发生严重的副反应,造成表面钝化层的堆积,导致离子传输困难,使得循环过电位逐渐升高,当过电位超出一定范围时,电极表面变得极不稳定,逐渐发生短路,造成保护的失效。From the comparison of the data results of Example 1 and Comparative Examples 2 and 3, it can be seen that the protective layer on the surface of the pole piece formed by only chitosan or zinc bis-trifluoromethanesulfonimide is not dense enough and cannot evenly cover the surface of the zinc negative electrode, so the During the cycling process, the unprotected part of the surface is likely to bear the brunt of the dendrite formation site, which further shortens the cycle life and reduces the Coulombic efficiency. The addition of zinc bis-trifluoromethanesulfonimide alone as a protective layer cannot prevent surface corrosion and lead to battery failure. In addition, when chitosan is added as a protective layer alone, due to the difficulty in transporting zinc ions, when the battery is cycled for more than 300 hours, serious side reactions will occur on the surface, resulting in the accumulation of the surface passivation layer, resulting in difficult ion transport and making the battery over cycle. The potential increases gradually. When the overpotential exceeds a certain range, the electrode surface becomes extremely unstable, and a short circuit occurs gradually, resulting in the failure of the protection.
从实施例1与实施例6、7比较,可以看出双三氟甲基磺酰亚胺锌浓度过高时,由于锌盐的析出将会严重影响溶液的离子导率,使得电池在循环600h后,发生失效。但当双三氟甲基磺酰亚胺锌摩尔浓度过低时,形成的表面保护层不够致密同时离子导率也较低,使得电池在循环550h后,造成保护失效。实施例1与实施例10、11比较,可以看出壳聚糖浓度过高时,形成的保护层容易产生气泡、粘性较大并且不利于双三氟甲基磺酰亚胺锌的溶解,导致锌离子传输困难,电池在循环750h后,造成保护失效。但当壳聚糖浓度过低时,则不能形成均匀致密的保护膜,不能很好地阻止表面腐蚀,导致循环70h后电池的失效。From the comparison between Example 1 and Examples 6 and 7, it can be seen that when the concentration of zinc bis-trifluoromethylsulfonimide is too high, the ionic conductivity of the solution will be seriously affected by the precipitation of zinc salt, which makes the battery cycle for 600h. After that, failure occurred. However, when the molar concentration of zinc bis-trifluoromethanesulfonimide is too low, the surface protection layer formed is not dense enough and the ionic conductivity is also low, which makes the battery fail to protect after 550h of cycling. Comparing Example 1 with Examples 10 and 11, it can be seen that when the concentration of chitosan is too high, the formed protective layer is prone to bubbles, has high viscosity and is not conducive to the dissolution of zinc bis-trifluoromethanesulfonimide, resulting in The transport of zinc ions is difficult, and the protection fails after the battery is cycled for 750 h. However, when the concentration of chitosan is too low, a uniform and dense protective film cannot be formed, and the surface corrosion cannot be well prevented, resulting in the failure of the battery after 70 h of cycling.
如图5所示,从实施例1与对比例1的过电位数据对比可知,不对负极极片进行处理,其结果对比非常显著,用不添加保护层的锌片组装的对电池,在循环至60h时,就发生了严重的过电位增大的现象,说明电极表面发生了严重的副反应,造成对电池短路失效,而添加保护层的锌片循环时间长达1000h。因此保护层的存在可以很好的延长负极极片的循环寿命。As shown in Figure 5, from the comparison of the overpotential data of Example 1 and Comparative Example 1, it can be seen that the negative pole piece is not treated, and the result is very significant. At 60h, a serious overpotential increase occurred, indicating that a serious side reaction occurred on the electrode surface, resulting in short-circuit failure to the battery, and the zinc flakes with a protective layer had a cycle time of up to 1000h. Therefore, the existence of the protective layer can well prolong the cycle life of the negative pole piece.
2.全电池循环性能测试:将实施例1与对比例1制备得到的一片锌二次电池的负极极片、一片商用五氧化二钒、碳黑以及粘接剂按8:1:1的比例调浆涂在铝箔上制备得到的正极极片、2mol/L硫酸锌电解液和玻璃纤维隔膜组装成锌-五氧化二钒全电池进行测试。全电池充放电测试条件为:采用新威电池测试系统,进行长时间的充放电循环测试,充放电的电流密度为10A·g-1,测试温度控制在25℃。其测试结果如图6所示。2. Full battery cycle performance test: a negative electrode piece of a zinc secondary battery prepared in Example 1 and Comparative Example 1, a piece of commercial vanadium pentoxide, carbon black and a binder in a ratio of 8:1:1 The positive electrode plate prepared by sizing and coating on aluminum foil, 2mol/L zinc sulfate electrolyte and glass fiber separator were assembled into a zinc-vanadium pentoxide full battery for testing. The charging and discharging test conditions of the full battery are as follows: the Xinwei battery test system is used to conduct a long-term charging and discharging cycle test, the current density of the charging and discharging is 10A·g -1 , and the test temperature is controlled at 25℃. The test results are shown in Figure 6.
负极的稳定与否也可以通过全电池充放电测试来进行检验,全电池的循环寿命和容量保持率很大程度上受负极表面稳定性的影响。The stability of the negative electrode can also be tested by the full battery charge-discharge test. The cycle life and capacity retention rate of the full battery are largely affected by the stability of the negative electrode surface.
根据图6数据可知,所述比容量,为单位质量的正极材料一次放电所产生的电量,单位为毫安时/克。所述库伦效率,是指电池放电容量与同循环过程中充电容量之比,即放电容量与充电容量之百分比。从实施例1与对比例1的数据结果可知,不对负极极片进行处理,其结果对比非常显著,用不添加保护层的锌片组装的全电池,在循环至第370圈时,就发生了严重的容量和库伦效率衰减的现象,造成全电池短路失效,因此印证了添加保护层是必要的。According to the data in FIG. 6 , the specific capacity is the amount of electricity generated by one discharge of the positive electrode material per unit mass, and the unit is milliamp-hours/g. The Coulomb efficiency refers to the ratio of the battery discharge capacity to the charge capacity during the same cycle, that is, the percentage of the discharge capacity to the charge capacity. From the data results of Example 1 and Comparative Example 1, it can be seen that the negative pole piece is not treated, and the result is very significant. The full battery assembled with the zinc piece without the protective layer was cycled to the 370th cycle. The serious capacity and Coulomb efficiency decay phenomenon causes the short-circuit failure of the whole cell, so it is confirmed that the addition of a protective layer is necessary.
申请人声明,本发明通过上述实施例来说明本发明的一种锌二次电池的负极极片及其制备方法与应用,但本发明并不局限于上述实施例,即不意味着本发明必须依赖上述实施例才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。The applicant declares that the present invention is to illustrate the negative pole piece of a zinc secondary battery of the present invention and its preparation method and application through the above-mentioned embodiments, but the present invention is not limited to the above-mentioned embodiments, that is to say, it does not mean that the present invention must Implementation depends on the above-mentioned embodiment. Those skilled in the art should understand that any improvement of the present invention, the equivalent replacement of each raw material of the product of the present invention, the addition of auxiliary components, the selection of specific methods, etc., all fall within the protection scope and disclosure scope of the present invention.
Claims (35)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110272014.9A CN113054165B (en) | 2021-03-12 | 2021-03-12 | A negative pole piece of a zinc secondary battery and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110272014.9A CN113054165B (en) | 2021-03-12 | 2021-03-12 | A negative pole piece of a zinc secondary battery and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113054165A CN113054165A (en) | 2021-06-29 |
CN113054165B true CN113054165B (en) | 2022-06-03 |
Family
ID=76512359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110272014.9A Active CN113054165B (en) | 2021-03-12 | 2021-03-12 | A negative pole piece of a zinc secondary battery and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113054165B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113690397B (en) * | 2021-08-19 | 2023-01-06 | 国家纳米科学中心 | A kind of zinc negative pole piece and its preparation method and application |
CN113745675B (en) * | 2021-09-07 | 2023-05-16 | 中新国际联合研究院 | Zinc electrode protected by negative framework hydrogel as modification layer and preparation method thereof |
CN113972376B (en) * | 2021-10-21 | 2023-06-02 | 中国石油天然气股份有限公司 | Three-dimensional metal framework supported porous zinc anode material and preparation method and application thereof |
CN113991086B (en) * | 2021-10-28 | 2023-06-20 | 东北师范大学 | A kind of zinc ion battery negative electrode composite material and its preparation method and application |
CN114628681A (en) * | 2022-03-20 | 2022-06-14 | 青岛科技大学 | Preparation method of macromolecular polyphenol zinc complex as zinc cathode protective layer |
CN114597329B (en) * | 2022-03-21 | 2023-12-26 | 西安交通大学 | Preparation method and application of zinc sheet with surface coating |
CN115312685A (en) * | 2022-08-29 | 2022-11-08 | 郑州大学 | A kind of protective layer of metal zinc negative electrode of aqueous zinc ion battery and preparation method of metal zinc negative electrode |
CN115663105B (en) * | 2022-11-08 | 2024-07-19 | 长春理工大学 | Film-protected three-dimensional porous zinc anode and preparation method and application thereof |
CN115911244A (en) * | 2022-11-18 | 2023-04-04 | 天津大学 | A zinc metal negative electrode with an anti-corrosion coating of insoluble zinc salt and an aqueous zinc battery |
CN116666779A (en) * | 2023-07-27 | 2023-08-29 | 广东工业大学 | Electrolyte capable of self-adaptively regenerating, repairing and recycling metal, and preparation method and application thereof |
CN117164899B (en) * | 2023-11-01 | 2024-02-02 | 中科南京绿色制造产业创新研究院 | Gel electrolyte, preparation method thereof and zinc ion battery containing same |
CN118040099B (en) * | 2024-03-13 | 2024-09-06 | 深圳北理莫斯科大学 | Negative electrode and electrolyte integrated structure and preparation method and application thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5348820A (en) * | 1992-07-10 | 1994-09-20 | Nippon Oil Company, Limited | Zinc electrode for alkaline storage battery |
WO2010058901A2 (en) * | 2008-11-19 | 2010-05-27 | Energreen Co., Ltd. | Secondary zinc alkaline battery including surface-modified negative electrodes and separators |
CN108520985B (en) * | 2018-04-08 | 2020-09-08 | 烟台大学 | A method for improving cycle life of zinc battery and its application |
CN110085925B (en) * | 2019-04-29 | 2020-08-04 | 中南大学 | Aqueous zinc-ion battery electrolyte membrane and preparation and application methods thereof |
-
2021
- 2021-03-12 CN CN202110272014.9A patent/CN113054165B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113054165A (en) | 2021-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113054165B (en) | A negative pole piece of a zinc secondary battery and its preparation method and application | |
CN106229498B (en) | A kind of negative electrode material suitable for water-based metal ion battery and preparation method thereof | |
CN109103399B (en) | Functional separator for lithium-sulfur battery, preparation method thereof, and application in lithium-sulfur battery | |
CN111900388A (en) | Zinc ion battery negative electrode material, preparation and application thereof | |
CN111509306A (en) | Electrolyte for rechargeable zinc ion battery, preparation method of electrolyte and rechargeable zinc ion battery | |
CN106252663B (en) | Metal-organic framework materials CuBDC nanometer sheet and its preparation method and application | |
CN108767263A (en) | A kind of preparation method and application of modified metal cathode of lithium copper foil current collector | |
CN113690397B (en) | A kind of zinc negative pole piece and its preparation method and application | |
CN116315159A (en) | A novel aqueous zinc-ion battery electrolyte and its preparation method and application | |
CN112635698B (en) | A negative pole piece of a zinc secondary battery and its preparation method and use | |
CN114552029A (en) | Zeolite-based ion exchange coating for long-life zinc-iodine battery | |
CN108364806A (en) | A kind of tree-shaped three-dimensional structure metal material and preparation method thereof and application in the battery | |
CN103474658A (en) | Flexible lithium-ion secondary battery cathode by compounding lithium niobate with carbon nanotube, as well as preparation method and application of flexible lithium-ion secondary battery cathode | |
CN115799512A (en) | Preparation and application of an aqueous zinc-ion battery negative electrode material that can inhibit dendrite growth | |
CN113346060B (en) | A kind of porous silicon/titania/graphene composite material and its preparation method and application | |
CN115679380A (en) | Preparation method and application of crystal face oriented metal zinc | |
CN115064651A (en) | Bifunctional protective layer modified zinc cathode and preparation method thereof | |
CN110391415A (en) | A positive electrode active material and a zinc ion battery comprising the positive electrode active material | |
CN110112392A (en) | Metal lithium sheet and preparation method thereof and energy storage device | |
WO2023185944A1 (en) | Electrolyte system free of free solvent molecules, preparation method therefor, and application thereof | |
CN113675388B (en) | Nitrogen-doped carbon-coated tin niobate nanomaterial, preparation method and application thereof | |
CN108878876A (en) | Potassium titanyl phosphate negative electrode material for potassium ion secondary cell | |
CN115133159A (en) | Functional aqueous zinc ion battery electrolyte and preparation method and application thereof | |
CN113130854A (en) | Preparation method of dendrite-free lithium metal-graphene paper composite negative electrode | |
CN117638259B (en) | Aqueous zinc ion half-cell electrolyte, full-cell electrolyte, and aqueous zinc ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |