CN112885851B - Array substrate and method for preparing the same - Google Patents
Array substrate and method for preparing the same Download PDFInfo
- Publication number
- CN112885851B CN112885851B CN202110130697.4A CN202110130697A CN112885851B CN 112885851 B CN112885851 B CN 112885851B CN 202110130697 A CN202110130697 A CN 202110130697A CN 112885851 B CN112885851 B CN 112885851B
- Authority
- CN
- China
- Prior art keywords
- layer
- silicon layer
- metal oxide
- array substrate
- amorphous silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 106
- 238000000034 method Methods 0.000 title claims abstract description 41
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 77
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 76
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 70
- 239000002131 composite material Substances 0.000 claims abstract description 37
- 239000010410 layer Substances 0.000 claims description 277
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 73
- 229920005591 polysilicon Polymers 0.000 claims description 15
- 239000011229 interlayer Substances 0.000 claims description 14
- 230000035515 penetration Effects 0.000 claims description 11
- HGCGQDMQKGRJNO-UHFFFAOYSA-N xenon monochloride Chemical group [Xe]Cl HGCGQDMQKGRJNO-UHFFFAOYSA-N 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 230000008569 process Effects 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- HKBLLJHFVVWMTK-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti].[Ti] HKBLLJHFVVWMTK-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005224 laser annealing Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/421—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
- H10D86/021—Manufacture or treatment of multiple TFTs
- H10D86/0221—Manufacture or treatment of multiple TFTs comprising manufacture, treatment or patterning of TFT semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/60—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
Landscapes
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
Abstract
本发明公开了一种阵列基板及阵列基板的制备方法,阵列基板包括:基底;第一晶体管,第一晶体管设于基底一侧,第一晶体管包括沿阵列基板的竖直方向层叠设置的金属氧化物层、多晶复合材料层以及第一多晶硅层,多晶复合材料层的导电性大于金属氧化物层的导电性,且小于第一多晶硅层的导电性;第二晶体管,第二晶体管设于基底的设有第一晶体管的同一侧,第二晶体管包括第二多晶硅层。多晶复合材料层的导电性强于金属氧化物层的导电性,在第一晶体管中,多晶复合材料层的导电性介于第一多晶硅层与金属氧化物层的导电性之间,提高了第一晶体管的电性均匀性,减少所需的晶体管数量,在应用于显示面板时可提高像素密度,降低晶体管功耗以及漏电风险。
The present invention discloses an array substrate and a method for preparing the array substrate. The array substrate comprises: a substrate; a first transistor, the first transistor is arranged on one side of the substrate, the first transistor comprises a metal oxide layer, a polycrystalline composite material layer and a first polycrystalline silicon layer stacked along the vertical direction of the array substrate, the conductivity of the polycrystalline composite material layer is greater than the conductivity of the metal oxide layer, and less than the conductivity of the first polycrystalline silicon layer; a second transistor, the second transistor is arranged on the same side of the substrate as the first transistor, the second transistor comprises a second polycrystalline silicon layer. The conductivity of the polycrystalline composite material layer is stronger than the conductivity of the metal oxide layer. In the first transistor, the conductivity of the polycrystalline composite material layer is between the conductivity of the first polycrystalline silicon layer and the conductivity of the metal oxide layer, which improves the electrical uniformity of the first transistor and reduces the number of transistors required. When applied to a display panel, the pixel density can be increased, and the power consumption of the transistor and the risk of leakage can be reduced.
Description
技术领域Technical Field
本发明属于电子产品技术领域,尤其涉及一种阵列基板及阵列基板的制备方法。The present invention belongs to the technical field of electronic products, and in particular relates to an array substrate and a method for preparing the array substrate.
背景技术Background technique
对于现有的LTPO(Low Temperature Polycrystalline Oxide,低温多晶氧化物)显示面板,由于其包含LTPS(Low Temperature Poly-Silicon,低温多晶硅)晶体管以及IGZO(indium gallium zinc oxide,氧化铟镓锌)晶体管,构成低温多晶硅的有源层分别为多晶硅和IGZO,受到工艺材料限制,IGZO存在电性不均匀的风险,容易产生漏电等问题。For the existing LTPO (Low Temperature Polycrystalline Oxide) display panel, since it contains LTPS (Low Temperature Poly-Silicon) transistors and IGZO (indium gallium zinc oxide) transistors, the active layers of low-temperature polycrystalline silicon are polycrystalline silicon and IGZO respectively. Due to the limitation of process materials, IGZO has the risk of uneven electrical properties and is prone to leakage and other problems.
因此,亟需一种新的阵列基板及阵列基板的制备方法。Therefore, a new array substrate and a method for preparing the array substrate are urgently needed.
发明内容Summary of the invention
本发明实施例提供了一种阵列基板及阵列基板的制备方法,在第一晶体管中,多晶复合材料层的导电性介于第一多晶硅层与金属氧化物层的导电性之间,提高了第一晶体管的电性均匀性,减少所需的晶体管数量,在应用于显示面板时可提高像素密度,并且降低晶体管功耗以及漏电风险。An embodiment of the present invention provides an array substrate and a method for preparing the array substrate. In a first transistor, the conductivity of the polycrystalline composite material layer is between the conductivity of the first polysilicon layer and the metal oxide layer, thereby improving the electrical uniformity of the first transistor and reducing the required number of transistors. When applied to a display panel, the pixel density can be increased and the power consumption of the transistor and the risk of leakage can be reduced.
本发明实施例一方面提供了一种阵列基板,包括:基底;第一晶体管,所述第一晶体管设于所述基底一侧,所述第一晶体管包括沿所述阵列基板的竖直方向层叠设置的金属氧化物层、多晶复合材料层以及第一多晶硅层,所述多晶复合材料层的导电性大于所述金属氧化物层的导电性,且小于所述第一多晶硅层的导电性;第二晶体管,所述第二晶体管设于所述基底的设有所述第一晶体管的同一侧,所述第二晶体管包括第二多晶硅层。On the one hand, an embodiment of the present invention provides an array substrate, comprising: a substrate; a first transistor, the first transistor is arranged on one side of the substrate, the first transistor comprises a metal oxide layer, a polycrystalline composite material layer and a first polycrystalline silicon layer stacked along the vertical direction of the array substrate, the conductivity of the polycrystalline composite material layer is greater than the conductivity of the metal oxide layer, and less than the conductivity of the first polycrystalline silicon layer; a second transistor, the second transistor is arranged on the same side of the substrate as the first transistor, the second transistor comprises a second polycrystalline silicon layer.
根据本发明的一个方面,所述多晶复合材料层包括金属氧化物和多晶硅。According to one aspect of the present invention, the polycrystalline composite material layer comprises metal oxide and polycrystalline silicon.
本发明实施例另一方面还提供了一种阵列基板的制备方法,包括:提供基底;在所述基底上形成第一有源部和第二有源部,所述第一有源部包括层叠设置的金属氧化物层和第一非晶硅层,所述金属氧化物层靠近所述基底设置,所述第二有源部包括第二非晶硅层;对所述第一有源部的所述第一非晶硅层进行晶化处理形成第一多晶硅层,并且所述第一多晶硅层与所述金属氧化物层的接触界面受热形成多晶复合材料层。On the other hand, an embodiment of the present invention further provides a method for preparing an array substrate, comprising: providing a substrate; forming a first active portion and a second active portion on the substrate, the first active portion comprising a stacked metal oxide layer and a first amorphous silicon layer, the metal oxide layer being arranged close to the substrate, and the second active portion comprising a second amorphous silicon layer; crystallizing the first amorphous silicon layer of the first active portion to form a first polycrystalline silicon layer, and heating a contact interface between the first polycrystalline silicon layer and the metal oxide layer to form a polycrystalline composite material layer.
根据本发明的另一个方面,在所述对所述第一有源部的所述第一非晶硅层进行晶化处理的步骤中:对所述第一非晶硅层进行激光照射以使所述第一非晶硅层晶化形成第一多晶硅层。According to another aspect of the present invention, in the step of crystallizing the first amorphous silicon layer of the first active portion: the first amorphous silicon layer is irradiated with laser to crystallize the first amorphous silicon layer to form a first polycrystalline silicon layer.
根据本发明的另一个方面,在所述对所述第一非晶硅层进行激光照射以使所述第一非晶硅层晶化形成第一多晶硅层的步骤中:所述激光的能量穿透深度大于所述第一非晶硅层和所述金属氧化物层相接触的一侧表面到所述第一非晶硅层背离所述金属氧化物层一侧表面之间的最小距离。According to another aspect of the present invention, in the step of irradiating the first amorphous silicon layer with laser to crystallize the first amorphous silicon layer to form a first polycrystalline silicon layer: the energy penetration depth of the laser is greater than the minimum distance between the surface of the side where the first amorphous silicon layer and the metal oxide layer are in contact to the surface of the side of the first amorphous silicon layer away from the metal oxide layer.
根据本发明的另一个方面,所述第一非晶硅层和所述金属氧化物层相接触的一侧表面到所述第一非晶硅层背离所述金属氧化物层一侧表面之间的最小距离为4.5nm~5.5nm;所述激光的能量穿透深度为5.6nm~7.0nm。According to another aspect of the present invention, the minimum distance between the surface of the first amorphous silicon layer in contact with the metal oxide layer and the surface of the first amorphous silicon layer away from the metal oxide layer is 4.5nm-5.5nm; the energy penetration depth of the laser is 5.6nm-7.0nm.
根据本发明的另一个方面,所述激光为波长为157nm~353nm;优选的,所述激光为波长为308nm的氯化氙准分子激光。According to another aspect of the present invention, the laser has a wavelength of 157nm to 353nm; preferably, the laser is a xenon chloride excimer laser with a wavelength of 308nm.
根据本发明的另一个方面,所述在所述基底上形成第一有源部和第二有源部的步骤中:所述金属氧化物层和所述基底相接触的一侧表面到所述金属氧化物层背离所述基底一侧表面之间的最小距离为40nm~50nm。According to another aspect of the present invention, in the step of forming the first active portion and the second active portion on the substrate: the minimum distance between the surface of the metal oxide layer in contact with the substrate and the surface of the metal oxide layer away from the substrate is 40nm to 50nm.
根据本发明的另一个方面,在对所述第一有源部的所述第一非晶硅层进行晶化处理形成第一多晶硅层的步骤后,还包括:在所述第一多晶硅层背离所述金属氧化物层一侧形成层间绝缘层;在所述层间绝缘层背离所述第一多晶硅层一侧形成栅极层。According to another aspect of the present invention, after the step of crystallizing the first amorphous silicon layer of the first active part to form a first polycrystalline silicon layer, it also includes: forming an interlayer insulating layer on the side of the first polycrystalline silicon layer away from the metal oxide layer; and forming a gate layer on the side of the interlayer insulating layer away from the first polycrystalline silicon layer.
根据本发明的另一个方面,所述在所述层间绝缘层背离所述第一多晶硅层一侧形成栅极层的步骤后,还包括:在所述第一多晶硅层背离所述金属氧化物层一侧形成源漏极层。According to another aspect of the present invention, after the step of forming a gate layer on a side of the interlayer insulating layer away from the first polysilicon layer, the method further includes: forming a source and drain layer on a side of the first polysilicon layer away from the metal oxide layer.
与现有技术相比,本发明实施例提供的阵列基板包括基底、第一晶体管以及第二晶体管,第一晶体管包括沿阵列基板的竖直方向层叠设置的金属氧化物层、多晶复合材料层以及第一多晶硅层,多晶复合材料层的原子排列结构相对于金属氧化物层的原子排列结构更加整齐。因而,多晶复合材料层的导电性强于金属氧化物层的导电性,在第一晶体管中,多晶复合材料层的导电性介于第一多晶硅层与金属氧化物层的导电性之间,提高了第一晶体管的电性均匀性,减少所需的晶体管数量,在应用于显示面板时可提高像素密度,并且降低晶体管功耗以及漏电风险。Compared with the prior art, the array substrate provided in the embodiment of the present invention includes a substrate, a first transistor and a second transistor, the first transistor includes a metal oxide layer, a polycrystalline composite material layer and a first polycrystalline silicon layer stacked in the vertical direction of the array substrate, and the atomic arrangement structure of the polycrystalline composite material layer is more orderly than the atomic arrangement structure of the metal oxide layer. Therefore, the conductivity of the polycrystalline composite material layer is stronger than that of the metal oxide layer. In the first transistor, the conductivity of the polycrystalline composite material layer is between the conductivity of the first polycrystalline silicon layer and the metal oxide layer, which improves the electrical uniformity of the first transistor, reduces the number of transistors required, and can improve the pixel density when applied to the display panel, and reduce the power consumption of the transistor and the risk of leakage.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the accompanying drawings required for use in the embodiments of the present invention will be briefly introduced below. Obviously, the accompanying drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other accompanying drawings can be obtained based on these accompanying drawings without paying creative work.
图1是本发明实施例提供的一种阵列基板的膜层结构图。FIG. 1 is a film layer structure diagram of an array substrate provided in an embodiment of the present invention.
图2是本发明实施例提供的一种阵列基板的制备方法的流程图;FIG2 is a flow chart of a method for preparing an array substrate provided in an embodiment of the present invention;
图3是本发明实施例提供的阵列基板的制备方法的制备过程中的一种阵列基板的膜层结构图;3 is a film layer structure diagram of an array substrate in a preparation process of the array substrate preparation method provided in an embodiment of the present invention;
图4是本发明实施例提供的阵列基板的制备方法的制备过程中的另一种阵列基板的膜层结构图;4 is a film layer structure diagram of another array substrate in the preparation process of the array substrate preparation method provided in an embodiment of the present invention;
图5是本发明实施例提供的阵列基板的制备方法的制备过程中的又一种阵列基板的膜层结构图;5 is a diagram showing a film layer structure of another array substrate in the preparation process of the array substrate preparation method provided in an embodiment of the present invention;
图6是本发明实施例提供的阵列基板的制备方法的制备过程中的又一种阵列基板的膜层结构图;6 is a diagram showing a film layer structure of another array substrate in the preparation process of the array substrate preparation method provided in an embodiment of the present invention;
图7是本发明实施例提供的阵列基板的制备方法的制备过程中的又一种阵列基板的膜层结构图;7 is a film layer structure diagram of another array substrate in the preparation process of the array substrate preparation method provided in an embodiment of the present invention;
附图中:In the attached figure:
1-基底;20-第一晶体管;2-第一有源部;21-金属氧化物层;22-第一非晶硅层;23-第一多晶硅层;24-多晶复合材料层;25-层间绝缘层;26-栅极层;27-源漏极层;30-第二晶体管;3-第二有源部;31-第二非晶硅层;4-无机绝缘层。1-substrate; 20-first transistor; 2-first active part; 21-metal oxide layer; 22-first amorphous silicon layer; 23-first polycrystalline silicon layer; 24-polycrystalline composite material layer; 25-interlayer insulating layer; 26-gate layer; 27-source and drain layer; 30-second transistor; 3-second active part; 31-second amorphous silicon layer; 4-inorganic insulating layer.
具体实施方式Detailed ways
下面将详细描述本发明的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本发明的全面理解。但是,对于本领域技术人员来说很明显的是,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本发明的示例来提供对本发明的更好的理解。The features and exemplary embodiments of various aspects of the present invention will be described in detail below. In the detailed description below, many specific details are proposed to provide a comprehensive understanding of the present invention. However, it is obvious to those skilled in the art that the present invention can be implemented without the need for some of these specific details. The following description of the embodiments is only to provide a better understanding of the present invention by illustrating examples of the present invention.
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that, in this article, relational terms such as first and second, etc. are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any such actual relationship or order between these entities or operations. Moreover, the terms "include", "comprise" or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements includes not only those elements, but also other elements not explicitly listed, or also includes elements inherent to such process, method, article or device. In the absence of further restrictions, the elements defined by the statement "include..." do not exclude the existence of other identical elements in the process, method, article or device including the elements.
为了更好地理解本发明,下面结合图1至图7根据本发明实施例的阵列基板及阵列基板的制备方法进行详细描述。In order to better understand the present invention, an array substrate and a method for manufacturing the array substrate according to an embodiment of the present invention are described in detail below with reference to FIGS. 1 to 7 .
请参阅图1,本发明实施例提供了一种阵列基板,包括:基底1;第一晶体管20,第一晶体管20设于基底1一侧,第一晶体管20包括沿阵列基板的竖直方向层叠设置的金属氧化物层21、多晶复合材料层24以及第一多晶硅层23,多晶复合材料层24的导电性大于金属氧化物层21的导电性,且小于第一多晶硅层23的导电性;第二晶体管30,第二晶体管30设于基底1的设有第一晶体管20的同一侧,第二晶体管30包括第二多晶硅层。可选的,在第一晶体管20和第二晶体管30之间设置有无机绝缘层44。Referring to FIG. 1 , an embodiment of the present invention provides an array substrate, comprising: a substrate 1; a first transistor 20, the first transistor 20 is disposed on one side of the substrate 1, the first transistor 20 comprises a metal oxide layer 21, a polycrystalline composite material layer 24 and a first polycrystalline silicon layer 23 stacked along the vertical direction of the array substrate, the conductivity of the polycrystalline composite material layer 24 is greater than the conductivity of the metal oxide layer 21, and less than the conductivity of the first polycrystalline silicon layer 23; a second transistor 30, the second transistor 30 is disposed on the same side of the substrate 1 as the first transistor 20, the second transistor 30 comprises a second polycrystalline silicon layer. Optionally, an inorganic insulating layer 44 is disposed between the first transistor 20 and the second transistor 30.
本发明实施例提供的阵列基板包括基底1、第一晶体管20以及第二晶体管30,第一晶体管20包括沿阵列基板的竖直方向层叠设置的金属氧化物层21、多晶复合材料层24以及第一多晶硅层23,多晶复合材料层24的原子排列结构相对于金属氧化物层21的原子排列结构更加整齐。因而,多晶复合材料层24的导电性强于金属氧化物层21的导电性,在第一晶体管20中,多晶复合材料层24的导电性介于第一多晶硅层23与金属氧化物层21的导电性之间,提高了第一晶体管20的电性均匀性,减少所需的晶体管数量,在应用于显示面板时可提高像素密度,并且降低晶体管功耗以及漏电风险。The array substrate provided by the embodiment of the present invention includes a substrate 1, a first transistor 20 and a second transistor 30. The first transistor 20 includes a metal oxide layer 21, a polycrystalline composite material layer 24 and a first polycrystalline silicon layer 23 stacked in the vertical direction of the array substrate. The atomic arrangement structure of the polycrystalline composite material layer 24 is more regular than the atomic arrangement structure of the metal oxide layer 21. Therefore, the conductivity of the polycrystalline composite material layer 24 is stronger than that of the metal oxide layer 21. In the first transistor 20, the conductivity of the polycrystalline composite material layer 24 is between the conductivity of the first polycrystalline silicon layer 23 and the conductivity of the metal oxide layer 21, which improves the electrical uniformity of the first transistor 20, reduces the number of transistors required, and can improve the pixel density when applied to the display panel, and reduce the power consumption of the transistor and the risk of leakage.
在一些可选的实施例中,多晶复合材料层24包括金属氧化物和多晶硅,具体的,多晶复合材料层2可以是在形成第一多晶硅层23时,第一多晶硅层23与金属氧化物层21的接触界面受热、重新进行原子排列,形成多晶复合材料层2。In some optional embodiments, the polycrystalline composite material layer 24 includes metal oxide and polycrystalline silicon. Specifically, the polycrystalline composite material layer 2 can be formed when the first polycrystalline silicon layer 23 is formed, and the contact interface between the first polycrystalline silicon layer 23 and the metal oxide layer 21 is heated and rearranged atomically to form the polycrystalline composite material layer 2.
请参阅图2至图5,本发明实施例还提供了一种阵列基板的制备方法,用于制备上述任一实施例中的阵列基板,阵列基板的制备方法包括:Referring to FIG. 2 to FIG. 5 , an embodiment of the present invention further provides a method for preparing an array substrate, which is used to prepare the array substrate in any of the above embodiments. The method for preparing the array substrate includes:
S110:提供基底1,如图3所示;S110: providing a substrate 1, as shown in FIG3 ;
S120:在基底1上形成第一有源部2和第二有源部3,第一有源部2包括层叠设置的金属氧化物层21和第一非晶硅层22,金属氧化物层21靠近基底1设置,第二有源部3包括第二非晶硅层31,如图4所示;S120: forming a first active portion 2 and a second active portion 3 on the substrate 1, wherein the first active portion 2 includes a metal oxide layer 21 and a first amorphous silicon layer 22 which are stacked, the metal oxide layer 21 being disposed close to the substrate 1, and the second active portion 3 including a second amorphous silicon layer 31, as shown in FIG4 ;
S130:对第一有源部2的第一非晶硅层22进行晶化处理形成第一多晶硅层23,并且第一多晶硅层23与金属氧化物层21的接触界面受热形成多晶复合材料层24,如图5所示。S130 : performing crystallization treatment on the first amorphous silicon layer 22 of the first active portion 2 to form a first polycrystalline silicon layer 23 , and heating the contact interface between the first polycrystalline silicon layer 23 and the metal oxide layer 21 to form a polycrystalline composite material layer 24 , as shown in FIG. 5 .
本发明实施例提供的阵列基板的制备方法,首先提供基底1,基体可以采用柔性或刚性基底1,之后在基底1上形成第一有源部2和第二有源部3,第一有源部2包括层叠设置的金属氧化物层21和第一非晶硅层22,金属氧化物层21和基底1相接触设置,而第一非晶硅层22设于金属氧化物层21背离基底1的一侧,再对第一非晶硅层22进行晶化处理以使第一非晶硅层22吸收能量转换为第一多晶硅层23,且在第一非晶硅层22晶化的过程中,所形成的第一多晶硅层23与金属氧化物层21的接触界面能够受热、重新进行原子排列,形成多晶复合材料层24,多晶复合材料层24的原子排列结构相对于金属氧化物层21的原子排列结构更加整齐。因而,多晶复合材料层24的导电性强于金属氧化物层21的导电性,在第一有源部2中,多晶复合材料层24的导电性介于第一多晶硅层23与金属氧化物层21的之间,提高了第一有源部2的电性均匀性,减少所需的晶体管数量,在应用于显示面板时可提高像素密度,并且降低晶体管功耗以及漏电风险。The preparation method of the array substrate provided in an embodiment of the present invention first provides a substrate 1, and the base body can be a flexible or rigid substrate 1, and then a first active part 2 and a second active part 3 are formed on the substrate 1, and the first active part 2 includes a stacked metal oxide layer 21 and a first amorphous silicon layer 22, the metal oxide layer 21 and the substrate 1 are arranged in contact, and the first amorphous silicon layer 22 is arranged on the side of the metal oxide layer 21 away from the substrate 1, and then the first amorphous silicon layer 22 is crystallized so that the first amorphous silicon layer 22 absorbs energy and converts it into a first polycrystalline silicon layer 23, and in the process of crystallization of the first amorphous silicon layer 22, the contact interface between the formed first polycrystalline silicon layer 23 and the metal oxide layer 21 can be heated and rearranged atomically to form a polycrystalline composite material layer 24, and the atomic arrangement structure of the polycrystalline composite material layer 24 is more orderly than the atomic arrangement structure of the metal oxide layer 21. Therefore, the conductivity of the polycrystalline composite material layer 24 is stronger than that of the metal oxide layer 21. In the first active part 2, the conductivity of the polycrystalline composite material layer 24 is between that of the first polysilicon layer 23 and the metal oxide layer 21, which improves the electrical uniformity of the first active part 2 and reduces the required number of transistors. When applied to a display panel, it can increase the pixel density and reduce transistor power consumption and leakage risk.
需要说明的是,金属氧化物层21具体可以采用IGZO(indium gallium zincoxide,铟镓锌氧化物)等材料。具体的,IGZO是一种含有铟、镓和锌的非晶氧化物,载流子迁移率是非晶硅的20~30倍,可以大大提高晶体管对像素电极的充放电速率,提高像素的响应速度,实现更快的刷新率,同时更快的响应也大大提高了像素的行扫描速率。而第一非晶硅层22和第二非晶硅层31具体是指由a-Si(amorphous silicon,非晶硅)形成的膜层,第一多晶硅层23具体是指由p-Si(polycrystalline silicon,多晶硅)形成的膜层。It should be noted that the metal oxide layer 21 can specifically be made of materials such as IGZO (indium gallium zinc oxide). Specifically, IGZO is an amorphous oxide containing indium, gallium and zinc, and its carrier mobility is 20 to 30 times that of amorphous silicon. It can greatly improve the charging and discharging rate of the transistor to the pixel electrode, improve the response speed of the pixel, and achieve a faster refresh rate. At the same time, the faster response also greatly improves the row scanning rate of the pixel. The first amorphous silicon layer 22 and the second amorphous silicon layer 31 specifically refer to film layers formed by a-Si (amorphous silicon), and the first polycrystalline silicon layer 23 specifically refers to a film layer formed by p-Si (polycrystalline silicon).
可选的,第二非晶硅层31通过激光照射等工艺晶化形成第二多晶硅层,第二非晶硅层31和第一非晶硅层22可以通过同一道工艺形成,也可以单独成型,且第一有源部2和第二有源部3可以同层设置,方便成型,也可以异层设置。并无特殊限定。Optionally, the second amorphous silicon layer 31 is crystallized by laser irradiation or other processes to form a second polycrystalline silicon layer. The second amorphous silicon layer 31 and the first amorphous silicon layer 22 can be formed by the same process or can be formed separately. The first active portion 2 and the second active portion 3 can be arranged in the same layer for easy forming, or can be arranged in different layers. There is no special limitation.
可以理解的是,本发明实施例所形成的阵列基板为由LTPO(Low TemperaturePolycrystalline Oxide,低温多晶氧化物)工艺形成的阵列基板,包括有源层分别为第一有源部2和第二有源部3的两种晶体管,即LTPS(Low Temperature Poly-Silicon,低温多晶硅)晶体管以及IGZO晶体管。It can be understood that the array substrate formed by the embodiment of the present invention is an array substrate formed by the LTPO (Low Temperature Polycrystalline Oxide) process, including two types of transistors whose active layers are respectively the first active part 2 and the second active part 3, namely, LTPS (Low Temperature Poly-Silicon) transistor and IGZO transistor.
基底1可为刚性基底1或者柔性基底1,以为阵列基板上的其余膜层提供支撑;当基底1为刚性基底1时,基底1的材料可为玻璃,当基底1为柔性基底1时,基底1的材料可为聚酰亚胺;在其他一些实施例中,基底1还可为透明基底1,以使得阵列基板可应用于底发射的显示面板中。The substrate 1 may be a rigid substrate 1 or a flexible substrate 1 to provide support for the remaining film layers on the array substrate; when the substrate 1 is a rigid substrate 1, the material of the substrate 1 may be glass; when the substrate 1 is a flexible substrate 1, the material of the substrate 1 may be polyimide; in some other embodiments, the substrate 1 may also be a transparent substrate 1 so that the array substrate can be applied to a bottom-emitting display panel.
可选的,在对第一有源部2的第一非晶硅层22进行晶化处理的步骤中:对第一非晶硅层22进行激光照射以使第一非晶硅层22晶化形成第一多晶硅层23。通过激光照射为第一非晶硅层22提供能量以使第一非晶硅层22产生晶化效应形成第一多晶硅层23。Optionally, in the step of crystallizing the first amorphous silicon layer 22 of the first active portion 2: laser irradiation is performed on the first amorphous silicon layer 22 to crystallize the first amorphous silicon layer 22 to form a first polycrystalline silicon layer 23. Energy is provided to the first amorphous silicon layer 22 by laser irradiation to cause the first amorphous silicon layer 22 to produce a crystallization effect to form the first polycrystalline silicon layer 23.
在一些可选的实施例中,在对第一非晶硅层22进行激光照射以使第一非晶硅层22晶化形成第一多晶硅层23的步骤中:激光的能量穿透深度大于第一非晶硅层22和金属氧化物层21相接触的一侧表面到第一非晶硅层22背离金属氧化物层21一侧表面之间的最小距离。In some optional embodiments, in the step of performing laser irradiation on the first amorphous silicon layer 22 to crystallize the first amorphous silicon layer 22 to form a first polycrystalline silicon layer 23: the energy penetration depth of the laser is greater than the minimum distance between the surface of the side where the first amorphous silicon layer 22 and the metal oxide layer 21 are in contact and the surface of the side of the first amorphous silicon layer 22 facing away from the metal oxide layer 21.
可以理解的是,激光的能量穿透深度具体是指激光的能量能够穿深透过物质的厚度,也就是激光的能量所能到达的深度,激光的能量穿透深度大于第一非晶硅层22和金属氧化物层21相接触的一侧表面到第一非晶硅层22背离金属氧化物层21一侧表面之间的最小距离,即激光的能量不仅能够作用于整个第一非晶硅层22,以使第一非晶硅层22受热晶化转化为第一多晶硅层23,还能够穿过第一非晶硅层22作用于部分金属氧化物层21,以使部分金属氧化物层21受热重新进行原子排列,并和相邻的部分第一多晶硅层23相结合形成原子排列的更加整齐、导电性更好的多晶复合材料层24,提高多晶复合材料层24的载流子迁移率。可以理解的是,激光的能量穿透深度可以通过调整激光的光强进行相应调整。It is understood that the energy penetration depth of the laser specifically refers to the thickness of the material that the energy of the laser can penetrate, that is, the depth that the energy of the laser can reach. The energy penetration depth of the laser is greater than the minimum distance between the surface of the first amorphous silicon layer 22 and the metal oxide layer 21 in contact with each other and the surface of the first amorphous silicon layer 22 away from the metal oxide layer 21, that is, the energy of the laser can not only act on the entire first amorphous silicon layer 22, so that the first amorphous silicon layer 22 is heated and crystallized to be converted into the first polycrystalline silicon layer 23, but also pass through the first amorphous silicon layer 22 to act on part of the metal oxide layer 21, so that part of the metal oxide layer 21 is heated and rearranged atomically, and combined with the adjacent part of the first polycrystalline silicon layer 23 to form a polycrystalline composite material layer 24 with more orderly atomic arrangement and better conductivity, thereby improving the carrier mobility of the polycrystalline composite material layer 24. It is understood that the energy penetration depth of the laser can be adjusted accordingly by adjusting the light intensity of the laser.
在一些可选的实施例中,第一非晶硅层22和金属氧化物层21相接触的一侧表面到第一非晶硅层22背离金属氧化物层21一侧表面之间的最小距离为4.5nm~5.5nm;激光的能量穿透深度为5.6nm~7.0nm。In some optional embodiments, the minimum distance between the surface of the first amorphous silicon layer 22 in contact with the metal oxide layer 21 and the surface of the first amorphous silicon layer 22 facing away from the metal oxide layer 21 is 4.5nm to 5.5nm; the energy penetration depth of the laser is 5.6nm to 7.0nm.
为了避免阵列基板的厚度过大,第一非晶硅层22和金属氧化物层21相接触的一侧表面到第一非晶硅层22背离金属氧化物层21一侧表面之间的最小距离为4.5nm~5.5nm,即第一非晶硅层22的厚度为4.5nm~5.5nm,为了使激光的能量能够穿过第一非晶硅层22,使得金属氧化物层21也能受热重新进行原子排列,激光的能量穿透深度可以采用5.6nm~7.0nm,只要大于第一非晶硅层22的厚度即可。In order to avoid the array substrate from being too thick, the minimum distance between the surface of the first amorphous silicon layer 22 in contact with the metal oxide layer 21 and the surface of the first amorphous silicon layer 22 facing away from the metal oxide layer 21 is 4.5nm~5.5nm, that is, the thickness of the first amorphous silicon layer 22 is 4.5nm~5.5nm. In order to allow the energy of the laser to pass through the first amorphous silicon layer 22 so that the metal oxide layer 21 can also be heated to rearrange its atoms, the energy penetration depth of the laser can be 5.6nm~7.0nm, as long as it is greater than the thickness of the first amorphous silicon layer 22.
为了保证第一非晶硅层22对于激光能量的吸收率,在一些可选的实施例中,激光为波长为157nm~353nm;具体的,激光为波长为308nm的氯化氙准分子激光。In order to ensure the absorption rate of the first amorphous silicon layer 22 to the laser energy, in some optional embodiments, the laser has a wavelength of 157nm to 353nm; specifically, the laser is a xenon chloride excimer laser with a wavelength of 308nm.
需要说明的是,为了将第一非晶硅层22晶化转化为第一多晶硅层23,需要采用ELA(Excimer Laser Annealing,准分子激光退火)工艺,准分子激光是指受到电子束激发的惰性气体和卤素气体结合的混合气体形成的分子向其基态跃迁时发射所产生的激光。准分子激光方向性强、波长纯度高、输出功率大的脉冲激光,光子能量波长范围为157nm~353nm,寿命为几十毫微秒,属于紫外光。最常见的波长有157nm、193nm、248nm、308nm、351~353nm,经实际测试,采用波长为308nm的氯化氙准分子激光对第一非晶硅层22照射时,第一非晶硅层22对于激光能量的吸收率最高,对于第一多晶硅层23转化率也相对较高。It should be noted that in order to crystallize and transform the first amorphous silicon layer 22 into the first polycrystalline silicon layer 23, an ELA (Excimer Laser Annealing) process is required. Excimer laser refers to the laser emitted when the molecules formed by the mixed gas formed by the combination of inert gas and halogen gas excited by the electron beam transition to their ground state. Excimer laser is a pulsed laser with strong directionality, high wavelength purity and high output power. The photon energy wavelength range is 157nm~353nm, and the life span is tens of nanoseconds. It belongs to ultraviolet light. The most common wavelengths are 157nm, 193nm, 248nm, 308nm, 351~353nm. According to actual tests, when the first amorphous silicon layer 22 is irradiated with a xenon chloride excimer laser with a wavelength of 308nm, the first amorphous silicon layer 22 has the highest absorption rate for laser energy, and the conversion rate for the first polycrystalline silicon layer 23 is also relatively high.
在一些可选的实施中,在基底1上形成第一有源部2和第二有源部3的步骤中:金属氧化物层21和基底1相接触的一侧表面到金属氧化物层21背离基底1一侧表面之间的最小距离为40nm~50nm。具体的,金属氧化物层21的厚度为40nm~50nm,在上述实施例中,第一非晶硅层22的厚度为4.5nm~5.5nm,而激光的能量穿透深度可以采用5.6nm~7.0nm。因而,激光在穿透第一非晶硅层22后,只会作用于部分靠近第一非晶硅层22的金属氧化物层21,受热的部分金属氧化物层21和相接触的部分第一多晶硅层23结合形成多晶复合材料层24。因而,最终形成层叠设置的第一多晶硅层23、多晶复合材料层24以及金属氧化物层21。In some optional implementations, in the step of forming the first active portion 2 and the second active portion 3 on the substrate 1: the minimum distance between the surface of the metal oxide layer 21 in contact with the substrate 1 and the surface of the metal oxide layer 21 away from the substrate 1 is 40nm to 50nm. Specifically, the thickness of the metal oxide layer 21 is 40nm to 50nm. In the above embodiment, the thickness of the first amorphous silicon layer 22 is 4.5nm to 5.5nm, and the energy penetration depth of the laser can be 5.6nm to 7.0nm. Therefore, after penetrating the first amorphous silicon layer 22, the laser will only act on the part of the metal oxide layer 21 close to the first amorphous silicon layer 22, and the heated part of the metal oxide layer 21 and the contacted part of the first polycrystalline silicon layer 23 are combined to form a polycrystalline composite material layer 24. Therefore, the first polycrystalline silicon layer 23, the polycrystalline composite material layer 24 and the metal oxide layer 21 are finally formed in a stacked arrangement.
请参阅图6,在一些可选的实施例中,在对第一有源部2的第一非晶硅层22进行晶化处理形成第一多晶硅层23的步骤后,还包括:在第一多晶硅层23背离金属氧化物层21一侧形成层间绝缘层25;在层间绝缘层25背离第一多晶硅层23一侧形成栅极层26。Please refer to Figure 6. In some optional embodiments, after the step of crystallizing the first amorphous silicon layer 22 of the first active part 2 to form the first polysilicon layer 23, it also includes: forming an interlayer insulating layer 25 on the side of the first polysilicon layer 23 away from the metal oxide layer 21; and forming a gate layer 26 on the side of the interlayer insulating layer 25 away from the first polysilicon layer 23.
可以理解的是,层间绝缘层25具体可以采用氮化硅、氧化硅或者氮氧化硅等无机绝缘材料,而在层间绝缘层25背离第一多晶硅层23一侧形成栅极层26,栅极层26具体可以采用钼金属等材料,钼金属的性质稳定,耐腐蚀性好,不易和水汽发生反应,也就不会被水汽腐蚀断裂。层间绝缘层25和栅极层26具体可以采用沉积或者蒸镀的工艺形式成型。可选的,层间绝缘层25的厚度为120nm~150nm,栅极层26的厚度为200nm~300nm。It is understandable that the interlayer insulating layer 25 can be made of inorganic insulating materials such as silicon nitride, silicon oxide or silicon oxynitride, and a gate layer 26 is formed on the side of the interlayer insulating layer 25 away from the first polysilicon layer 23. The gate layer 26 can be made of materials such as molybdenum metal. Molybdenum metal has stable properties, good corrosion resistance, and is not easy to react with water vapor, so it will not be corroded and broken by water vapor. The interlayer insulating layer 25 and the gate layer 26 can be formed in the form of deposition or evaporation. Optionally, the thickness of the interlayer insulating layer 25 is 120nm to 150nm, and the thickness of the gate layer 26 is 200nm to 300nm.
请参阅图7,在一些可选的实施例中,在层间绝缘层25背离第一多晶硅层23一侧形成栅极层26的步骤后,还包括:在第一多晶硅层23背离金属氧化物层21一侧形成源漏极层27。Please refer to FIG. 7 , in some optional embodiments, after the step of forming the gate layer 26 on the side of the interlayer insulating layer 25 away from the first polysilicon layer 23 , the step further includes: forming a source and drain layer 27 on the side of the first polysilicon layer 23 away from the metal oxide layer 21 .
需要说明的是,源漏极层27具体可以采用溅镀工艺成型,溅镀工艺利用等离子体中的离子,对被溅镀物质电极进行轰击,使气相等离子体内具有被溅镀物质的粒子,这些粒子沉积到金属氧化物层21表面形成源漏极层27,具体的,源漏极层27可以采用钛铝钛复合金属层,耐腐蚀性好,且具有良好的导电性能。It should be noted that the source and drain electrode layer 27 can be formed specifically by a sputtering process. The sputtering process uses ions in the plasma to bombard the sputtered material electrode, so that the gas phase plasma contains particles of the sputtered material. These particles are deposited on the surface of the metal oxide layer 21 to form the source and drain electrode layer 27. Specifically, the source and drain electrode layer 27 can be made of a titanium-aluminum-titanium composite metal layer, which has good corrosion resistance and good electrical conductivity.
本发明实施例提供的阵列基板可以应用于手机,也可以应用于任何具有显示功能的电子产品,包括但不限于以下类别:电视机、笔记本电脑、桌上型显示器、平板电脑、数码相机、智能手环、智能眼镜、车载显示器、医疗设备、工控设备、触摸交互终端等,本发明实施例对此不作特殊限定。The array substrate provided in the embodiment of the present invention can be applied to mobile phones, and can also be applied to any electronic products with display functions, including but not limited to the following categories: televisions, laptops, desktop displays, tablet computers, digital cameras, smart bracelets, smart glasses, car displays, medical equipment, industrial control equipment, touch interactive terminals, etc. The embodiment of the present invention does not make special limitations on this.
以上,仅为本发明的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。The above is only a specific implementation of the present invention. Those skilled in the art can clearly understand that for the convenience and simplicity of description, the specific working processes of the systems, modules and units described above can refer to the corresponding processes in the aforementioned method embodiments, and will not be repeated here. It should be understood that the protection scope of the present invention is not limited to this. Any technician familiar with the technical field can easily think of various equivalent modifications or replacements within the technical scope disclosed by the present invention, and these modifications or replacements should be covered within the protection scope of the present invention.
还需要说明的是,本发明中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本发明不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。It should also be noted that the exemplary embodiments mentioned in the present invention describe some methods or systems based on a series of steps or devices. However, the present invention is not limited to the order of the above steps, that is, the steps can be performed in the order mentioned in the embodiments, or in a different order from the embodiments, or several steps can be performed simultaneously.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110130697.4A CN112885851B (en) | 2021-01-29 | 2021-01-29 | Array substrate and method for preparing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110130697.4A CN112885851B (en) | 2021-01-29 | 2021-01-29 | Array substrate and method for preparing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112885851A CN112885851A (en) | 2021-06-01 |
CN112885851B true CN112885851B (en) | 2024-04-05 |
Family
ID=76052026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110130697.4A Active CN112885851B (en) | 2021-01-29 | 2021-01-29 | Array substrate and method for preparing the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112885851B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080056955A (en) * | 2006-12-19 | 2008-06-24 | 삼성에스디아이 주식회사 | Thin film transistor and method of manufacturing same |
WO2014109830A1 (en) * | 2013-01-08 | 2014-07-17 | Applied Materials, Inc. | Metal oxynitride based heterojunction field effect transistor |
CN110752235A (en) * | 2019-10-28 | 2020-02-04 | 合肥维信诺科技有限公司 | Manufacturing method of array substrate and array substrate |
-
2021
- 2021-01-29 CN CN202110130697.4A patent/CN112885851B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080056955A (en) * | 2006-12-19 | 2008-06-24 | 삼성에스디아이 주식회사 | Thin film transistor and method of manufacturing same |
WO2014109830A1 (en) * | 2013-01-08 | 2014-07-17 | Applied Materials, Inc. | Metal oxynitride based heterojunction field effect transistor |
CN110752235A (en) * | 2019-10-28 | 2020-02-04 | 合肥维信诺科技有限公司 | Manufacturing method of array substrate and array substrate |
Also Published As
Publication number | Publication date |
---|---|
CN112885851A (en) | 2021-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4026182B2 (en) | Semiconductor device manufacturing method and electronic device manufacturing method | |
CN105390451B (en) | The preparation method of low temperature polycrystalline silicon TFT substrate | |
US8502217B2 (en) | Oxide semiconductor device including insulating layer and display apparatus using the same | |
CN103839825A (en) | Low-temperature polycrystalline silicon thin film transistor, array substrate and manufacturing method of array substrate | |
TWI224868B (en) | Method of forming poly-silicon thin film transistor | |
JP4488039B2 (en) | Method for manufacturing thin film semiconductor device | |
TWI489634B (en) | Thin film transistor, manufacturing method thereof and display device | |
WO2018010214A1 (en) | Method for manufacturing metal oxide thin film transistor array substrate | |
WO2017107274A1 (en) | Low-temperature polysilicon thin film transistor and preparation method therefor | |
CN105304500A (en) | Manufacture method of N-type TFT (Thin Film Transistor) | |
CN103839826A (en) | Low-temperature polycrystalline silicon thin film transistor, array substrate and manufacturing method of array substrate | |
CN105609422A (en) | Thin film transistor, fabrication method thereof, array substrate and display device | |
CN103985638A (en) | Low temperature polycrystalline silicon thin film transistor, preparation method thereof, and display device | |
TW200924067A (en) | Methods of fabricating crystalline silicon, thin film transistors, and solar cells | |
CN102832169A (en) | Array substrate and preparation method thereof and display device | |
JP2700277B2 (en) | Method for manufacturing thin film transistor | |
CN101005016A (en) | Polysilicon layer and method for manufacturing thin film transistor | |
JP2007220918A (en) | Laser annealing method, thin-film semiconductor device, manufacturing method thereof, display, and manufacturing method thereof | |
US9093427B2 (en) | Method for fabricating semiconductor device | |
CN106847825A (en) | Display substrate, semiconductor device and manufacturing method thereof, and display device | |
CN104900491A (en) | Thin film transistor and manufacturing method thereof and display device | |
CN112885851B (en) | Array substrate and method for preparing the same | |
CN108831894A (en) | Manufacturing method of low-temperature polysilicon thin film, low-temperature polysilicon thin film and low-temperature polysilicon TFT substrate | |
CN105140130B (en) | Low-temperature polysilicon film transistor and preparation method thereof | |
CN104617151B (en) | Low-temperature polysilicon film transistor and production method, array substrate and display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |