[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN112751257A - 激光晶体、固体激光器及其应用 - Google Patents

激光晶体、固体激光器及其应用 Download PDF

Info

Publication number
CN112751257A
CN112751257A CN202011614172.XA CN202011614172A CN112751257A CN 112751257 A CN112751257 A CN 112751257A CN 202011614172 A CN202011614172 A CN 202011614172A CN 112751257 A CN112751257 A CN 112751257A
Authority
CN
China
Prior art keywords
laser
crystal
fluoride
concentration range
doping concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011614172.XA
Other languages
English (en)
Inventor
黄杏彬
俞晓峰
徐桔红
李锐
邱帅
韩双来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Puyu Technology Development Co Ltd
Original Assignee
Hangzhou Puyu Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Puyu Technology Development Co Ltd filed Critical Hangzhou Puyu Technology Development Co Ltd
Priority to CN202011614172.XA priority Critical patent/CN112751257A/zh
Publication of CN112751257A publication Critical patent/CN112751257A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1691Solid materials characterised by additives / sensitisers / promoters as further dopants
    • H01S3/1698Solid materials characterised by additives / sensitisers / promoters as further dopants rare earth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/161Solid materials characterised by an active (lasing) ion rare earth holmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

本发明提供了激光晶体、固体激光器及其应用,所述激光晶体包括基质及掺杂物质,所述掺杂物质包括Nd3+、Er3+、Ho3+;Nd3+的掺杂浓度范围为0.1%~5%,Er3+的掺杂浓度范围为0.1%~30%,Ho3+的掺杂浓度范围0.1%~10%,上述浓度范围为摩尔比。本发明具有激光输出效率高等优点。

Description

激光晶体、固体激光器及其应用
技术领域
本发明涉及激光器,特别涉及激光晶体、固体激光器及其应用。
背景技术
2.5~3.1微米波段激光在军事、激光雷达、大气污染监测、生物工程、医疗卫生等领域具有广泛的应用前景,而且是可以通过光学参量振荡的技术手段实现更长波段的激光输出。
目前,在2.5~3.1微米波段研究比较集中的是利用掺铒(Er3+)激光晶体,如YAG、GGG和LYF等,而且2.94微米高浓度掺Er3+的YAG晶体已经获得产业化。然而,掺Er3+的激光材料,一般在特定的基质中只能获得固定波长且荧光光谱非常窄的激光,不利于制作超快激光器和长波段调谐激光器,而且铒离子的4I11/24I13/2跃迁是属于两个激发态能级之间的跃迁,一般情况下,上能级4I11/2的荧光寿命会远远低于下能级4I13/2的荧光寿命,导致很容易出现上能级粒子数低于下能级粒子数,难于形成粒子数反转,最终出现激光自终止,需要Er3+离子的高浓度掺杂通过上转换的能量传递机制实现荧光输出,高浓度掺杂很难获得光学质量高的激光晶体。
另外,掺钬(Ho3+)激光晶体理论上也能实现2.9微米激光,但缺乏泵浦源的问题严重制约了Ho3+的2.8~3.0微米的连续激光输出。Ho3+不存在与Er3+类似的上转换的能量传递机制,不能通过高浓度掺杂实现2.8~3.0微米的激光输出,而且Ho3+5I65I7跃迁同样属于两个激发态能级之间的跃迁,难以形成粒子数反转,最终出现激光自终止。因此,Ho3+离子难于实现2.9微米激光输出。
相较于非常成熟的1微米激光材料,当前国内外仍没有实现光谱展宽较宽的2.5~3.1微米固态激光材料。鉴于2.5~3.1微米激光材料对实现中红外超快激光和中红外宽波长调谐的重要影响,为了增强中红外激光晶体材料的发光效率及解决相关激光材料激光自终止和缺乏泵浦源的问题,本发明提供一种使用新型中红外钕铒钬三掺的激光晶体材料的全固态激光器。
发明内容
为解决上述现有技术方案中的不足,本发明提供了一种激光晶体。
本发明的目的是通过以下技术方案实现的:
激光晶体,所述激光晶体包括基质;所述激光晶体还包括:
掺杂物质,所述掺杂物质包括Nd3+、Er3+、Ho3+;Nd3+的掺杂浓度范围为0.1%~5%,Er3+的掺杂浓度范围为0.1%~30%,Ho3+的掺杂浓度范围0.1%~10%,上述浓度范围为摩尔比。
本发明的另一目的在于提供了应用上述激光晶体的固体激光器,该发明目的是通过以下技术方案得以实现的:
固体激光器,所述固体激光器包括晶体和泵浦源,所述晶体采用本发明的上述激光晶体。
本发明的另一目的在于提供了上述固体激光器的应用,该发明目的是通过以下技术方案得以实现的:
根据本发明的固体激光器作为中红外光源的应用,所述固体激光器的输出波长为2.5-3.1μm。
与现有技术相比,本发明具有的有益效果为:
申请人提出一种钕铒钬三掺杂的中红外激光晶体:铒离子和钬离子同时作为激活离子,钕离子作为敏化和退激活离子;通过钬离子共掺来同时敏化饵离子、钬离子,同时大大降低饵离子、钬离子激光下能级4I13/25I7能级寿命的技术思想,达到同时实现LD泵浦和增强2.5~3.1微米中红外荧光发射的双重目的,利于粒子数反转,进而提高铒离子和钬离子激活中红外激光晶体的激光输出效率;
申请人研究了钕铒钬三掺杂中红外激光晶体在2.5~3.1微米波段的光学性质,通过数据表明,该材料能够作为实现2.5~3.1微米中红外宽带可调谐全固态激光输出和中红外超快激光输出的激光晶体材料。
附图说明
参照附图,本发明的公开内容将变得更易理解。本领域技术人员容易理解的是:这些附图仅仅用于举例说明本发明的技术方案,而并非意在对本发明的保护范围构成限制。图中:
图1为本发明实施例中Er3+:PbF2和Nd3+/Er3+/Ho3+:PbF2晶体4I13/2能级的荧光衰减曲线;
图2为本发明实施例中Ho3+:PbF2和Nd3+/Er3+/Ho3+:PbF2晶体5I7能级的荧光衰减曲线。
具体实施方式
图1-2及以下说明描述了本发明的可选实施方式以教导本领域技术人员如何实施和再现本发明。为了教导本发明技术方案,已简化或省略了一些常规方面。本领域技术人员应该理解源自这些实施方式的变型或替换将在本发明的范围内。本领域技术人员应该理解下述特征能够以各种方式组合以形成本发明的多个变型。由此,本发明并不局限于下述可选实施方式,而仅由权利要求和它们的等同物限定。
实施例1:
激光晶体,所述激光晶体包括基质;所述激光晶体还包括:
掺杂物质,所述掺杂物质包括Nd3+、Er3+、Ho3+;Nd3+的掺杂浓度范围为0.1%~5%,Er3+的掺杂浓度范围为0.1%~30%,Ho3+的掺杂浓度范围0.1%~10%,上述浓度范围为摩尔比。
为了选择声子能量低的材料,进一步地,所述基质采用氟化钇钡、氟化钇锂、氟化铅、氟化钙、氟化镧、氟化锶、氟化镁、氟化镥锂、钇铝石榴石、铝酸镥石榴石、铝酸钇和铝酸镥中的至少一种。
本发明实施例的固体激光器,所述固体激光器包括晶体和泵浦源,所述晶体采用本发明实施例的激光晶体。
为了稳定的输出激光,进一步地,所述泵浦源采用半导体激光器,输出的泵浦光的中心波长为780-830nm。
本发明实施例的所述固体激光器作为中红外光源的应用,所述固体激光器的输出波长范围为2.5-3.1μm,输出波长包括2.7μm和2.9μm。
实施例2:
根据本发明实施例1的固体激光器的应用例。
在本应用例中,选用纯度大于99.999%的原料NdF3、ErF3、HoF3和PbF2作为基质;Nd3 +、Er3+、Ho3+的掺杂浓度均为2%,浓度为摩尔比;
激光晶体加工成8×8×1mm3的样品进行光谱测试,在输出波长808nm的半导体激光器激发下,成功测试到2.5~3.1微米中红外荧光发射光谱曲线,结果如图1所示,证明了Nd3+对Er3+和Ho3+的敏化作用。
同时,采用坩埚下降法成功生长了Er3+和Ho3+单掺的氟化铅晶体,其中Er3+和Ho3+的掺杂浓度为2%,同样对其进行光谱性能测试,测试了两晶体的2.7微米和2.9微米附近的中红外荧光发射光谱曲线,并且与Nd3+/Er3+/Ho3+三掺杂的氟化铅晶体进行对比,结果如图1-2所示,可以看出,Nd3+的掺入,能够有效地增强晶体的2.5~3.1微米中红外荧光发射。
为了对Nd3+的退激活效应进行研究,测试了晶体激光下能级的荧光寿命,如图1-2所示,结果表明,Nd3+的掺入,能够有效地降低激光下能级荧光寿命,从单掺Er3+的14.23ms下降到Nd3+/Er3+/Ho3+三掺的0.09ms,单掺Ho3+的9.71ms下降到Nd3+/Er3+/Ho3+三掺的1.32ms,下降幅度分别达到99.4%和86.4%,直接从实验上证明了Nd3+对Er3+和Ho3+的退激活效应。
本实施例中,浓度均为摩尔比。
上述实施例仅是示例性地给出了基质的选择,以及Nd3+/Er3+/Ho3+。掺杂浓度,当然基质还可以在氟化钇钡、氟化钇锂、氟化铅、氟化钙、氟化镧、氟化锶、氟化镁、氟化镥锂、钇铝石榴石、铝酸镥石榴石、铝酸钇和铝酸镥中选择,Nd3+掺杂浓度在0.1%~5%中选择,Er3+的掺杂浓度在0.1%~30%选择,Ho3+的掺杂浓度在0.1%~10%中选择,实施效果也是可预料的。

Claims (7)

1.激光晶体,所述激光晶体包括基质;其特征在于,所述激光晶体还包括:
掺杂物质,所述掺杂物质包括Nd3+、Er3+、Ho3+;Nd3+的掺杂浓度范围为0.1%~5%,Er3+的掺杂浓度范围为0.1%~30%,Ho3+的掺杂浓度范围0.1%~10%,上述浓度范围为摩尔比。
2.根据权利要求1所述的激光晶体,其特征在于,所述基质采用氟化钇钡、氟化钇锂、氟化铅、氟化钙、氟化镧、氟化锶、氟化镁、氟化镥锂、钇铝石榴石、铝酸镥石榴石、铝酸钇和铝酸镥中的至少一种。
3.固体激光器,所述固体激光器包括晶体和泵浦源,其特征在于,所述晶体采用权利要求1或2所述的激光晶体。
4.根据权利要求3所述的固体激光器,其特征在于,所述泵浦源采用半导体激光器,输出的泵浦光的中心波长为780-830nm。
5.根据权利要求4所述的固体激光器,其特征在于,所述中心波长包括808nm。
6.根据权利要求3-5任一所述的固体激光器作为中红外光源的应用,所述固体激光器的输出波长范围为2.5-3.1μm。
7.根据权利要求6所述的应用,其特征在于,所述输出波长包括2.7μm和2.9μm。
CN202011614172.XA 2020-12-31 2020-12-31 激光晶体、固体激光器及其应用 Pending CN112751257A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011614172.XA CN112751257A (zh) 2020-12-31 2020-12-31 激光晶体、固体激光器及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011614172.XA CN112751257A (zh) 2020-12-31 2020-12-31 激光晶体、固体激光器及其应用

Publications (1)

Publication Number Publication Date
CN112751257A true CN112751257A (zh) 2021-05-04

Family

ID=75649934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011614172.XA Pending CN112751257A (zh) 2020-12-31 2020-12-31 激光晶体、固体激光器及其应用

Country Status (1)

Country Link
CN (1) CN112751257A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070177638A1 (en) * 2006-01-27 2007-08-02 Wolf Seelert Frequency-doubled solid state laser optically pumped by frequency-doubled external-cavity surface-emitting semiconductor laser
US10250006B2 (en) * 2014-12-29 2019-04-02 Universite de Bordeaux System and method for generating wavelength-tunable, ultra-short light pulses having high power spectral density

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070177638A1 (en) * 2006-01-27 2007-08-02 Wolf Seelert Frequency-doubled solid state laser optically pumped by frequency-doubled external-cavity surface-emitting semiconductor laser
US10250006B2 (en) * 2014-12-29 2019-04-02 Universite de Bordeaux System and method for generating wavelength-tunable, ultra-short light pulses having high power spectral density

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
F. H. JAGOSICH: "Deactivation effects of the lowest excited states of Er 3+ and Ho 3+ introduced by Nd 3+ ions in LiYF 4 crystals", 《JOURNAL OF APPLIED PHYSICS》 *
YAOJING ZHANG: "Multiband infrared luminescence of Er3+-Ho3+-Nd3+/Tm3+- codoped telluride glasses", 《FRONTIERS OF OPTOELECTRONICS》 *

Similar Documents

Publication Publication Date Title
Chai et al. 2.7 μm emission from transparent Er3+, Tm3+ codoped yttrium aluminum garnet (Y3Al5O12) nanocrystals–tellurate glass composites by novel comelting technology
CN1326790C (zh) 稀土离子掺杂的yag微晶玻璃及其制备方法
CN112072469A (zh) 一种基于量子阱混杂有源区的半导体激光器及制备方法
Jinping et al. Up-conversion photoluminescence emissions of CaMoO4: Pr3+/Yb3+ powder
Wu et al. Photoluminescence properties of Er/Pr‐doped K0. 5Na0. 5NbO3 ferroelectric ceramics
CN103614776A (zh) 一种2.9微米附近波长激光晶体及其制备方法
Xue et al. Fabrication and comprehensive structural and spectroscopic properties of Er: Y2O3 transparent ceramics
Zharikov et al. Active media for high-efficiency neodymium lasers with nonselective pumping
CN1032319C (zh) 钇和镧系的混合硅酸盐用途
CN109023524B (zh) 一种铒钬镨三掺杂氟化铅中红外激光晶体及其制备方法
CN109252219B (zh) 一种镱钬镝三掺氟化铅中红外激光晶体及其制备方法
Huber Solid-state laser materials
Doualan et al. Yb 3+ doped (Ca, Sr, Ba) F 2 for high power laser applications
CN112751257A (zh) 激光晶体、固体激光器及其应用
CN114108072B (zh) 稀土离子掺杂的GdScO3激光晶体制备及其应用
US20220149581A1 (en) Method and device for processing active microcrystalline fiber by magnetic field induction and laserit
Qiu et al. Broadband near-infrared luminescence in bismuth borate glasses
CN107287659A (zh) 激光晶体及其制备方法
CN113113844A (zh) 用于硅基光波导放大器和激光器的增益材料及其制备方法
LU102977B1 (en) TERBIUM-ACTIVATED BORATE CRYSTAL AND 544 nm OR 586 nm BAND LASER
CN110055065A (zh) 一种氧化镓/稀土共掺杂的铁电发光结构及其制备方法
CN102560663B (zh) 一种2.8-3微米激光晶体及其制备方法
CN112421370A (zh) 一种基于准二能级激光辐射的自倍频全固态激光器
CN113067245B (zh) 铽激活硼酸盐晶体及544nm或586nm波段激光器
Huang et al. Room‐temperature 1.53 µm emission in Er3+‐doped PbWO4 single crystals

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210504