CN112910537B - A kind of method and device for determining adaptive coding modulation mode of satellite communication - Google Patents
A kind of method and device for determining adaptive coding modulation mode of satellite communication Download PDFInfo
- Publication number
- CN112910537B CN112910537B CN202011269976.0A CN202011269976A CN112910537B CN 112910537 B CN112910537 B CN 112910537B CN 202011269976 A CN202011269976 A CN 202011269976A CN 112910537 B CN112910537 B CN 112910537B
- Authority
- CN
- China
- Prior art keywords
- satellite
- snr
- preset
- coverage area
- adaptive coding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004891 communication Methods 0.000 title claims abstract description 82
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000009826 distribution Methods 0.000 claims abstract description 49
- 230000003595 spectral effect Effects 0.000 claims abstract description 44
- 238000005516 engineering process Methods 0.000 claims abstract description 11
- 238000004364 calculation method Methods 0.000 claims description 17
- 230000005855 radiation Effects 0.000 claims description 5
- 238000001228 spectrum Methods 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 9
- 238000004590 computer program Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000005562 fading Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1853—Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
- H04B7/18569—Arrangements for system physical machines management, i.e. for construction operations control, administration, maintenance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/18—Network planning tools
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/06—Airborne or Satellite Networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Relay Systems (AREA)
Abstract
本申请公开了一种确定卫星通信自适应编码调制方式的方法及装置,该方法包括:根据预设的卫地参数信息计算卫星的覆盖区域;在预设的时间可用度下,根据预设的雨衰估计方法、通信频率和电磁波技术方式计算所述覆盖区域内雨衰估计值,其中,所述预设的时间可用度包括晴天和雨天;在预设的时间可用度下,根据所述雨衰估计值以及预设的通信信息进行星地链路计算得到所述覆盖区域内每个位置点对应的终端接收信噪比SNR,并统计所述覆盖区域内SNR分布概率;根据所述SNR分布概率从预设的多个自适应编码调制方式中确定出卫星通信自适应编码调制方式。本申请解决了现有技术中频谱效率较低的技术问题。
The present application discloses a method and device for determining an adaptive coding modulation mode for satellite communication. The method includes: calculating a coverage area of a satellite according to preset satellite ground parameter information; Rain attenuation estimation method, communication frequency and electromagnetic wave technology are used to calculate the estimated value of rain attenuation in the coverage area, wherein the preset time availability includes sunny days and rainy days; under the preset time availability, according to the rain Calculate the signal-to-noise ratio SNR of the terminal corresponding to each location point in the coverage area, and calculate the SNR distribution probability in the coverage area; according to the SNR distribution The probability determines the satellite communication adaptive coding and modulation mode from a plurality of preset adaptive coding and modulation modes. The present application solves the technical problem of low spectral efficiency in the prior art.
Description
技术领域technical field
本申请涉及卫星通信技术领域,尤其涉及一种确定卫星通信自适应编码调制方式的方法及装置。The present application relates to the technical field of satellite communications, and in particular, to a method and apparatus for determining an adaptive coding and modulation mode for satellite communications.
背景技术Background technique
近年来,随着卫星通信对带宽与信息速率的需求不断增长,其数据传输所用频段正从Ku、Ka向更高发展。由于Ka等较高频段的电磁波易受环境影响,例如,降雨,尤其是大雨或暴雨等恶劣环境,电磁波的衰减量非常大,严重影响卫星通信的质量。为了保证卫星通信质量,在卫星通信系统中需要考虑对抗雨衰的策略。In recent years, with the increasing demand for bandwidth and information rate of satellite communication, the frequency band used for data transmission is developing from Ku and Ka to higher. Since electromagnetic waves in higher frequency bands such as Ka are easily affected by the environment, such as rain, especially in harsh environments such as heavy rain or torrential rain, the attenuation of electromagnetic waves is very large, which seriously affects the quality of satellite communications. In order to ensure the quality of satellite communication, strategies against rain fading need to be considered in the satellite communication system.
目前,常用且有效的抗雨衰方法主要是采用自适应编码调制(Adaptive Cod ingModulation,ACM)技术,其中ACM技术可针对每个接收数据帧的信道实测情况,动态调整每个数据帧编码速率与调制方式,总体上使信道利用率相比于固定速率的系统得到提升,从而最大可能地提高频谱资源的利用率。但是,在ACM技术的相关协议中候选编码调制方式至少几十种,考虑到实现复杂度与频繁切换等问题,需要对上述候选编码调制方式进行筛选。现有筛选编码调制方式策略是根据候选编码调制方式的信噪比(SIGNAL NOISE RATIO,SNR)门限与频谱效率的单调递增关系进行初步筛选,然后在包含最低阶与最高阶调制编码方式(Modulation and Coding Scheme,MCS)的范围内,采用SNR等间隔递增原则来动态确定每个数据帧的编码调制方式。At present, the commonly used and effective anti-rain fading method mainly adopts the Adaptive Coding Modulation (ACM) technology, in which the ACM technology can dynamically adjust the coding rate of each data frame according to the actual channel measurement of each received data frame. The modulation mode generally improves the channel utilization rate compared to the fixed rate system, thereby maximizing the utilization rate of spectrum resources. However, in the related protocols of the ACM technology, there are at least dozens of candidate coding and modulation schemes. Considering the problems of implementation complexity and frequent switching, the above-mentioned candidate coding and modulation schemes need to be screened. The existing strategy for screening coding and modulation methods is to perform preliminary screening according to the monotonically increasing relationship between the signal-to-noise ratio (SIGNAL NOISE RATIO, SNR) threshold and spectral efficiency of candidate coding and modulation methods, and then select the lowest-order and highest-order modulation and coding methods (Modulation and Within the scope of Coding Scheme, MCS), the principle of equal interval increment of SNR is adopted to dynamically determine the coding and modulation mode of each data frame.
虽然,通过SNR等间隔递增原则所确定的MCS能够有效减少传输模式的切换次数,以牺牲较小的平均频谱效率为代价最大可能地降低系统实现复杂度。但是,在卫星通信系统中,其覆盖区内的实际接收SNR并不服从均匀分布,因此,采用SNR等间隔递增原则不能实现平均频谱效率的最大化,进而导致频谱效率较低。Although, the MCS determined by the principle of increasing SNR at equal intervals can effectively reduce the switching times of transmission modes, and minimize the complexity of system implementation at the expense of lower average spectral efficiency. However, in a satellite communication system, the actual received SNR in the coverage area does not obey a uniform distribution. Therefore, the average spectral efficiency cannot be maximized by using the principle of increasing SNR at equal intervals, resulting in low spectral efficiency.
发明内容SUMMARY OF THE INVENTION
本申请解决的技术问题是:针对现有技术中频谱效率较低的问题,提供了一种确定卫星通信自适应编码调制方式的方法及装置,本申请实施例所提供的方案中,本申请实施例所提供的方案中,首先计算卫星覆盖区域,然后再计算预设的时间可用度下的雨衰估计值,即计算晴天或雨天下的雨衰估计值,然后再根据晴天或雨天下的雨衰估计值计算覆盖区域内SNR分布概率,根据覆盖区域内SNR分布概率对多个预设的自适应编码调制方式的频谱效率进行加权计算,并根据最大化频谱效率原则确定出频谱效率最大的自适应编码调制方式。避免了由于采用SNR等间隔递增原则不能实现平均频谱效率的最大化的问题,进而提升了频谱效率。The technical problem solved by the present application is: aiming at the problem of low spectral efficiency in the prior art, a method and device for determining an adaptive coding and modulation mode for satellite communication are provided. In the solution provided by the example, the satellite coverage area is calculated first, and then the estimated value of rain attenuation under the preset time availability is calculated, that is, the estimated value of rain attenuation under sunny or rainy days is calculated, and then the estimated value of rain attenuation under sunny or rainy days is calculated. The attenuation estimation value calculates the SNR distribution probability in the coverage area, weights the spectral efficiencies of multiple preset adaptive coding and modulation methods according to the SNR distribution probability in the coverage area, and determines the auto with the highest spectral efficiency according to the principle of maximizing spectral efficiency. Adapt to the code modulation method. The problem that the average spectral efficiency cannot be maximized due to the principle of increasing SNR at equal intervals is avoided, thereby improving the spectral efficiency.
第一方面,本申请实施例提供一种确定卫星通信自适应编码调制方式的方法,该方法包括:In a first aspect, an embodiment of the present application provides a method for determining an adaptive coding and modulation mode for satellite communication, the method comprising:
根据预设的卫地参数信息计算卫星的覆盖区域,其中,所述卫地参数信息包括卫星轨道高度、地球半径以及地球上任一位置点的经纬度信息;Calculate the coverage area of the satellite according to preset satellite ground parameter information, wherein the satellite ground parameter information includes satellite orbit height, earth radius, and latitude and longitude information of any position on the earth;
在预设的时间可用度下,根据预设的雨衰估计方法、通信频率和电磁波技术方式计算所述覆盖区域内雨衰估计值,其中,所述预设的时间可用度包括晴天和雨天;Under the preset time availability, calculate the estimated value of rain attenuation in the coverage area according to the preset rain attenuation estimation method, communication frequency and electromagnetic wave technology, wherein the preset time availability includes sunny days and rainy days;
在预设的时间可用度下,根据所述雨衰估计值以及预设的通信信息进行星地链路计算得到所述覆盖区域内每个位置点对应的终端接收信噪比SNR,并统计所述覆盖区域内SNR分布概率;Under the preset time availability, the satellite-ground link is calculated according to the estimated rain attenuation value and the preset communication information to obtain the terminal receiving signal-to-noise ratio SNR corresponding to each location point in the coverage area, and statistics SNR distribution probability within the coverage area;
根据所述SNR分布概率从预设的多个自适应编码调制方式中确定出卫星通信自适应编码调制方式。According to the SNR distribution probability, an adaptive coding and modulation scheme for satellite communication is determined from a plurality of preset adaptive coding and modulation schemes.
可选地,根据预设的卫地参数信息计算卫星的覆盖区域,包括:Optionally, calculate the coverage area of the satellite according to the preset satellite parameter information, including:
根据所述卫星轨道高度、所述地球半径以及预设通信仰角阈值计算得到卫星天线指向角的阈值;The threshold value of the pointing angle of the satellite antenna is obtained by calculating according to the satellite orbit height, the earth radius and the preset belief angle threshold;
根据所述卫星轨道高度以及所述经纬度信息遍历计算得到地球上所有位置点的第一天线指向角集合;According to the satellite orbit height and the latitude and longitude information, the first antenna pointing angle set of all the position points on the earth is obtained through traversal calculation;
根据所述阈值从所述第一天线指向角集合中选择出小于所述阈值的第二天线指向角集合,并确定出所述第二天线指向角集合中每个天线指向角所对应位置点在地球上所处的区域,将所述区域作为所述覆盖区域。According to the threshold value, a second antenna pointing angle set smaller than the threshold value is selected from the first antenna pointing angle set, and it is determined that the position point corresponding to each antenna pointing angle in the second antenna pointing angle set is at The area where the earth is located, and the area is used as the coverage area.
可选地,统计所述覆盖区域内SNR分布概率,包括:Optionally, count the SNR distribution probability in the coverage area, including:
分别确定在晴天和雨天所述每个位置对应的所述SNR,根据晴天和雨天所述对应的SNR确定所述每个位置对应的SNR区间范围;Determine the SNR corresponding to each position in sunny and rainy days respectively, and determine the SNR interval range corresponding to each position according to the corresponding SNR in sunny and rainy days;
在所述SNR区间范围对每个SNR值进行统计得到所述覆盖区域内SNR分布概率。The SNR distribution probability in the coverage area is obtained by performing statistics on each SNR value in the SNR interval range.
可选地,根据所述SNR分布概率从预设的多个自适应编码调制方式中确定出卫星通信自适应编码调制方式,包括:Optionally, the satellite communication adaptive coding and modulation mode is determined from a plurality of preset adaptive coding and modulation modes according to the SNR distribution probability, including:
根据所述SNR分布概率确定每种所述预设的自适应编码调制方式对应的基于概率加权的频谱效率;Determine the spectral efficiency based on probability weighting corresponding to each of the preset adaptive coding and modulation modes according to the SNR distribution probability;
根据所述频谱效率以及预设的约束条件从所述预设的多个自适应编码调制方式中选择出频谱效率最大的自适应编码调制方式,并将所述频谱效率最大的自适应编码调制方式作为所述卫星通信自适应编码调制方式。According to the spectral efficiency and preset constraints As the satellite communication adaptive coding modulation method.
可选地,所述预设的约束条件通过如下公式表示:Optionally, the preset constraints are expressed by the following formula:
约束条件C1: Constraint C1:
约束条件C2: Constraint C2:
其中,约束条件C1与C2分别为最小MCS间隔与最大MCS间隔约束;1≤i≤N。Among them, the constraints C1 and C2 are respectively the minimum MCS interval and the maximum MCS interval constraint; 1≤i≤N.
可选地,根据所述雨衰估计值以及预设的通信信息计算所述覆盖区域内每个位置点对应的信噪比SNR,包括:Optionally, calculating the signal-to-noise ratio SNR corresponding to each location point in the coverage area according to the estimated rain attenuation value and preset communication information, including:
通过如下公式计算所述覆盖区域内每个位置点对应的信噪比SNR:Calculate the signal-to-noise ratio SNR corresponding to each location point in the coverage area by the following formula:
其中,EIRP表示卫星发射的有效全向辐射功率;λ表示卫星发射的电磁波波长;d表示通信距离;B表示卫星通信系统带宽;Lr表示卫星通信系统中接收馈损;Lother表示卫星通信系统中其他损耗;G/T表示终端性能指数;k=1.38×10-23为玻尔兹曼常数。Among them, EIRP is the effective isotropic radiation power emitted by the satellite; λ is the wavelength of the electromagnetic wave emitted by the satellite; d is the communication distance; B is the bandwidth of the satellite communication system; L r is the receiving feed loss in the satellite communication system; L other is the satellite communication system Other losses in ; G/T represents the terminal performance index; k=1.38×10 -23 is the Boltzmann constant.
第二方面,本申请实施例提供了一种确定卫星通信自适应编码调制方式的装置,该装置包括:In a second aspect, an embodiment of the present application provides a device for determining an adaptive coding and modulation mode for satellite communication, the device comprising:
第一计算单元,用于根据预设的卫地参数信息计算卫星的覆盖区域,其中,所述卫地参数信息包括卫星轨道高度、地球半径以及地球上任一位置点的经纬度信息;The first calculation unit is used to calculate the coverage area of the satellite according to preset satellite parameter information, wherein the satellite parameter information includes satellite orbit height, earth radius and longitude and latitude information of any position point on the earth;
第二计算单元,用于在预设的时间可用度下,根据预设的雨衰估计方法、通信频率和电磁波技术方式计算所述覆盖区域内雨衰估计值,其中,所述预设的时间可用度包括晴天和雨天;The second calculation unit is configured to calculate the estimated value of rain attenuation in the coverage area according to the preset rain attenuation estimation method, communication frequency and electromagnetic wave technology under the preset time availability, wherein the preset time Availability includes sunny and rainy days;
统计单元,用于在预设的时间可用度下,根据所述雨衰估计值以及预设的通信信息进行星地链路计算得到所述覆盖区域内每个位置点对应的终端接收信噪比SNR,并统计所述覆盖区域内SNR分布概率;A statistical unit, configured to calculate the satellite-ground link according to the estimated rain attenuation value and the preset communication information under the preset time availability to obtain the terminal receiving signal-to-noise ratio corresponding to each location point in the coverage area SNR, and count the SNR distribution probability in the coverage area;
确定单元,用于根据所述SNR分布概率从预设的多个自适应编码调制方式中确定出卫星通信自适应编码调制方式。A determining unit, configured to determine a satellite communication adaptive coding and modulation mode from a plurality of preset adaptive coding and modulation modes according to the SNR distribution probability.
可选地,所述第一计算单元,具体用于:Optionally, the first computing unit is specifically used for:
根据所述卫星轨道高度、所述地球半径以及预设通信仰角阈值计算得到卫星天线指向角的阈值;The threshold value of the pointing angle of the satellite antenna is obtained by calculating according to the satellite orbit height, the earth radius and the preset belief angle threshold;
根据所述卫星轨道高度以及所述经纬度信息遍历计算得到地球上所有位置点的第一天线指向角集合;According to the satellite orbit height and the latitude and longitude information, the first antenna pointing angle set of all the position points on the earth is obtained through traversal calculation;
根据所述阈值从所述第一天线指向角集合中选择出小于所述阈值的第二天线指向角集合,并确定出所述第二天线指向角集合中每个天线指向角所对应位置点在地球上所处的区域,将所述区域作为所述覆盖区域。According to the threshold value, a second antenna pointing angle set smaller than the threshold value is selected from the first antenna pointing angle set, and it is determined that the position point corresponding to each antenna pointing angle in the second antenna pointing angle set is at The area where the earth is located, and the area is used as the coverage area.
可选地,所述统计单元,具体用于:Optionally, the statistical unit is specifically used for:
分别确定在晴天和雨天所述每个位置对应的所述SNR,根据晴天和雨天所述对应的SNR确定所述每个位置对应的SNR区间范围;Determine the SNR corresponding to each position in sunny and rainy days respectively, and determine the SNR interval range corresponding to each position according to the corresponding SNR in sunny and rainy days;
在所述SNR区间范围对每个SNR值进行统计得到所述覆盖区域内SNR分布概率。The SNR distribution probability in the coverage area is obtained by performing statistics on each SNR value in the SNR interval range.
可选地,所述确定单元,具体用于:Optionally, the determining unit is specifically used for:
根据所述SNR分布概率确定每种所述预设的自适应编码调制方式对应的频谱效率;Determine the spectral efficiency corresponding to each of the preset adaptive coding and modulation modes according to the SNR distribution probability;
根据所述频谱效率以及预设的约束条件从所述预设的多个自适应编码调制方式中选择出频谱效率最大的自适应编码调制方式,并将所述频谱效率最大的自适应编码调制方式作为所述卫星通信自适应编码调制方式。According to the spectral efficiency and preset constraints As the satellite communication adaptive coding modulation method.
可选地,所述预设的约束条件通过如下公式表示:Optionally, the preset constraints are expressed by the following formula:
约束条件C1: Constraint C1:
约束条件C2: Constraint C2:
其中,约束条件C1与C2分别为最小MCS间隔与最大MCS间隔约束;1≤i≤N。Among them, the constraints C1 and C2 are respectively the minimum MCS interval and the maximum MCS interval constraint; 1≤i≤N.
可选地,根据所述雨衰估计值以及预设的通信信息计算所述覆盖区域内每个位置点对应的信噪比SNR,包括:Optionally, calculating the signal-to-noise ratio SNR corresponding to each location point in the coverage area according to the estimated rain attenuation value and preset communication information, including:
通过如下公式计算所述覆盖区域内每个位置点对应的信噪比SNR:Calculate the signal-to-noise ratio SNR corresponding to each location point in the coverage area by the following formula:
其中,EIRP表示卫星发射的有效全向辐射功率;λ表示卫星发射的电磁波波长;d表示通信距离;B表示卫星通信系统带宽;Lr表示卫星通信系统中接收馈损;Lother表示卫星通信系统中其他损耗;G/T表示终端性能指数;k=1.38×10-23为玻尔兹曼常数。Among them, EIRP is the effective isotropic radiation power emitted by the satellite; λ is the wavelength of the electromagnetic wave emitted by the satellite; d is the communication distance; B is the bandwidth of the satellite communication system; L r is the receiving feed loss in the satellite communication system; L other is the satellite communication system Other losses in ; G/T represents the terminal performance index; k=1.38×10 -23 is the Boltzmann constant.
与现有技术相比,本申请实施例所提供的方案具有如下有益效果:Compared with the prior art, the solutions provided by the embodiments of the present application have the following beneficial effects:
1、本申请实施例所提供的方案中,首先计算卫星覆盖区域,然后再计算预设的时间可用度下的雨衰估计值,即计算晴天或雨天下的雨衰估计值,然后再根据晴天或雨天下的雨衰估计值计算覆盖区域内SNR分布概率,根据覆盖区域内SNR分布概率对多个预设的自适应编码调制方式的频谱效率进行加权计算,并根据最大化频谱效率原则确定出频谱效率最大的自适应编码调制方式。避免了由于采用SNR等间隔递增原则不能实现平均频谱效率的最大化的问题,进而提升了频谱效率。1. In the scheme provided by the embodiment of this application, the satellite coverage area is first calculated, and then the estimated value of rain attenuation under the preset time availability is calculated, that is, the estimated value of rain attenuation in sunny or rainy days is calculated, and then the estimated value of rain attenuation is calculated according to the sunny day. Or the estimated value of rain attenuation under rainy days to calculate the SNR distribution probability in the coverage area, weight the spectral efficiency of multiple preset adaptive coding modulation methods according to the SNR distribution probability in the coverage area, and determine according to the principle of maximizing spectral efficiency. Adaptive coding and modulation with maximum spectral efficiency. The problem that the average spectral efficiency cannot be maximized due to the principle of increasing SNR at equal intervals is avoided, thereby improving the spectral efficiency.
2、在本申请实施例所提供的方案中,通过结合卫星实际的轨位计算卫星实际覆盖区域,然后在卫星实际覆盖区域内统计SNR分布情况,能够对指定系统有针对性的优化传输性能。2. In the solution provided by the embodiment of the present application, by calculating the actual coverage area of the satellite in combination with the actual orbit position of the satellite, and then calculating the SNR distribution in the actual coverage area of the satellite, the transmission performance of the designated system can be optimized in a targeted manner.
3、在本申请实施例所提供的方案中,通过计算在不同时间可用度下的雨衰分布情况,并针对所选定的可用度进行接收SNR统计,能够有效提升系统对抗一定程度雨衰的能力。3. In the solution provided by the embodiment of the present application, by calculating the distribution of rain attenuation at different times of availability, and receiving SNR statistics for the selected availability, the system's ability to resist a certain degree of rain attenuation can be effectively improved. ability.
附图说明Description of drawings
图1为本申请实施例所提供的一种确定卫星通信自适应编码调制方式的方法的流程示意图;1 is a schematic flowchart of a method for determining an adaptive coding and modulation mode for satellite communication provided by an embodiment of the present application;
图2为本申请实施例所提供的一种卫星覆盖区域示意图;2 is a schematic diagram of a satellite coverage area provided by an embodiment of the present application;
图3为本申请实施例所提供的一种在给定时间可用度条件下的覆盖区内雨衰估计值;Fig. 3 is a kind of rain attenuation estimation value in the coverage area under the condition of availability at a given time provided by an embodiment of the application;
图4为本申请实施例所提供的一种在给定时间可用度条件下的下行链路接收SNR计算结果;Fig. 4 is a kind of downlink receiving SNR calculation result under a given time availability condition provided by an embodiment of the present application;
图5a为本申请实施例所提供的一种晴天条件下的SNR概率分布情况;Fig. 5a is the SNR probability distribution situation under a kind of sunny condition provided by the embodiment of the application;
图5b为本申请实施例所提供的一种雨衰条件下的SNR概率分布情况;Fig. 5b is the SNR probability distribution situation under a kind of rain attenuation condition provided by the embodiment of the application;
图6为本申请实施例所提供的一种最大化频谱效率的MCS示意图;6 is a schematic diagram of an MCS for maximizing spectral efficiency provided by an embodiment of the present application;
图7为本申请实施例所提供的一种确定卫星通信自适应编码调制方式的装置的结构示意图。FIG. 7 is a schematic structural diagram of an apparatus for determining an adaptive coding and modulation mode for satellite communication according to an embodiment of the present application.
具体实施方式Detailed ways
本申请实施例提供的方案中,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。In the solutions provided in the embodiments of the present application, the described embodiments are only a part of the embodiments of the present application, rather than all the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present application.
以下结合说明书附图对本申请实施例所提供的一种确定卫星通信自适应编码调制方式的方法做进一步详细的说明,该方法具体实现方式可以包括以下步骤(方法流程如图1所示):A method for determining an adaptive coding and modulation mode for satellite communication provided by the embodiments of the present application will be described in further detail below with reference to the accompanying drawings. The specific implementation of the method may include the following steps (the method flow is shown in FIG. 1 ):
步骤101,根据预设的卫地参数信息计算卫星的覆盖区域,其中,所述卫地参数信息包括卫星轨道高度、地球半径以及地球上任一位置点的经纬度信息。Step 101: Calculate the coverage area of the satellite according to preset satellite ground parameter information, wherein the satellite ground parameter information includes satellite orbit height, earth radius, and longitude and latitude information of any location point on the earth.
具体的,在本申请实施例所提供的方案中,根据预设的卫地参数信息计算卫星的覆盖区域的方式有多种,下面以一种较佳的方式为例进行说明。Specifically, in the solution provided by the embodiment of the present application, there are various ways to calculate the coverage area of the satellite according to the preset satellite ground parameter information, and a preferred way is used as an example for description below.
在一种可能实现的方式中,根据预设的卫地参数信息计算卫星的覆盖区域,包括:根据所述卫星轨道高度、所述地球半径以及预设通信仰角阈值计算得到卫星天线指向角的阈值;根据所述卫星轨道高度以及所述经纬度信息遍历计算得到地球上所有位置点的第一天线指向角集合;根据所述阈值从所述第一天线指向角集合中选择出小于所述阈值的第二天线指向角集合,并确定出所述第二天线指向角集合中每个天线指向角所对应位置点在地球上所处的区域,将所述区域作为所述覆盖区域。In a possible implementation manner, calculating the coverage area of the satellite according to the preset satellite ground parameter information includes: calculating the threshold value of the pointing angle of the satellite antenna according to the satellite orbit height, the earth radius and the preset belief angle threshold value ; According to the satellite orbit height and the described longitude and latitude information, traversal and calculation obtain the first antenna pointing angle set of all position points on the earth; According to the threshold value, select the first antenna pointing angle set less than the threshold value from the first antenna pointing angle set Two sets of antenna pointing angles, and determine the area on the earth where the position point corresponding to each antenna pointing angle in the second antenna pointing angle set is located, and use the area as the coverage area.
具体的,根据已知的卫星轨道高度、地球半径以及预设通信仰角阈值通过下式计算得到卫星天线指向角的阈值:Specifically, the threshold value of the pointing angle of the satellite antenna is obtained by calculating the following formula according to the known satellite orbit height, the earth radius and the preset belief angle threshold:
其中,α表示卫星天线指向角的阈值;Re表示卫星轨道高度;σ表示预设通信仰角阈值;h表示地球半径。Among them, α represents the threshold of the pointing angle of the satellite antenna; Re represents the satellite orbit height; σ represents the preset communication angle threshold; h represents the radius of the earth.
进一步,根据地球上任一位置点的经纬度坐标(Lat,Lon),根据如下公式计算地球上任一位置点所对应的卫星天线指向角:Further, according to the latitude and longitude coordinates (Lat, Lon) of any position point on the earth, calculate the satellite antenna pointing angle corresponding to any position point on the earth according to the following formula:
其中,β地球上任一位置点所对应的卫星天线指向角;a、b分别表示任一位置点与卫星之间的距离向量以及任一位置点与地球地心之间的距离向量。Among them, the pointing angle of the satellite antenna corresponding to any position point on the β earth; a and b respectively represent the distance vector between any position point and the satellite and the distance vector between any position point and the earth's center.
进一步,由于卫星覆盖区域内的卫星天线指向角满足如下条件:Further, since the satellite antenna pointing angle in the satellite coverage area satisfies the following conditions:
β<αβ<α
根据上述卫星覆盖区域内的卫星天线指向角的条件遍历计算得到地球上所有位置点的第一天线指向角集合,并根据阈值α从第一天线指向角集合中选择出小于所述阈值的第二天线指向角集合,并确定出第二天线指向角集合中每个天线指向角所对应位置点在地球上所处的区域,将该区域作为覆盖区域。具体的,计算得到的卫星覆盖区域参见图2所示。According to the conditional traversal of the satellite antenna pointing angles in the satellite coverage area, the first antenna pointing angle set of all points on the earth is obtained, and the second antenna pointing angle set smaller than the threshold value is selected from the first antenna pointing angle set according to the threshold α. The antenna pointing angle is set, and the area on the earth where the position point corresponding to each antenna pointing angle in the second antenna pointing angle set is determined, and the area is used as the coverage area. Specifically, the calculated satellite coverage area is shown in FIG. 2 .
步骤102,在预设的时间可用度下,根据预设的雨衰估计方法、通信频率和电磁波技术方式计算所述覆盖区域内雨衰估计值,其中,所述预设的时间可用度包括晴天和雨天。Step 102, under the preset time availability, calculate the estimated value of rain attenuation in the coverage area according to the preset rain attenuation estimation method, communication frequency and electromagnetic wave technology, wherein the preset time availability includes sunny days. and rainy days.
具体的,在卫星覆盖区域内根据每个位置点对应的天线指向角计算相应位置的通信仰角,然后再根据ITU标准推荐的雨衰估计方法,结合已知的通信频率与电磁波极化方式,计算在给定可用度条件下的覆盖区内雨衰估计值。具体的,覆盖区域内雨衰估计值如图3所示。Specifically, in the satellite coverage area, according to the antenna pointing angle corresponding to each location point, the communication belief angle of the corresponding position is calculated, and then according to the rain attenuation estimation method recommended by the ITU standard, combined with the known communication frequency and electromagnetic wave polarization method, calculate Estimated value of rain attenuation within the coverage area for a given availability condition. Specifically, the estimated value of rain attenuation in the coverage area is shown in Figure 3.
步骤103,在预设的时间可用度下,根据所述雨衰估计值以及预设的通信信息进行星地链路计算得到所述覆盖区域内每个位置点对应的终端接收信噪比SNR,并统计所述覆盖区域内SNR分布概率。Step 103: Under the preset time availability, perform satellite-ground link calculation according to the rain attenuation estimated value and preset communication information to obtain the terminal receiving signal-to-noise ratio SNR corresponding to each location point in the coverage area, And count the SNR distribution probability in the coverage area.
具体的,在本申请实施例所提供的方案中,预设的通信信息包括卫星发射的有效全向辐射功率(Effective lsotropic Radiated Power,EIRP),卫星发射的电磁波波长λ,卫星通信距离d,卫星通信系统带宽B,卫星通信系统接收馈损Lr,卫星通信系统其他损耗Lother以及终端性能指数G/T。在计算出覆盖范围内雨衰估计值之后,会根据雨衰估计值以及预设的通信信息进行星地链路计算得到覆盖区域内每个位置点对应的终端接收信噪比SNR,参见图4表示本申请实施例所提供的一种覆盖区域内SNR分布情况。具体的,通过如下公式计算覆盖区域内每个位置点对应的终端接收信噪比SNR:Specifically, in the solution provided by the embodiment of the present application, the preset communication information includes the effective isotropic radiated power (Effective lsotropic Radiated Power, EIRP) transmitted by the satellite, the wavelength λ of the electromagnetic wave transmitted by the satellite, the satellite communication distance d, the satellite The communication system bandwidth B, the receiving feed loss L r of the satellite communication system, the other losses L other of the satellite communication system, and the terminal performance index G/T. After calculating the estimated value of rain attenuation in the coverage area, the satellite-ground link will be calculated according to the estimated value of rain attenuation and the preset communication information to obtain the SNR received by the terminal corresponding to each location point in the coverage area, see Figure 4 Indicates the SNR distribution in a coverage area provided by the embodiment of the present application. Specifically, the signal-to-noise ratio SNR of the terminal corresponding to each location point in the coverage area is calculated by the following formula:
其中,EIRP表示卫星发射的有效全向辐射功率;λ表示卫星发射的电磁波波长;d表示通信距离;B表示卫星通信系统带宽;Lr表示卫星通信系统中接收馈损;Lother表示卫星通信系统中其他损耗;G/T表示终端性能指数;k=1.38×10-23为玻尔兹曼常数。Among them, EIRP is the effective isotropic radiation power emitted by the satellite; λ is the wavelength of the electromagnetic wave emitted by the satellite; d is the communication distance; B is the bandwidth of the satellite communication system; L r is the receiving feed loss in the satellite communication system; L other is the satellite communication system Other losses in ; G/T represents the terminal performance index; k=1.38×10 -23 is the Boltzmann constant.
进一步,在计算出覆盖区域内每个位置点对应的终端接收信噪比SNR之后,统计覆盖区域内SNR分布概率。具体的,统计覆盖区域内SNR分布概率的方式有多种,下面以一种较佳的方式为例进行说明。Further, after calculating the signal-to-noise ratio SNR of the terminal corresponding to each location point in the coverage area, the SNR distribution probability in the coverage area is calculated. Specifically, there are many ways to count the SNR distribution probability in the coverage area, and a preferred way is used as an example for description below.
在一种可能实现的方式中,统计所述覆盖区域内SNR分布概率,包括:分别确定在晴天和雨天所述每个位置对应的所述SNR,根据晴天和雨天所述对应的SNR确定所述每个位置对应的SNR区间范围;在所述SNR区间范围对每个SNR值进行统计得到所述覆盖区域内SNR分布概率。In a possible implementation manner, calculating the SNR distribution probability in the coverage area includes: respectively determining the SNR corresponding to each location on sunny days and rainy days, and determining the SNR according to the corresponding SNRs on sunny days and rainy days. The SNR interval range corresponding to each location; the SNR distribution probability in the coverage area is obtained by performing statistics on each SNR value in the SNR interval range.
为了对抗一定程度的雨衰,同时提升系统在晴天时的传输效率,本申请实施例所提供的方案中考虑采用区间统计代替固定值统计方法。具体方式为,假定覆盖区内某位置的晴天接收SNR为Ssun,雨天接收SNR为Srain,则为了较好地对抗当前可用度的雨衰情况以及更小雨衰情况,需要对区间[Srain,Ssun]内全部数值进行统计,并最终得到覆盖区域内的统计结果。具体的,参见图5a,为本申请实施例提供的一种晴天条件下覆盖区域内SNR分布概率;参见图5b,为本申请实施例提供的一种99.9%雨衰可用度条件下覆盖区域内SNR分布概率。In order to counteract a certain degree of rain attenuation and at the same time improve the transmission efficiency of the system in sunny weather, the solution provided by the embodiment of the present application considers using interval statistics instead of fixed value statistics. The specific method is as follows, assuming that the receiving SNR of a certain position in the coverage area is S sun on sunny days, and the receiving SNR on rainy days is S rain , then in order to better combat the rain attenuation of the current availability and the smaller rain attenuation, it is necessary to measure the interval [S rain , S sun ] for all the values in the statistics, and finally get the statistical results in the coverage area. Specifically, referring to FIG. 5a, the SNR distribution probability in the coverage area under a sunny day condition provided by the embodiment of the present application; referring to FIG. 5b, the coverage area in the coverage area under the condition of 99.9% rain attenuation availability provided by the embodiment of the present application SNR distribution probability.
在本申请实施例所提供的方案中,通过结合卫星实际的轨位计算卫星实际覆盖区域,然后在卫星实际覆盖区域内统计SNR分布情况,能够对指定系统有针对性的优化传输性能;以及在不同时间可用度下的雨衰分布情况,并针对所选定的可用度进行接收SNR统计,能够有效提升系统对抗一定程度雨衰的能力。In the solution provided by the embodiment of the present application, by calculating the actual coverage area of the satellite in combination with the actual orbital position of the satellite, and then calculating the SNR distribution in the actual coverage area of the satellite, it is possible to optimize the transmission performance of the designated system in a targeted manner; and The distribution of rain attenuation under different time availability, and receiving SNR statistics for the selected availability can effectively improve the system's ability to resist a certain degree of rain attenuation.
步骤104,根据所述SNR分布概率从预设的多个自适应编码调制方式中确定出卫星通信自适应编码调制方式。Step 104: Determine an adaptive coding and modulation mode for satellite communication from a plurality of preset adaptive coding and modulation modes according to the SNR distribution probability.
在一种可能实现的方式中,根据所述SNR分布概率从预设的多个自适应编码调制方式中确定出卫星通信自适应编码调制方式,包括:根据所述SNR分布概率确定每种所述预设的自适应编码调制方式对应的基于概率加权的频谱效率;根据所述频谱效率以及预设的约束条件从所述预设的多个自适应编码调制方式中选择出频谱效率最大的自适应编码调制方式,并将所述频谱效率最大的自适应编码调制方式作为所述卫星通信自适应编码调制方式。In a possible implementation manner, determining an adaptive coding and modulation scheme for satellite communication from a plurality of preset adaptive coding and modulation schemes according to the SNR distribution probability includes: determining each of the adaptive coding and modulation schemes according to the SNR distribution probability. The spectral efficiency based on probability weighting corresponding to the preset adaptive coding and modulation mode; according to the spectral efficiency and the preset constraint conditions, the adaptive coding and modulation mode with the largest spectral efficiency is selected from the preset multiple adaptive coding and modulation modes A coding and modulation scheme is used, and the adaptive coding and modulation scheme with the maximum spectral efficiency is used as the satellite communication adaptive coding and modulation scheme.
具体的,在ACM技术的相关协议中候选编码调制方式至少几十种,本申请实施例所提供的方案中采用的候选编码调制方案为DVB-S2中的28种编码调制组合。通过比较上述组合的SNR门限与频谱效率发现,某些编码调制方式的频谱效率相对较低,但所需的SNR门限反而更高,如果采用这种编码调制方式,会造成系统性能的下降。因此,根据频谱效率与SNR门限单调递增原则,完成对原始组合的初步筛选。在本申请实施例所提供的方案中,已知最终方案共选用N种MCS,定义第i种MCS的频谱效率为Ei,SNR门限为Si,则第i种MCS基于概率加权的频谱效率ui可以通过如下公式表示:Specifically, there are at least dozens of candidate coding and modulation schemes in the relevant protocols of the ACM technology, and the candidate coding and modulation schemes adopted in the solutions provided in the embodiments of the present application are 28 coding and modulation combinations in DVB-S2. By comparing the above-mentioned combined SNR threshold and spectral efficiency, it is found that the spectral efficiency of some coding and modulation methods is relatively low, but the required SNR threshold is higher. If this coding and modulation method is used, the system performance will be degraded. Therefore, according to the principle of monotonically increasing spectral efficiency and SNR threshold, the preliminary screening of the original combination is completed. In the solutions provided by the embodiments of the present application, it is known that N types of MCS are selected in the final solution, and the spectral efficiency of the ith MCS is defined as E i and the SNR threshold is S i , then the spectral efficiency of the ith MCS based on probability weighting is defined u i can be expressed by the following formula:
其中,p(s)表示概率密度函数;s表示所述SNR。where p(s) represents the probability density function; s represents the SNR.
进一步,在一种可能实现的方式中,所述预设的约束条件通过如下公式表示:Further, in a possible implementation manner, the preset constraint condition is expressed by the following formula:
约束条件C1: Constraint C1:
约束条件C2:其中,约束条件C1与C2分别为最小MCS间隔与最大MCS间隔约束;1≤i≤N。Constraint C2: Among them, the constraints C1 and C2 are respectively the minimum MCS interval and the maximum MCS interval constraint; 1≤i≤N.
具体的,最大化频谱效率的MCS优选问题可以建模为:Specifically, the MCS optimization problem of maximizing spectral efficiency can be modeled as:
约束条件C1: Constraint C1:
约束条件C2: Constraint C2:
通过求解上述优化问题,可以得到如图6所示的最优MCS。By solving the above optimization problem, the optimal MCS as shown in Figure 6 can be obtained.
本申请实施例所提供的方案中,首先计算卫星覆盖区域,然后再计算预设的时间可用度下的雨衰估计值,即计算晴天或雨天下的雨衰估计值,然后再根据晴天或雨天下的雨衰估计值计算覆盖区域内SNR分布概率,根据覆盖区域内SNR分布概率对多个预设的自适应编码调制方式的频谱效率进行加权计算,并根据最大化频谱效率原则确定出频谱效率最大的自适应编码调制方式。避免了由于采用SNR等间隔递增原则不能实现平均频谱效率的最大化的问题,进而提升了频谱效率。In the solution provided by the embodiment of the present application, the satellite coverage area is first calculated, and then the estimated value of rain attenuation under the preset time availability is calculated, that is, the estimated value of rain attenuation in sunny or rainy days is calculated, and then the estimated value of rain attenuation is calculated on sunny or rainy days. Calculate the SNR distribution probability in the coverage area based on the estimated value of rain attenuation in the world, weight the spectral efficiency of multiple preset adaptive coding modulation methods according to the SNR distribution probability in the coverage area, and determine the spectral efficiency according to the principle of maximizing spectral efficiency The largest adaptive coding modulation method. The problem that the average spectral efficiency cannot be maximized due to the principle of increasing SNR at equal intervals is avoided, thereby improving the spectral efficiency.
基于与图1所示方法相同的发明构思,本申请实施例提供了一种确定卫星通信自适应编码调制方式的装置,参见图7,该装置包括:Based on the same inventive concept as the method shown in FIG. 1 , an embodiment of the present application provides an apparatus for determining an adaptive coding and modulation mode for satellite communication. Referring to FIG. 7 , the apparatus includes:
第一计算单元701,用于根据预设的卫地参数信息计算卫星的覆盖区域,其中,所述卫地参数信息包括卫星轨道高度、地球半径以及地球上任一位置点的经纬度信息;The
第二计算单元702,用于在预设的时间可用度下,根据预设的雨衰估计方法、通信频率和电磁波技术方式计算所述覆盖区域内雨衰估计值,其中,所述预设的时间可用度包括晴天和雨天;The
统计单元703,用于在预设的时间可用度下,根据所述雨衰估计值以及预设的通信信息进行星地链路计算得到所述覆盖区域内每个位置点对应的终端接收信噪比SNR,并统计所述覆盖区域内SNR分布概率;The
确定单元704,用于根据所述SNR分布概率从预设的多个自适应编码调制方式中确定出卫星通信自适应编码调制方式。A determining
可选地,所述第一计算单元701,具体用于:Optionally, the
根据所述卫星轨道高度、所述地球半径以及预设通信仰角阈值计算得到卫星天线指向角的阈值;The threshold value of the pointing angle of the satellite antenna is obtained by calculating according to the satellite orbit height, the earth radius and the preset belief angle threshold;
根据所述卫星轨道高度以及所述经纬度信息遍历计算得到地球上所有位置点的第一天线指向角集合;According to the satellite orbit height and the latitude and longitude information, the first antenna pointing angle set of all the position points on the earth is obtained through traversal calculation;
根据所述阈值从所述第一天线指向角集合中选择出小于所述阈值的第二天线指向角集合,并确定出所述第二天线指向角集合中每个天线指向角所对应位置点在地球上所处的区域,将所述区域作为所述覆盖区域。According to the threshold value, a second antenna pointing angle set smaller than the threshold value is selected from the first antenna pointing angle set, and it is determined that the position point corresponding to each antenna pointing angle in the second antenna pointing angle set is at The area where the earth is located, and the area is used as the coverage area.
可选地,所述统计单元703,具体用于:Optionally, the
分别确定在晴天和雨天所述每个位置对应的所述SNR,根据晴天和雨天所述对应的SNR确定所述每个位置对应的SNR区间范围;Determine the SNR corresponding to each position in sunny and rainy days respectively, and determine the SNR interval range corresponding to each position according to the corresponding SNR in sunny and rainy days;
在所述SNR区间范围对每个SNR值进行统计得到所述覆盖区域内SNR分布概率。The SNR distribution probability in the coverage area is obtained by performing statistics on each SNR value in the SNR interval range.
可选地,所述确定单元704,具体用于:Optionally, the determining
根据所述SNR分布概率确定每种所述预设的自适应编码调制方式对应的频谱效率;Determine the spectral efficiency corresponding to each of the preset adaptive coding and modulation modes according to the SNR distribution probability;
根据所述频谱效率以及预设的约束条件从所述预设的多个自适应编码调制方式中选择出频谱效率最大的自适应编码调制方式,并将所述频谱效率最大的自适应编码调制方式作为所述卫星通信自适应编码调制方式。According to the spectral efficiency and preset constraints As the satellite communication adaptive coding modulation method.
可选地,所述预设的约束条件通过如下公式表示:Optionally, the preset constraints are expressed by the following formula:
约束条件C1: Constraint C1:
约束条件C2: Constraint C2:
其中,约束条件C1与C2分别为最小MCS间隔与最大MCS间隔约束;1≤i≤N。Among them, the constraints C1 and C2 are respectively the minimum MCS interval and the maximum MCS interval constraint; 1≤i≤N.
可选地,根据所述雨衰估计值以及预设的通信信息计算所述覆盖区域内每个位置点对应的信噪比SNR,包括:Optionally, calculating the signal-to-noise ratio SNR corresponding to each location point in the coverage area according to the estimated rain attenuation value and preset communication information, including:
通过如下公式计算所述覆盖区域内每个位置点对应的信噪比SNR:Calculate the signal-to-noise ratio SNR corresponding to each location point in the coverage area by the following formula:
其中,EIRP表示卫星发射的有效全向辐射功率;λ表示卫星发射的电磁波波长;d表示通信距离;B表示卫星通信系统带宽;Lr表示卫星通信系统中接收馈损;Lother表示卫星通信系统中其他损耗;G/T表示终端性能指数;k=1.38×10-23为玻尔兹曼常数。Among them, EIRP is the effective isotropic radiation power emitted by the satellite; λ is the wavelength of the electromagnetic wave emitted by the satellite; d is the communication distance; B is the bandwidth of the satellite communication system; L r is the receiving feed loss in the satellite communication system; L other is the satellite communication system Other losses in ; G/T represents the terminal performance index; k=1.38×10 -23 is the Boltzmann constant.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present application without departing from the spirit and scope of the present application. Thus, if these modifications and variations of the present application fall within the scope of the claims of the present application and their equivalents, the present application is also intended to include these modifications and variations.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011269976.0A CN112910537B (en) | 2020-11-13 | 2020-11-13 | A kind of method and device for determining adaptive coding modulation mode of satellite communication |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011269976.0A CN112910537B (en) | 2020-11-13 | 2020-11-13 | A kind of method and device for determining adaptive coding modulation mode of satellite communication |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112910537A CN112910537A (en) | 2021-06-04 |
CN112910537B true CN112910537B (en) | 2022-09-27 |
Family
ID=76111300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011269976.0A Active CN112910537B (en) | 2020-11-13 | 2020-11-13 | A kind of method and device for determining adaptive coding modulation mode of satellite communication |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112910537B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114900224B (en) * | 2022-04-15 | 2023-06-09 | 中国电子科技集团公司第十研究所 | Method for aircraft handover target measurement and control satellite and related equipment |
CN114513248B (en) * | 2022-04-18 | 2022-08-05 | 北京星通创新技术有限公司 | Self-adaptive transmission method based on low-earth-orbit satellite communication system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102271363A (en) * | 2011-09-06 | 2011-12-07 | 北京交通大学 | Adaptive Modulation Method in Mobile Satellite Communication System |
CN111181692A (en) * | 2019-12-31 | 2020-05-19 | 东方红卫星移动通信有限公司 | Low-earth-orbit satellite partial channel information self-adaptive coding modulation method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101615974B (en) * | 2008-06-27 | 2012-11-14 | 富士通株式会社 | Method and device for designing modulation code set for communication system |
CN101686098B (en) * | 2008-09-27 | 2012-11-21 | 富士通株式会社 | Method and device for selecting modulation and coding scheme combination, and communication system |
CN105846959B (en) * | 2016-04-18 | 2019-01-11 | 中国电子科技集团公司第二十研究所 | Satellite adaptive code modulation method based on channel quality prediction |
CN108540415A (en) * | 2018-03-09 | 2018-09-14 | 北京交通大学 | Adaptive layered modulation under high-speed mobile environment and service integration transmission method |
CN108551385A (en) * | 2018-04-17 | 2018-09-18 | 南昌航空大学 | Mobile-satellite adaptive uplink code modulating method based on partial channel knowledge |
CN109525299B (en) * | 2018-10-24 | 2020-08-04 | 清华大学 | Adaptive coding modulation optimized satellite communication system and communication method |
CN111355559B (en) * | 2020-03-05 | 2020-11-03 | 中国人民解放军军事科学院国防科技创新研究院 | Encoding control method for satellite-to-ground directional distribution link of low-orbit constellation |
CN111835394B (en) * | 2020-06-01 | 2022-03-08 | 北京邮电大学 | Multi-ground-station cooperative satellite channel attenuation resisting system and method |
-
2020
- 2020-11-13 CN CN202011269976.0A patent/CN112910537B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102271363A (en) * | 2011-09-06 | 2011-12-07 | 北京交通大学 | Adaptive Modulation Method in Mobile Satellite Communication System |
CN111181692A (en) * | 2019-12-31 | 2020-05-19 | 东方红卫星移动通信有限公司 | Low-earth-orbit satellite partial channel information self-adaptive coding modulation method |
Also Published As
Publication number | Publication date |
---|---|
CN112910537A (en) | 2021-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113489521B (en) | Reflective surface assisted cell-free large-scale MIMO network combined beam forming method | |
CN113938183B (en) | Communication resource allocation method based on non-orthogonal multiple access under multi-beam satellite system | |
EP1040597B1 (en) | A mobile station having plural antenna elements and interference suppression | |
RU2256266C2 (en) | Method for improvement of the zone of servicing of intellectual antenna array | |
US9345032B2 (en) | Method and apparatus for determining network clusters for wireless backhaul networks | |
CN104320174B (en) | A kind of satellite multi-beam cooperation transmission method based on partial channel knowledge | |
CN112910537B (en) | A kind of method and device for determining adaptive coding modulation mode of satellite communication | |
CN112134614A (en) | Downlink carrier resource allocation method and system for multi-beam communication satellite | |
WO2001063776A2 (en) | Transmitting beam forming in smart antenna array systems | |
US7983710B2 (en) | Method of coordinated wireless downlink transmission | |
CN113067651A (en) | Inter-constellation interference detection method for low-orbit satellite system | |
CN110380762A (en) | A kind of extensive cut-in method that calculating is merged with communication | |
CN115665797B (en) | Offshore unloading and resource allocation method for mobile edge calculation | |
US7065149B2 (en) | Transmitter, the method of the same and communication system | |
CN115361052B (en) | A Satellite Beamforming Method and Device Considering Energy Efficiency and Spectrum Efficiency | |
CN115941029A (en) | Data-driven high-throughput satellite beam resource intelligent optimization method | |
CN114966556A (en) | Radar communication integrated waveform optimization method based on detection probability constraint | |
CN113660030A (en) | A data transmission method for the forward link of a high-throughput satellite system | |
CN114553300B (en) | Method and system for rapidly allocating wireless resources of multi-antenna earth station of satellite system | |
CN117375706B (en) | Low-orbit inter-satellite interference optimization method and system for receiving end | |
CN118157751B (en) | Information transmission method for unmanned aerial vehicle | |
CN117439648B (en) | Combined decision method for frequency interference avoidance region between satellite constellation systems | |
CN117176232B (en) | Satellite Internet of things capacity improving method combining user grouping and multi-beam | |
An et al. | Open-Loop Precoding Scheme for Multi-Beam Mobile Satellite Communication Systems | |
CN118764072A (en) | A method and device for allocating power for multi-beam satellite communication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |