CN112838006B - 一种氮化镓pin二极管及其制备方法 - Google Patents
一种氮化镓pin二极管及其制备方法 Download PDFInfo
- Publication number
- CN112838006B CN112838006B CN202011635958.XA CN202011635958A CN112838006B CN 112838006 B CN112838006 B CN 112838006B CN 202011635958 A CN202011635958 A CN 202011635958A CN 112838006 B CN112838006 B CN 112838006B
- Authority
- CN
- China
- Prior art keywords
- layer
- drift
- electrode
- gan
- gallium nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910002601 GaN Inorganic materials 0.000 title claims abstract description 128
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 66
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000004065 semiconductor Substances 0.000 claims abstract description 59
- 238000002955 isolation Methods 0.000 claims description 46
- 239000000758 substrate Substances 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 23
- 230000007704 transition Effects 0.000 claims description 19
- 238000000151 deposition Methods 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 238000005530 etching Methods 0.000 claims description 9
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 6
- 229920002120 photoresistant polymer Polymers 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 6
- 229910052594 sapphire Inorganic materials 0.000 claims description 5
- 239000010980 sapphire Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 229910002704 AlGaN Inorganic materials 0.000 claims description 3
- 238000000137 annealing Methods 0.000 claims description 3
- 238000001312 dry etching Methods 0.000 claims description 3
- 238000001259 photo etching Methods 0.000 claims description 3
- 125000006850 spacer group Chemical group 0.000 claims 1
- 230000000903 blocking effect Effects 0.000 abstract description 15
- 230000010354 integration Effects 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000001020 plasma etching Methods 0.000 description 5
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- 230000005684 electric field Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000001017 electron-beam sputter deposition Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001657 homoepitaxy Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0684—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/402—Field plates
- H01L29/404—Multiple field plate structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/402—Field plates
- H01L29/407—Recessed field plates, e.g. trench field plates, buried field plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66083—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
- H01L29/6609—Diodes
- H01L29/66136—PN junction diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/868—PIN diodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
一种氮化镓PIN二极管及其制备方法。涉及一种氮化镓功率半导体器件。提供了一种增大器件结构中漂移区的长度,提高器件的阻断电压,同时使阳极电极、阴极电极和场板电极汇集于器件结构的顶面,形成一种共面的器件输入输出电极结构,便于实现器件的平面集成以及在功率集成电路中的应用的一种氮化镓PIN二极管及其制备方法。本发明具有增大器件结构中漂移区的长度,提高器件的阻断电压,同时使阳极电极、阴极电极和场板电极汇集于器件结构的顶面,形成一种共面的器件输入输出电极结构,便于实现器件的平面集成以及在功率集成电路中的应用等特点。
Description
技术领域
本发明涉及一种氮化镓功率半导体器件,尤其是一种高阻断电压的氮化镓PIN二极管及其制备方法,属于电力电子器件技术领域。
背景技术
氮化镓半导体具备禁带宽度大、临界击穿电场高、热导率大、电子饱和漂移速率高、抗辐射能力强等优点,氮化镓PIN二极管因其高阻断电压、低反向漏电流、高开关速度等优异特性在电源管理、5G移动通信、半导体照明、消费电子等领域具有广阔的应用前景。
现行技术中的氮化镓PIN二极管主要采用垂直与横向两种结构形式。
横向结构的氮化镓PIN二极管制作在异质外延的氮化镓半导体衬底上,所用外延基板为价格低廉的硅基板,或者碳化硅基板,或者蓝宝石基板。现行技术中一般通过增加横向结构氮化镓PIN二极管的漂移区长度即增加其横向尺度以获得较高的阻断电压,但因此会增大器件芯片尺寸和导通电阻,减小单位芯片面积上的有效电流密度和芯片性能,从而导致芯片面积和研制成本的增加。
垂直结构的氮化镓PIN二极管制作在同质外延的氮化镓半导体衬底上,现行技术中一般采用较大厚度的氮化镓半导体外延层以获得较高的阻断电压,但氮化镓外延半导体层的缺陷密度与外延层的厚度成正比,较大厚度的氮化镓半导体外延层中的缺陷密度较大,影响器件关键的阻断电压、导通电阻、反向漏电流等性能指标的提高,且目前氮化镓外延技术水平尚不足以制备大尺寸、高性能、低成本的自支撑氮化镓外延片,从而限制了氮化镓PIN二极管的性能和应用。
并且,垂直结构的氮化镓PIN二极管中的阳极电极位于器件结构的顶面,阴极电极位于器件结构的底面,或者通过制作台面结构使阴极电极位于台面底部的两侧,均为非共面的输入输出电极结构,不便于器件的平面集成及其在功率集成电路中的应用。
发明内容
本发明针对以上问题,提供了一种增大器件结构中漂移区的长度,提高器件的阻断电压,同时使阳极电极、阴极电极和场板电极汇集于器件结构的顶面,形成一种共面的器件输入输出电极结构,便于实现器件的平面集成以及在功率集成电路中的应用的一种氮化镓PIN二极管及其制备方法。
本发明的技术方案是:一种氮化镓PIN二极管的制备方法,包括以下步骤:
1)准备基板;
2)在基板上淀积0.5μm厚的AlN过渡层;
3)在过渡层上淀积8μm厚的I-GaN漂移层;
4)在所述漂移层上淀积1μm厚的N-GaN第三半导体层,Si掺杂浓度为1×1018 cm-3;
5)在所述第三半导体层上淀积0.5μm厚的N+-GaN阴极区欧姆接触层,Si掺杂浓度为6×1019 cm-3;
6)采用深反应离子干法刻蚀方法刻蚀N+-GaN阴极区欧姆接触层、N-GaN第三半导体层和N―-GaN漂移层,形成漂移通道内隔离层沟槽和漂移通道外隔离层沟槽;
7)淀积二氧化硅或者氮化硅填充漂移通道内隔离层沟槽和漂移通道外隔离层沟槽,形成漂移通道内隔离层和漂移通道外隔离层;
8)刻蚀两个漂移通道内隔离层,形成场板沟槽;
9)淀积Ti/Au填充场板沟槽,形成场板;
10)刻蚀两个漂移通道内隔离层之间的N+-GaN阴极区欧姆接触层、N-GaN第三半导体层和N―-GaN漂移层,形成阳极区凹槽;
11)在阳极区凹槽内再生长5μm厚连通漂移层的I-GaN第二半导体层;
12)在阳极区凹槽内第二半导体层上生长1μm厚的P-GaN第一半导体层,Mg掺杂浓度为3×1019cm-3;;
13)在所述阳极区凹槽内第一半导体层上生长0.5μm厚的P+-GaN阳极区欧姆接触层,Mg掺杂浓度为1×1020 cm-3;
14)采用光刻方法形成用于制作阳极电极、阴极电极、场板电极的光刻胶掩模层;
15)在所述光刻胶掩模层上淀积Ti/Al/Ti/Au多金属层;
16)采用剥离方法形成阳极电极、阴极电极、场板电极;
17)采用600℃,N2气氛中退火形成阳极电极、阴极电极与相应半导体层的欧姆接触。
一种氮化镓PIN二极管,包括基板、过渡层、漂移层、阳极区、两个漂移通道、场板和金属电极层;
所述基板、过渡层、漂移层自下而上依次相接;
所述阳极区包括自下而上依次相接第二半导体层、第一半导体层和阳极区欧姆接触层;
所述漂移通道包括自下而上依次相接的通道漂移层、阴极区以及位于通道漂移层和阴极区内外两侧的漂移通道内隔离层和漂移通道外隔离层;
所述阴极区包括自下而上相接的第三半导体层和阴极区欧姆接触层;
所述阳极区和两个漂移通道分别与漂移层的上端相接;
所述漂移通道位于阳极区的两侧并由漂移通道内隔离层与阳极区相隔离;
所述场板内嵌入于漂移通道内隔离层中;
所述金属电极层包括阳极电极、阴极电极和场板电极;
所述阳极电极位于阳极区的顶部并与阳极区欧姆接触层相接;
所述阴极电极位于漂移通道的顶部与阴极区欧姆接触层相接;
所述场板电极位于漂移通道内隔离层和场板的顶部并与场板相接。
所述基板为Si基板、SiC基板或蓝宝石基板。
所述过渡层包括AlN外延层;
所述过渡层还包括自下而上相接于所述AlN外延层上的AlGaN外延层。
所述第一半导体层为P-GaN外延层或N-GaN外延层;
所述第二半导体层、漂移层、通道漂移层分别为I-GaN外延层;
所述第三半导体层为N-GaN外延层或P-GaN外延层;
所述阳极区欧姆接触层为P+-GaN外延层或N+-GaN外延层;
所述阴极区欧姆接触层为N+-GaN外延层或P+-GaN外延层。
所述漂移通道内隔离层和漂移通道外隔离层分别为二氧化硅层或氮化硅层。
所述场板为Ti/Au双金属层。
所述阳极电极、阴极电极和场板电极分别为Ti/Al/Ti/Au多金属层。
所述阳极电极、阴极电极和场板电极分别为Cr/Al/Ti/Au多金属层。
本发明包括基板、过渡层、漂移层、阳极区、两个漂移通道、场板和金属电极层;第二半导体层、漂移层和两个漂移通道构成一个环状的漂移区结构,相对于仅有横向漂移区的横向结构氮化镓PIN二极管或者仅有垂直漂移区的垂直结构氮化镓PIN二极管,本发明中的漂移区的路径总长度大于制作在相同基板及外延层尺寸的横向结构或者垂直结构氮化镓PIN二极管中漂移区的路径长度,由此增大氮化镓PIN二极管的阻断电压。本发明具有增大器件结构中漂移区的长度,提高器件的阻断电压,同时使阳极电极、阴极电极和场板电极汇集于器件结构的顶面,形成一种共面的器件输入输出电极结构,便于实现器件的平面集成以及在功率集成电路中的应用等特点。
附图说明
图1是本发明的结构示意图,
图2是本发明步骤5的结构示意图,
图3是本发明步骤7的结构示意图,
图4是本发明步骤9的结构示意图,
图5是本发明步骤13的结构示意图,
图6是本发明步骤16的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
本发明如图1-6所示,一种氮化镓PIN二极管的制备方法,包括以下步骤:
1)准备6英寸 Si基板、SiC基板或蓝宝石基板;
2)采用金属有机化学气相沉积(MOCVD)法在基板上淀积0.5μm厚的AlN过渡层;
3)采用MOCVD方法在过渡层上淀积8μm厚的I-GaN漂移层(含漂移通道层);
4)采用MOCVD方法在所述漂移层上淀积1μm厚的N-GaN第三半导体层,Si掺杂浓度为1×1018 cm-3;
5)采用MOCVD方法在所述第三半导体层上淀积0.5μm厚的N+-GaN阴极区欧姆接触层,Si掺杂浓度为6×1019 cm-3;如图1所示;
6)采用反应离子刻蚀(RIE)或者感应耦合等离子体(ICP)等深离子干法刻蚀方法刻蚀N+-GaN阴极区欧姆接触层、N-GaN第三半导体层和部分N―-GaN漂移层,形成漂移通道内隔离层沟槽和漂移通道外隔离层沟槽;
7)采用等离子体增强化学气相沉积(PECVD)方法淀积二氧化硅或者氮化硅填充漂移通道内隔离层沟槽和漂移通道外隔离层沟槽,形成漂移通道内隔离层和漂移通道外隔离层,如图3所示;
8)采用RIE或者ICP方法刻蚀两个漂移通道内隔离层,形成场板沟槽;
9)采用电子束溅射或者磁控溅射方法淀积Ti/Au填充场板沟槽,形成场板,如图4所示;
10)采用RIE或者ICP方法刻蚀两个漂移通道内隔离层之间的N+-GaN阴极区欧姆接触层、N-GaN第三半导体层和部分N―-GaN漂移层,形成阳极区凹槽;
11)采用MOCVD方法在阳极区凹槽内再生长5μm厚连通漂移层的I-GaN第二半导体层;
12)采用MOCVD方法在阳极区凹槽内第二半导体层上生长1μm厚的P-GaN第一半导体层,Mg掺杂浓度为3×1019cm-3;;
13)采用MOCVD方法在所述阳极区凹槽内第一半导体层上生长0.5μm厚的P+-GaN阳极区欧姆接触层,Mg掺杂浓度为1×1020 cm-3,如图5所示;
14)采用光刻方法形成用于制作阳极电极、阴极电极、场板电极的光刻胶掩模层;
15)采用电子束溅射或者磁控溅射方法在所述光刻胶掩模层上淀积Ti/Al/Ti/Au多金属层;
16)采用剥离方法形成阳极电极、阴极电极、场板电极,如图6所示;
17)采用600℃,N2气氛中退火形成阳极电极、阴极电极与相应半导体层的欧姆接触。
一种氮化镓PIN二极管,包括基板、过渡层、漂移层、阳极区、两个漂移通道、场板和金属电极层;
所述基板、过渡层、漂移层自下而上依次相接;
所述阳极区包括自下而上依次相接第二半导体层、第一半导体层和阳极区欧姆接触层;
所述漂移通道包括自下而上依次相接的通道漂移层、阴极区以及位于通道漂移层和阴极区内外两侧的漂移通道内隔离层和漂移通道外隔离层;
所述阴极区包括自下而上相接的第三半导体层和阴极区欧姆接触层;
所述阳极区和两个漂移通道分别与漂移层的上端相接;
所述漂移通道位于阳极区的两侧并由漂移通道内隔离层与阳极区相隔离;
所述场板内嵌入于漂移通道内隔离层中;
所述金属电极层包括阳极电极、阴极电极和场板电极;
所述阳极电极位于阳极区的顶部并与阳极区欧姆接触层相接;
所述阴极电极位于漂移通道的顶部与阴极区欧姆接触层相接;
所述场板电极位于漂移通道内隔离层和场板的顶部并与场板相接。
所述基板为Si基板、SiC基板或蓝宝石基板。
所述过渡层包括AlN外延层;
所述过渡层还包括自下而上相接于所述AlN外延层上的AlGaN外延层。
所述第一半导体层为P-GaN外延层或N-GaN外延层,用作本发明的氮化镓PIN二极管的P区或者N区;
所述第二半导体层、漂移层、通道漂移层分别为I-GaN外延层,用作本发明的氮化镓PIN二极管的本征层(漂移层);
所述第三半导体层为N-GaN外延层或P-GaN外延层,用作本发明的氮化镓PIN二极管的N区或者P区;
所述阳极区欧姆接触层为P+-GaN外延层或N+-GaN外延层,用于形成本发明的氮化镓PIN二极管的阳极电极欧姆接触;
所述阴极区欧姆接触层为N+-GaN外延层或P+-GaN外延层,用于形成本发明的氮化镓PIN二极管的阴极电极欧姆接触。
所述漂移通道内隔离层和漂移通道外隔离层分别为二氧化硅层或氮化硅层。
所述场板为Ti/Au双金属层。
所述阳极电极、阴极电极和场板电极分别为Ti/Al/Ti/Au多金属层。
所述阳极电极、阴极电极和场板电极分别为Cr/Al/Ti/Au多金属层。
所述本发明中的第一半导体层、第二半导体层和第三半导体层分别作为本发明的氮化镓PIN二极管的两个极性区和本征层(漂移层)构成本发明的氮化镓PIN二极管的功能区结构。正向偏置时,所述氮化镓PIN二极管导通。反向偏置时,氮化镓PIN二极管因氮化镓材料所具有的大禁带宽度、高击穿电场特点而具有较高的阻断电压,并且由于本发明特有的环状漂移区的路径总长度大于制作在相同尺寸的基板及外延层上的横向结构或者垂直件结构的氮化镓PIN二极管中漂移区的路径长度,由此进一步提高氮化镓PIN二极管的阻断电压,同时使器件的阳极电极、阴极电极和场板电极汇集于其结构的顶面,形成共面的器件输入输出电极结构,便于实现器件的平面集成以及在功率集成电路中的应用。
本发明中的第二半导体层、漂移层和两个漂移通道构成一个环状的漂移区结构,相对于仅有横向漂移区的横向结构氮化镓PIN二极管或者仅有垂直漂移区的垂直结构氮化镓PIN二极管,本发明中的漂移区的路径总长度大于制作在相同基板及外延层尺寸的横向结构或者垂直结构氮化镓PIN二极管中漂移区的路径长度,由此增大氮化镓PIN二极管的阻断电压。
本发明中场板或者通过场板电极单独施加电位,或者连接阳极电极施加电位,或者连接阴极电极施加电位,优化环状漂移路径上的电场分布,进一步提高氮化镓PIN二极管的阻断电压。
相比于要求较长横向漂移区的横向结构氮化镓PIN二极管或者要求较厚垂直漂移区的垂直结构氮化镓PIN二极管,本发明特有的环状电流漂移区结构不要求较长或者较厚的外延层,可以利用现行技术中工艺比较成熟,成本比较低廉的硅基氮化镓衬底材料制作高阻断电压的氮化镓功率器件,满足大规模应用的需求。
同时,本发明特有的环状电流漂移区结构,可以使器件的阳极电极、阴极电极、场板电极汇集在器件结构的顶面,即本发明的氮化镓PIN二极管具有共面的输入输出电极结构特点,便于实现器件平面集成化以及应用于功率集成电路中。
本发明的各个结构要素呈圆形或者任意多边形结构,相应地,本发明的器件芯片外形呈圆形或者任意多边形。
对于本案所公开的内容,还有以下几点需要说明:
(1)、本案所公开的实施例附图只涉及到与本案所公开实施例所涉及到的结构,其他结构可参考通常设计;
(2)、在不冲突的情况下,本案所公开的实施例及实施例中的特征可以相互组合以得到新的实施例;
以上,仅为本案所公开的具体实施方式,但本公开的保护范围并不局限于此,本案所公开的保护范围应以权利要求的保护范围为准。
Claims (10)
1.一种氮化镓PIN二极管的制备方法,其特征在于,包括以下步骤:
1)准备基板;
2)在基板上淀积0.5μm厚的AlN过渡层;
3)在过渡层上淀积8μm厚的I-GaN漂移层;
4)在所述漂移层上淀积1μm厚的N-GaN第三半导体层,Si掺杂浓度为1×1018 cm-3;
5)在所述第三半导体层上淀积0.5μm厚的N+-GaN阴极区欧姆接触层,Si掺杂浓度为6×1019 cm-3;
6)采用深反应离子干法刻蚀方法刻蚀N+-GaN阴极区欧姆接触层、N-GaN第三半导体层和N―-GaN漂移层,形成漂移通道内隔离层沟槽和漂移通道外隔离层沟槽;
7)淀积二氧化硅或者氮化硅填充漂移通道内隔离层沟槽和漂移通道外隔离层沟槽,形成漂移通道内隔离层和漂移通道外隔离层;
8)刻蚀两个漂移通道内隔离层,形成场板沟槽;
9)淀积Ti/Au填充场板沟槽,形成场板;
10)刻蚀两个漂移通道内隔离层之间的N+-GaN阴极区欧姆接触层、N-GaN第三半导体层和N―-GaN漂移层,形成阳极区凹槽;
11)在阳极区凹槽内再生长5μm厚连通漂移层的I-GaN第二半导体层;
12)在阳极区凹槽内第二半导体层上生长1μm厚的P-GaN第一半导体层,Mg掺杂浓度为3×1019cm-3;
13)在所述阳极区凹槽内第一半导体层上生长0.5μm厚的P+-GaN阳极区欧姆接触层,Mg掺杂浓度为1×1020 cm-3;
14)采用光刻方法形成用于制作阳极电极、阴极电极、场板电极的光刻胶掩模层;
15)在所述光刻胶掩模层上淀积Ti/Al/Ti/Au多金属层;
16)采用剥离方法形成阳极电极、阴极电极、场板电极;
17)采用600℃,N2气氛中退火形成阳极电极、阴极电极与相应半导体层的欧姆接触。
2.一种如权利要求1所述氮化镓PIN二极管的制备方法制备的氮化镓PIN二极管,其特征在于,包括基板、过渡层、漂移层、阳极区、两个漂移通道、场板和金属电极层;
所述基板、过渡层、漂移层自下而上依次相接;
所述阳极区包括自下而上依次相接第二半导体层、第一半导体层和阳极区欧姆接触层;
所述漂移通道包括自下而上依次相接的通道漂移层、阴极区以及位于通道漂移层和阴极区内外两侧的漂移通道内隔离层和漂移通道外隔离层;
所述阴极区包括自下而上相接的第三半导体层和阴极区欧姆接触层;
所述阳极区和两个漂移通道分别与漂移层的上端相接;
所述漂移通道位于阳极区的两侧并由漂移通道内隔离层与阳极区相隔离;
所述场板内嵌入于漂移通道内隔离层中;
所述金属电极层包括阳极电极、阴极电极和场板电极;
所述阳极电极位于阳极区的顶部并与阳极区欧姆接触层相接;
所述阴极电极位于漂移通道的顶部与阴极区欧姆接触层相接;
所述场板电极位于漂移通道内隔离层和场板的顶部并与场板相接。
3.根据权利要求2所述的一种氮化镓PIN二极管,其特征在于,所述基板为Si基板、SiC基板或蓝宝石基板。
4.根据权利要求2所述的一种氮化镓PIN二极管,其特征在于,所述过渡层包括AlN外延层。
5.根据权利要求4所述的一种氮化镓PIN二极管,其特征在于,所述过渡层还包括自下而上相接于所述AlN外延层上的AlGaN外延层。
6.根据权利要求2所述的一种氮化镓PIN二极管,其特征在于,所述第一半导体层为P-GaN外延层或N-GaN外延层;
所述第二半导体层、漂移层、通道漂移层分别为I-GaN外延层;
所述第三半导体层为N-GaN外延层或P-GaN外延层;
所述阳极区欧姆接触层为P+-GaN外延层或N+-GaN外延层;
所述阴极区欧姆接触层为N+-GaN外延层或P+-GaN外延层。
7.根据权利要求2所述的一种氮化镓PIN二极管,其特征在于,所述漂移通道内隔离层和漂移通道外隔离层分别为二氧化硅层或氮化硅层。
8.根据权利要求2所述的一种氮化镓PIN二极管,其特征在于,所述场板为Ti/Au双金属层。
9.根据权利要求2所述的一种氮化镓PIN二极管,其特征在于,所述阳极电极、阴极电极和场板电极分别为Ti/Al/Ti/Au多金属层。
10.根据权利要求2所述的一种氮化镓PIN二极管,其特征在于,所述阳极电极、阴极电极和场板电极分别为Cr/Al/Ti/Au多金属层。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011635958.XA CN112838006B (zh) | 2020-12-31 | 2020-12-31 | 一种氮化镓pin二极管及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011635958.XA CN112838006B (zh) | 2020-12-31 | 2020-12-31 | 一种氮化镓pin二极管及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112838006A CN112838006A (zh) | 2021-05-25 |
CN112838006B true CN112838006B (zh) | 2023-08-01 |
Family
ID=75926962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011635958.XA Active CN112838006B (zh) | 2020-12-31 | 2020-12-31 | 一种氮化镓pin二极管及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112838006B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0485059A2 (en) * | 1990-09-28 | 1992-05-13 | Kabushiki Kaisha Toshiba | Semiconductor device including a pin-diode having high breakdown voltage |
CN102956680A (zh) * | 2011-08-09 | 2013-03-06 | 英飞凌科技奥地利有限公司 | 半导体器件及形成半导体器件的方法 |
CN106129107A (zh) * | 2016-07-01 | 2016-11-16 | 电子科技大学 | 半导体结构、半导体组件及功率半导体器件 |
CN108417614A (zh) * | 2017-02-09 | 2018-08-17 | 株式会社东芝 | 半导体装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010133923A1 (en) * | 2009-05-22 | 2010-11-25 | X-Fab Semiconductor Foundries Ag | Semiconductor device comprising an isolation trench including semiconductor islands |
US20150279961A1 (en) * | 2014-03-31 | 2015-10-01 | National Tsing Hua University | METHOD OF MANUFACTURING HIGH POWER VERTICAL GaN-PIN DIODE |
-
2020
- 2020-12-31 CN CN202011635958.XA patent/CN112838006B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0485059A2 (en) * | 1990-09-28 | 1992-05-13 | Kabushiki Kaisha Toshiba | Semiconductor device including a pin-diode having high breakdown voltage |
CN102956680A (zh) * | 2011-08-09 | 2013-03-06 | 英飞凌科技奥地利有限公司 | 半导体器件及形成半导体器件的方法 |
CN106129107A (zh) * | 2016-07-01 | 2016-11-16 | 电子科技大学 | 半导体结构、半导体组件及功率半导体器件 |
CN108417614A (zh) * | 2017-02-09 | 2018-08-17 | 株式会社东芝 | 半导体装置 |
Non-Patent Citations (4)
Title |
---|
1.1 kV vertical p-i-n GaN-on-sapphire diodes;Sara E. Harrison; Qinghui Shao; Clint D. Frye; Lars F. Voss; Rebecca J. Nikolić;2018 76th Device Research Conference (DRC);全文 * |
Masanori Tsukuda;Hironori Imaki;Ichiro Omura.Ultra-fast lateral 600 V silicon PiN diode superior to SiC-SBD.2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD).2014,全文. * |
对比SBD、JBS、PiN以及对JBS特性改进可能性的分析;刘雪莹;《中国优秀硕士学位论文全文数据库》;全文 * |
硅基GaN垂直结构功率二极管的研究;何俊蕾;《中国博士学位论文全文数据库》;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN112838006A (zh) | 2021-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7842974B2 (en) | Gallium nitride heterojunction schottky diode | |
CN109037326B (zh) | 一种具有p型埋层结构的增强型hemt器件及其制备方法 | |
CN113380623A (zh) | 通过p型钝化实现增强型HEMT的方法 | |
CN109873034B (zh) | 沉积多晶AlN的常关型HEMT功率器件及其制备方法 | |
CN114899227A (zh) | 一种增强型氮化镓基晶体管及其制备方法 | |
CN109950323B (zh) | 极化超结的ⅲ族氮化物二极管器件及其制作方法 | |
CN111081763B (zh) | 一种场板下方具有蜂窝凹槽势垒层结构的常关型hemt器件及其制备方法 | |
CN112820648B (zh) | 一种氮化镓金属氧化物半导体晶体管及其制备方法 | |
CN109950324A (zh) | p型阳极的Ⅲ族氮化物二极管器件及其制作方法 | |
CN108206220B (zh) | 金刚石肖特基二极管的制备方法 | |
CN112838006B (zh) | 一种氮化镓pin二极管及其制备方法 | |
CN112768358B (zh) | 一种氮化镓高电子迁移率晶体管及其制备方法 | |
CN213660413U (zh) | 氮化镓高电子迁移率晶体管 | |
CN116666428A (zh) | 一种氮化镓肖特基二极管及其制备方法 | |
CN110416318A (zh) | 一种氮化镓基二极管结构及其制备方法 | |
CN112820644B (zh) | 一种高阻断电压的氮化镓pn二极管及制备方法 | |
CN213660419U (zh) | 氮化镓pin二极管 | |
CN213660418U (zh) | 高阻断电压的氮化镓pn二极管 | |
CN116190228A (zh) | 一种化合物半导体集成电路隔离方法 | |
CN111739800B (zh) | 一种SOI基凹栅增强型GaN功率开关器件的制备方法 | |
CN114937597A (zh) | 一种双层钝化耗尽型mis-hemt器件及其制备方法 | |
CN213660420U (zh) | 氮化镓肖特基势垒二极管 | |
CN213660417U (zh) | 氮化镓金属氧化物半导体晶体管 | |
CN118016665B (zh) | 集成SBD的SiC衬底上增强型GaN HEMT器件 | |
CN114695112A (zh) | 一种氮化镓肖特基势垒二极管及制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |