[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN112694319A - 高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料 - Google Patents

高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料 Download PDF

Info

Publication number
CN112694319A
CN112694319A CN202011603653.0A CN202011603653A CN112694319A CN 112694319 A CN112694319 A CN 112694319A CN 202011603653 A CN202011603653 A CN 202011603653A CN 112694319 A CN112694319 A CN 112694319A
Authority
CN
China
Prior art keywords
steel slag
ceramic membrane
membrane material
porosity
raw materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011603653.0A
Other languages
English (en)
Inventor
成智文
贺晓梅
刘婷
郭伟
王笑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xianyang Research & Design Institute Of Ceramics Co ltd
Original Assignee
Xianyang Research & Design Institute Of Ceramics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xianyang Research & Design Institute Of Ceramics Co ltd filed Critical Xianyang Research & Design Institute Of Ceramics Co ltd
Priority to CN202011603653.0A priority Critical patent/CN112694319A/zh
Publication of CN112694319A publication Critical patent/CN112694319A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/138Waste materials; Refuse; Residues from metallurgical processes, e.g. slag, furnace dust, galvanic waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/131Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料,由以下质量百分比的原料制备而成:钢渣70‑85%,陶瓷膜料15‑30%,上述原料总含量为100%;其中,所述钢渣颗粒粒径为380‑830μm;陶瓷膜料由以下质量百分比的原料组成:膨润土15%‑25%、高岭土25%‑40%、玻璃粉20%‑35%以及长石15‑25%。解决了现有技术利用钢渣制备的高孔隙通孔材料产品强度低的问题。

Description

高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料
技术领域
本发明属于钢渣固废处理技术领域,具体涉及高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料。
背景技术
钢渣是冶金工业生产过程中产生的废渣,其产生率为粗钢产量的8%~15%,随着钢铁工业的快速发展而迅速递增,全国钢渣累积堆存约10亿t,钢铁企业废渣的处理和资源化利用问题也越来越受到重视。钢渣主要由钙、铁、硅、镁,以及少量铝、锰、磷等的氧化物组成。主要的矿物相为硅酸三钙、硅酸二钙、钙镁橄榄石、钙镁蔷薇辉石、铁铝酸钙,以及硅、镁、铁、锰、磷的氧化物形成的固熔体,还含有少量游离氧化钙以及金属铁、氟磷灰石等。目前在钢渣利用方面主要有:钢渣中重金属的提取;作为水泥组分应用于水泥生产;铺路材料。
钢渣的晶相主要是硅酸二钙、硅酸三钙以及游离钙和游离镁,在制备高孔隙通孔材料时,采用的是颗粒堆积法制备,含游离钙、游离镁等成分的颗粒,在产品烧成时如果没有同其他组分完全反应,形成新的固熔体晶相,后期将导致以钢渣为原料的颗粒高温烧成后以氧化钙、氧化镁的形式存在,易吸湿形成氢氧化钙、氢氧化镁,这两种物质膨胀系数大,将产生内应力,导致结合层强度降低而产生裂纹,从而使产品强度降低。
发明内容
本发明的目的是提供一种高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料,以解决现有技术利用钢渣制备的高孔隙通孔材料产品强度低的问题。
本发明采用的技术方案是:高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料,由以下质量百分比的原料制备而成:
钢渣70-85%,
陶瓷膜料15-30%,
上述原料总含量为100%;
其中,所述钢渣颗粒粒径为380-830μm;
陶瓷膜料由以下质量百分比的原料组成:膨润土15%-25%、高岭土25%-40%、玻璃粉20%-35%以及长石15-25%。
进一步的,陶瓷膜料的原料均为粉料,粉料的颗粒粒径为58μm筛余<1%。
本发明还提供了一种技术方案,高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料的制备方法,包括如下步骤:
步骤1、将钢渣粉碎后,筛分出颗粒粒径为380-830μm的钢渣备用;按配比称取陶瓷膜料的原料,并将其混合均匀制得陶瓷膜料;
步骤2、将步骤1筛分出的钢渣颗粒倒入立式搅拌机,加水搅拌均匀;
步骤3、向立式搅拌机中加入所述陶瓷膜料进行强力搅拌,搅拌速度40-60r/min,搅拌时间20-30min,使陶瓷膜料均匀包裹至钢渣颗粒外表面并形成厚度为0.2~0.5mm的陶瓷膜;
步骤4、将经步骤3处理后的包裹有陶瓷膜的钢渣放入料仓陈腐大于12小时后,再放入压机中压制成型为坯体,最后烧制成为高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料。
进一步的,步骤4中,将坯体放入辊道窑烧制,其成熟温度1150-1200℃、烧成周期4.5~6h。
本发明的有益效果是,通过高掺量钢渣陶瓷磨料固钙法制备高孔隙率通孔材料,产品生产配方中钢渣的加入量大,最高可达到85%;通过晶相重构,达到了固钙固镁的目的,产品的强度高、抗冻性能好。
附图说明
图1为本发明实施例1的EDS分层图像图;
图2为本发明实施例1的电子图像图;
图3为本发明实施例1的XRD衍射图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明提供了一种高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料,由以下质量百分比的原料制备而成:
钢渣70-85%,
陶瓷膜料15-30%,
上述原料总含量为100%;
其中,钢渣颗粒粒径为380-830μm;钢渣成分的质量百分比可以为SiO215.19%、Al2O36.22%、Fe2O319.76%、CaO 40.66%、MgO 6.12%、K2O 0.32%Na2O0.27%。
陶瓷膜可以由以下质量百分比的原料组成:膨润土15%-25%、高岭土25%-40%、玻璃粉20%-35%以及长石15-25%。陶瓷膜料的原料均为粉料,粉料的颗粒粒径为58μm筛余<1%。
本发明还提供了一种高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料的制备方法,包括如下步骤:
步骤1、将钢渣粉碎后,筛分出颗粒粒径为380-830μm的钢渣备用;按质量百分比为膨润土:15%-25%、高岭土25%-40%、玻璃粉20%-35%以及长石15-25%称取陶瓷膜料的原料,并将这些原料混合均匀得到陶瓷膜料;
步骤2、将步骤1筛分出的钢渣颗粒倒入立式搅拌机,加水搅拌均匀;其中该步骤中的加水量为高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料配方总量的4%-5%;
步骤3、向立式搅拌机中加入所述陶瓷膜料进行强力搅拌,搅拌速度40-60r/min,搅拌时间20-30min,使陶瓷膜料均匀包裹至钢渣颗粒外表面并形成厚度为0.2~0.5mm的陶瓷膜;
步骤4、将经步骤3处理后的钢渣放入料仓陈腐12小时后,再放入压机中压制成型为坯体,将坯体放入辊道窑在成熟温度1150-1200℃、烧成周期4.5~6h下烧制成为高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料。
实施例1:
步骤1、将钢渣粉碎后,筛分出颗粒粒径为380-590μm的钢渣备用;按配比膨润土15%、高岭土25%、玻璃粉35%以及长石25%称取陶瓷膜料的原料,并将这些原料混合均匀得到陶瓷膜料;
步骤2、将步骤1筛分出的钢渣颗粒倒入立式搅拌机,加水搅拌均匀;
步骤3、向立式搅拌机中加入陶瓷膜料进行强力搅拌,直至陶瓷膜料均匀包裹至钢渣颗粒外表面形成陶瓷膜;
其中,钢渣和陶瓷膜料的质量百分比为85%和15%;
步骤4、将经步骤3处理后的钢渣放入料仓陈腐12小时后,再放入压机中压制成型为坯体,将坯体放入辊道窑在成熟温度1180℃下烧制成为高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料。经过检测,该产品断面烧结性能良好,柱状及片状晶体交叠生长,产品抗折强度达到6MPa。
实施例2:
步骤1、将钢渣粉碎后,筛分出颗粒粒径为380-830μm的钢渣备用;按配比膨润土20%、高岭土28%、玻璃粉30%以及长石22%称取陶瓷膜料的原料,并将原料混合均匀;
步骤2、将步骤1筛分出的钢渣颗粒倒入立式搅拌机,加水搅拌均匀;
步骤3、向立式搅拌机中加入陶瓷膜料进行强力搅拌,直至陶瓷膜料均匀包裹至钢渣颗粒外表面形成陶瓷膜;
其中,钢渣和陶瓷膜料的质量百分比为70%和30%
步骤4、将经步骤3处理后的钢渣放入料仓陈腐12小时后,再放入压机中压制成型为坯体,将坯体放入辊道窑在成熟温度1150℃下烧制成为高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料。经过检测,该产品断面烧结性能良好,产品抗折强度达到7.5MPa,产品抗冻性能良好。
实施例3:
步骤1、将钢渣粉碎后,筛分出颗粒粒径为590-830μm的钢渣备用;按配比膨润土25%、高岭土40%、玻璃粉20%以及长石15%称取陶瓷膜料的原料,并将原料混合均匀;
步骤2、将步骤1筛分出的钢渣颗粒倒入立式搅拌机,加水搅拌均匀;
步骤3、向立式搅拌机中加入陶瓷膜料进行强力搅拌,直至陶瓷膜料均匀包裹至钢渣颗粒外表面形成陶瓷膜;
其中,钢渣和陶瓷膜料的质量百分比为77%和23%;
步骤4、将经步骤3处理后的钢渣放入料仓陈腐12小时后,再放入压机中压制成型为坯体,将坯体放入辊道窑在成熟温度1180℃下烧制成为高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料。经过检测,该产品生产初期品相好,抗折强度小于3MPa,放置一段时间后,颗粒泛碱、爆裂。
本发明的高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料及其制备方法,通过调整钢渣颗粒细度,在颗粒表面包裹一层陶瓷膜,陶瓷膜的化学组成应该能够同钢渣颗粒完全反应,使颗粒含有的氧化钙、氧化镁与陶瓷膜完全反应,形成新的固熔体晶相,成为新固熔体晶相的结构组成,新晶相以钙铁辉石主晶相,次相为高温钠长石和低温石英,且固熔体颗粒之间通过陶瓷膜粘结,达到钢渣固钙及形成高孔隙通孔材料的目的。如图1实施例1制得的样品的EDS分层图像图所示,该图显示了高孔隙通孔材料结合层的显微结构,说明实施例1制得的样品确实为具有高孔隙率通孔的材料。
图2为实施例1制得的样品的电子图像图,对其检测所得结果列入表1:
表1
Figure BDA0002869929620000061
从表1中看出,经检测,样品抗折强度平均值为6.0MP,远远高于指标4.5MPa;抗冻性单块质量损失率为0。样品抗折强度和抗冻性(D35)的检测结果均达到GB/T25993-2010《透水路面砖和透水路面板》的指标要求,本发明方法制得的产品的强度高,抗冻性能好。
图3为实施例1的样品的XRD衍射图,可以看出本发明的高孔隙率通孔材料的晶相主要是钙铁辉石、低温石英、高温钠长石和硅线石,达到了固钙固镁的效果,降低了游离钙、游离镁的存在。游离钙、游离镁吸水易膨胀,会产生内应力,导致结合层强度降低而产生裂纹,从而使产品强度降低;通过本发明的方法使得产品晶相转化后不仅提高产品强度,而且避免出现泛碱的现象。
本发明的高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料,产品生产钢渣的加入量大,最高可达到85%;通过晶相重构,达到了固钙固镁的目的;本发明制得的产品的强度高,抗冻性能好;利用现有生产工艺,实现了规模化生产,且生产自动化程度高。

Claims (4)

1.高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料,其特征在于,由以下质量百分比的原料制备而成:
钢渣70-85%,
陶瓷膜料15-30%,
上述原料总含量为100%;
其中,所述钢渣颗粒粒径为380-830μm;
所述陶瓷膜料由以下质量百分比的原料组成:膨润土15%-25%、高岭土25%-40%、玻璃粉20%-35%以及长石15-25%。
2.如权利要求1所述的高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料,其特征在于,所述陶瓷膜料的原料均为粉料,粉料的颗粒粒径为58μm筛余<1%。
3.如权利要求2所述的高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料的制备方法,其特征在于,包括如下步骤:
步骤1、将钢渣粉碎后,筛分出颗粒粒径为380-830μm的钢渣备用;按配比称取陶瓷膜料的原料,并将其混合均匀制得陶瓷膜料;
步骤2、将步骤1筛分出的钢渣颗粒倒入立式搅拌机,加水搅拌均匀;
步骤3、向立式搅拌机中加入所述陶瓷膜料进行强力搅拌,搅拌速度40-60r/min,搅拌时间20-30min,使陶瓷膜料均匀包裹至钢渣颗粒外表面并形成厚度为0.2~0.5mm的陶瓷膜;
步骤4、将经步骤3处理后的包裹有陶瓷膜的钢渣放入料仓陈腐大于12小时后,再放入压机中压制成型为坯体,最后烧制成为高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料。
4.如权利要求2所述的制备方法,其特征在于,所述步骤4中,将坯体放入辊道窑烧制,其成熟温度1150-1200℃、烧成周期4.5~6h。
CN202011603653.0A 2020-12-29 2020-12-29 高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料 Pending CN112694319A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011603653.0A CN112694319A (zh) 2020-12-29 2020-12-29 高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011603653.0A CN112694319A (zh) 2020-12-29 2020-12-29 高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料

Publications (1)

Publication Number Publication Date
CN112694319A true CN112694319A (zh) 2021-04-23

Family

ID=75512219

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011603653.0A Pending CN112694319A (zh) 2020-12-29 2020-12-29 高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料

Country Status (1)

Country Link
CN (1) CN112694319A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011876A (zh) * 2012-11-23 2013-04-03 佛山欧神诺陶瓷股份有限公司 一种保温隔热泡沫陶瓷板及其制备方法
CN103570340A (zh) * 2013-11-04 2014-02-12 佛山欧神诺陶瓷股份有限公司 一种利用工业固体废渣干法制备的建筑陶瓷及其工艺
WO2015131761A1 (zh) * 2014-03-04 2015-09-11 北京科技大学 一种辉石瓷及其制备方法
CN106146027A (zh) * 2016-07-04 2016-11-23 盐城工学院 以钢渣为原料的泡沫陶瓷墙材及其制备方法
CN106915949A (zh) * 2017-04-07 2017-07-04 咸阳陶瓷研究设计院 一种利用风积沙制备陶瓷砖的方法
CN107935555A (zh) * 2017-12-13 2018-04-20 北京科技大学 一种镍铁渣陶瓷及其制备方法
CN109665817A (zh) * 2018-11-22 2019-04-23 西南科技大学 一种冶金渣资源综合回收方法
CN110950644A (zh) * 2018-09-26 2020-04-03 广东清大同科环保技术有限公司 一种钢渣烧结砖及其制备方法
CN111410547A (zh) * 2020-03-04 2020-07-14 中南大学 一种固废基陶瓷催化膜及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011876A (zh) * 2012-11-23 2013-04-03 佛山欧神诺陶瓷股份有限公司 一种保温隔热泡沫陶瓷板及其制备方法
CN103570340A (zh) * 2013-11-04 2014-02-12 佛山欧神诺陶瓷股份有限公司 一种利用工业固体废渣干法制备的建筑陶瓷及其工艺
WO2015131761A1 (zh) * 2014-03-04 2015-09-11 北京科技大学 一种辉石瓷及其制备方法
CN106146027A (zh) * 2016-07-04 2016-11-23 盐城工学院 以钢渣为原料的泡沫陶瓷墙材及其制备方法
CN106915949A (zh) * 2017-04-07 2017-07-04 咸阳陶瓷研究设计院 一种利用风积沙制备陶瓷砖的方法
CN107935555A (zh) * 2017-12-13 2018-04-20 北京科技大学 一种镍铁渣陶瓷及其制备方法
CN110950644A (zh) * 2018-09-26 2020-04-03 广东清大同科环保技术有限公司 一种钢渣烧结砖及其制备方法
CN109665817A (zh) * 2018-11-22 2019-04-23 西南科技大学 一种冶金渣资源综合回收方法
CN111410547A (zh) * 2020-03-04 2020-07-14 中南大学 一种固废基陶瓷催化膜及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JIANLEI LIU ET AL: "An eco-friendly permeable brick with excellent permeability and high strength derived from steel slag wastes", 《INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY》 *
任育鹏等: "以钢渣和尾矿为主要原料的多孔陶瓷制备机理" *
向晓东等: "高强钢渣陶粒特性试验研究" *
裴德健: "利用冶金渣制备硅钙基多元体系陶瓷的机理及应用研究" *

Similar Documents

Publication Publication Date Title
Xu et al. Microstructural evolution, phase transformation, and variations in physical properties of coal series kaolin powder compact during firing
CN105585314B (zh) 一种致密六铝酸钙耐火熟料及其制备方法
CN110078393B (zh) 一种低温制备硫硅酸钙-硫铝酸盐水泥的方法
CN110950644A (zh) 一种钢渣烧结砖及其制备方法
CN108706962B (zh) 一种煤矸石-粉煤灰-脱硫石膏体系的高强度陶瓷砖及其制备方法
CN102584191B (zh) 用蛇纹石尾矿制备堇青石陶瓷的方法
CN105622070A (zh) 一种利用镁碳残砖制取的镁碳砖及其制备方法
CN112552036A (zh) 一种硅灰石尾砂补强增韧低温瓷砖及其制备方法
CN108516846A (zh) 一种热风炉硅砖及其制备方法
CN108911726B (zh) 一种煤矸石-脱硫石膏-碳酸钙体系透水陶瓷砖及其制备方法
CN115259818A (zh) 一种多元固废选铁后尾渣制备固废基高性能混凝土的方法
Wei et al. Preparation and characterization of unfired lightweight bricks using dealkalized calcium silicate residue from low-calcium sintering red mud
CN111470777B (zh) 一种cas系铁尾矿微晶玻璃材料及其制备方法和应用
CN105906355B (zh) 一种致密二铝酸钙耐火熟料及其制备方法
CN103159449A (zh) 一种利用高炉重矿渣制备的耐热混凝土
CN112694319A (zh) 高掺量钢渣陶瓷膜料固钙法制备的高孔隙率通孔材料
CN101450843A (zh) 铁铝复合矿综合利用的方法
CN112592161A (zh) 基于盐湖卤水镁资源制备镁硅水结合剂的方法及在镁质耐火浇注料中的应用
CN102476952A (zh) 一种抗水化CaO砂的制备方法
CN114031381B (zh) 一种添加氮化硅铁硅砖及其制备方法
CN114346921B (zh) 一种陶瓷结合剂及其制备方法和陶瓷结合剂磨具
Zhu et al. The influence of NaOH concentration on the strength and microstructure of ceramic binders prepared from coal gangue through geopolymerization
CN114751727A (zh) 一种致密钙长石质耐火材料的制备方法
CN113548842A (zh) 一种利用灰渣制备免烧砖的方法
CN117550617B (zh) 一种以煤系高岭岩为原料制备莫来石的工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210423