CN112659099B - Local two-degree-of-freedom rigid-flexible coupling bionic robot waist joint - Google Patents
Local two-degree-of-freedom rigid-flexible coupling bionic robot waist joint Download PDFInfo
- Publication number
- CN112659099B CN112659099B CN202011289393.4A CN202011289393A CN112659099B CN 112659099 B CN112659099 B CN 112659099B CN 202011289393 A CN202011289393 A CN 202011289393A CN 112659099 B CN112659099 B CN 112659099B
- Authority
- CN
- China
- Prior art keywords
- flexible
- parallel
- branch
- platform
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Manipulator (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种仿人机器人技术领域,尤其是一种局部二自由度刚柔软耦合仿生机器人腰关节。The invention relates to the technical field of a humanoid robot, in particular to a waist joint of a local two-degree-of-freedom rigid-soft coupling bionic robot.
背景技术Background technique
人体的腰关节主要作用是连接下肢与躯干,其功能不单是提供转动自由度,还能感受躯干与下肢之间的力。对于仿生机器人来说,采用串联机构虽然有较大的工作空间,但其往往存在累计误差高、负载能力差等问题,因此并联机构成为了腰关节仿生的首选。经过对现有相关技术文献检索发现,发明专利CN101695838A中提出了一种三转一移的并联机构,相比其他串联机构的确降低了累计误差、提高了负载能力;发明专利CN108393872A中提出了一中并联单元耦联机构,增加了机构灵活性以及工作空间。但上述机器人关节均为刚性关节,与刚柔软耦合、运动感知一体的人体腰关节在结构和性能上还有一定的差距。The main function of the waist joint of the human body is to connect the lower limbs with the trunk. Its function is not only to provide rotational freedom, but also to feel the force between the trunk and the lower limbs. For bionic robots, although the series mechanism has a large working space, it often has problems such as high cumulative error and poor load capacity. Therefore, the parallel mechanism has become the first choice for waist joint bionics. After searching the existing related technical documents, it is found that a parallel mechanism with three transfers and one shift is proposed in the invention patent CN101695838A, which reduces the cumulative error and improves the load capacity compared with other series mechanisms; the invention patent CN108393872A proposes a parallel mechanism The parallel unit coupling mechanism increases the flexibility of the mechanism and the working space. However, the above-mentioned robot joints are all rigid joints, and there is still a certain gap in the structure and performance of the human waist joint with rigid-soft coupling and motion perception.
发明内容SUMMARY OF THE INVENTION
本发明是提供一种局部二自由度刚柔软耦合仿生机器人腰关节,解决了现有仿生机器人腰关节柔性差,不具备力感知能力的缺点。The invention provides a waist joint of a local two-degree-of-freedom rigid-soft coupled bionic robot, which solves the shortcomings of the existing bionic robot's poor flexibility and lack of force perception capability.
为解决上述技术问题,本发明所采用的技术方案是:For solving the above-mentioned technical problems, the technical scheme adopted in the present invention is:
一种局部二自由度刚柔软耦合仿生机器人腰关节,包括四个并联单元由下至上叠加而成,其特征在于:所述四个并联单元由下至上分别为第一并联单元、第二并联单元、第三并联单元、第四并联单元,第一并联机构单元与第四并联机构单元结构相同,所述第二并联机构单元与第三并联机构单元结构相同;所述四个并联单元每相邻两个之间设置柔性共用平台,所述第一并联单元底端设置柔性定平台,所述第四并联单元顶端设置柔性动平台,相邻两个平台之间包括刚性中心分支、柔性约束分支、人造肌肉,所述人造肌肉沿周向均匀分布,人造肌肉首尾两端分别与相邻的两个平台垂直铰接。A local two-degree-of-freedom rigid-soft coupled bionic robot waist joint, comprising four parallel units superimposed from bottom to top, characterized in that: the four parallel units are respectively a first parallel unit and a second parallel unit from bottom to top , the third parallel unit, the fourth parallel unit, the first parallel mechanism unit has the same structure as the fourth parallel mechanism unit, the second parallel mechanism unit has the same structure as the third parallel mechanism unit; the four parallel units are adjacent to each other. A flexible shared platform is arranged between the two, a flexible fixed platform is arranged at the bottom of the first parallel unit, a flexible moving platform is arranged at the top of the fourth parallel unit, and a rigid center branch, a flexible constraint branch, The artificial muscle is evenly distributed along the circumferential direction, and both ends of the artificial muscle are vertically hinged with two adjacent platforms respectively.
本发明技术方案的进一步改进在于:所述柔性定平台包括三条力感应分支a,所述三条力感应分支a一端通过柔性铰链相互连接,三条力感应分支a相互间隔120°状,另一端通过铰链连接转接平台,所述力感应分支a内部设置应变片,所述柔性动平台与柔性定平台结构相同。A further improvement of the technical solution of the present invention is that: the flexible fixed platform includes three force-sensing branches a, one end of the three force-sensing branches a is connected to each other by a flexible hinge, the three force-sensing branches a are spaced 120° from each other, and the other end is connected by a hinge Connect the transfer platform, the force sensing branch a is provided with a strain gauge inside, and the flexible moving platform has the same structure as the flexible fixed platform.
本发明技术方案的进一步改进在于:所述柔性共用平台包括分为设置在第一并联单元和第二并联单元之间的柔性共用平台a,设置在第二并联单元和第三并联单元之间的柔性共用台b,以及设置在第三并联单元和第四并联单元之间的柔性共用平台c。A further improvement of the technical solution of the present invention is that the flexible shared platform includes a flexible shared platform a arranged between the first parallel unit and the second parallel unit, and a flexible shared platform a arranged between the second parallel unit and the third parallel unit. A flexible shared platform b, and a flexible shared platform c disposed between the third parallel unit and the fourth parallel unit.
本发明技术方案的进一步改进在于:所述柔性共用平台a包括六条相同的力感应分支b,每两条力感应分支b一端通过柔性铰链相互连接;每三条力感应分支b另一端通过铰链相互连接,六条力感应分支b构成纺锤体状,所述柔性共用平台a上下两端之间设置弹簧进行缓冲。A further improvement of the technical solution of the present invention is that: the flexible shared platform a includes six identical force-sensing branches b, one end of every two force-sensing branches b is connected to each other through a flexible hinge; the other end of every three force-sensing branches b is connected to each other through a hinge , the six force-sensing branches b form a spindle shape, and springs are arranged between the upper and lower ends of the flexible shared platform a for buffering.
本发明技术方案的进一步改进在于:所述柔性定平台和柔性共用平台a之间设置刚性中心分支a、柔性约束分支a和人造肌肉a,柔性共用平台a和柔性共用平台b之间设置刚性中心分支b、柔性约束分支b和人造肌肉b,柔性共用平台b和柔性共用平台c之间设置刚性中心分支c、柔性约束分支c和人造肌肉c,柔性共用平台c和柔性动平台之间设置刚性中心分支d、柔性约束分支d和人造肌肉d。A further improvement of the technical solution of the present invention is that a rigid center branch a, a flexible restraint branch a and an artificial muscle a are arranged between the flexible fixed platform and the flexible shared platform a, and a rigid center is arranged between the flexible shared platform a and the flexible shared platform b Branch b, flexible restraint branch b and artificial muscle b, rigid central branch c, flexible restraint branch c and artificial muscle c are set between flexible shared platform b and flexible shared platform c, and rigid central branch c is set between flexible shared platform c and flexible moving platform The central branch d, the flexible restraint branch d, and the artificial muscle d.
本发明技术方案的进一步改进在于:所述刚性中心分支a包括第一虎克铰链、第二虎克铰链和第五连杆,所述第一虎克铰链、第二虎克铰链分别与第五连杆上下串联,所述柔性约束分支a包括两个连杆分别为第一连杆、第二连杆,所述第一连杆一端通过第一转动副与柔性定平台连接,另一端与第二连杆通过第二转动副连接,所述第二连杆另一端通过第三转动副连接柔性共用平台a,所述刚性中心分支b、刚性中心分支c、刚性中心分支d结构均与刚性中心分支a相同,所述柔性约束分支b、柔性约束分支c、柔性约束分支d结构均与柔性约束分支a结构相同。A further improvement of the technical solution of the present invention is that the rigid central branch a includes a first Hooker hinge, a second Hooker hinge and a fifth connecting rod, and the first Hooker hinge and the second Hooker hinge are respectively connected to the fifth connecting rod. The connecting rods are connected in series up and down, the flexible restraint branch a includes two connecting rods, namely a first connecting rod and a second connecting rod, one end of the first connecting rod is connected with the flexible fixed platform through a first rotating pair, and the other end is connected with the first connecting rod The two links are connected by a second rotation pair, and the other end of the second link is connected to the flexible shared platform a through a third rotation pair. The rigid center branch b, the rigid center branch c, and the rigid center branch d are all connected to the rigid center The branch a is the same, and the structures of the flexible restraint branch b, the flexible restraint branch c, and the flexible restraint branch d are all the same as the structure of the flexible restraint branch a.
由于采用了上述技术方案,本发明取得的技术进步是:Owing to having adopted the above-mentioned technical scheme, the technical progress that the present invention obtains is:
仿生腰关节由柔性平台构成,集运动、力感知功能于一体,四个局部二自由度并联单元组合成八自由度关节,增加机构灵活性可实现较复杂的仿真行为,替代传统的简单结构的机械腰关节,仿生机器人腰关节由刚性分支、柔性分支和软体驱动构成使得具有较高的拟真性,具有较好的市场应用前景。The bionic waist joint is composed of a flexible platform, which integrates motion and force sensing functions. Four local two-degree-of-freedom parallel units are combined into an eight-degree-of-freedom joint. Increasing the flexibility of the mechanism can realize more complex simulation behaviors and replace the traditional simple structure. Mechanical waist joints, bionic robot waist joints are composed of rigid branches, flexible branches and software drives, which make them have high fidelity and have good market application prospects.
附图说明Description of drawings
图1为整体结构立体示意图;Fig. 1 is a three-dimensional schematic diagram of the overall structure;
图2为第一并联单元立体示意图;2 is a schematic perspective view of a first parallel unit;
图3为第一并联单元偏转立体示意图;3 is a schematic perspective view of the deflection of the first parallel unit;
图4为第二并联单元立体示意图;4 is a schematic perspective view of a second parallel unit;
图5为柔性定平台立体示意图;5 is a three-dimensional schematic diagram of a flexible fixed platform;
图6为柔性共用平台立体示意图;6 is a three-dimensional schematic diagram of a flexible shared platform;
图7为刚性中心分支立体示意图;FIG. 7 is a schematic perspective view of a rigid center branch;
其中,010、柔性定平台,011、力感应分支a,012、应变片,013、转接平台,014、柔性铰链,020、柔性共用平台a,021、力感应分支b,022、应变片,023、弹簧,024、柔性铰链,030、柔性共用平台b,040、柔性共平台c,050、柔性动平台,060、柔性约束分支a,061、第一转动副,062、第一连杆,063、第二转动副,064、第二连杆,065、第三转动副,070、柔性约束分支b,080、柔性约束分支c,090、柔性约束分支d,100、刚性中心分支a,101、第一虎克铰链,102、第五连杆,103、第二虎克铰链,110、刚性中心分支b,120、刚性中心分支c,130、刚性中心分支d,140、人造肌肉a,150、人造肌肉b,160、人造肌肉c,170、人造肌肉d。Among them, 010, flexible fixed platform, 011, force sensing branch a, 012, strain gauge, 013, transfer platform, 014, flexible hinge, 020, flexible shared platform a, 021, force sensing branch b, 022, strain gauge, 023, spring, 024, flexible hinge, 030, flexible shared platform b, 040, flexible shared platform c, 050, flexible moving platform, 060, flexible constraint branch a, 061, first rotation pair, 062, first link, 063, the second rotation pair, 064, the second link, 065, the third rotation pair, 070, the flexible restraint branch b, 080, the flexible restraint branch c, 090, the flexible restraint branch d, 100, the rigid center branch a, 101 , the first hook hinge, 102, the fifth link, 103, the second hook hinge, 110, the rigid central branch b, 120, the rigid central branch c, 130, the rigid central branch d, 140, the artificial muscle a, 150 , artificial muscle b, 160, artificial muscle c, 170, artificial muscle d.
具体实施方式Detailed ways
一种局部二自由度刚柔软耦合仿生机器人腰关节,包括四个并联单元由下至上叠加而成,四个并联单元由下至上分别为第一并联单元、第二并联单元、第三并联单元、第四并联单元,第一并联机构单元与第四并联机构单元结构相同,第二并联机构单元与第三并联机构单元结构相同;四个并联单元每相邻两个之间设置柔性共用平台,分别为柔性共用平台a、柔性共用平台b、柔性共用平台c,所述第一并联单元底端设置柔性定平台010,柔性定平台010包括三条力感应分支a,所述三条力感应分支a一端通过柔性铰链相互连接,三条力感应分支a相互间隔120°状,另一端通过铰链连接转接平台,所述力感应分支a内部设置应变片012,应变片012用于测量感应分支上的受力,所述柔性动平台与柔性定平台结构相同;第四并联单元顶端设置结构与柔性定平台010相同的柔性动平台050,柔性定平台010和柔性共用平台a之间设置刚性中心分支a、柔性约束分支a和人造肌肉a,柔性共用平台a和柔性共用平台b之间设置刚性中性分支b、柔性约束分支b和人造肌肉b,柔性共用平台b和柔性共用平台c040之间设置刚性中心分支c、柔性约束分支c和人造肌肉c,柔性共用平台c和柔性动平台d之间设置刚性中心分支d、柔性约束分支d和人造肌肉d,相邻两个平台之间通过刚性中心分支、柔性约束分支、人造肌肉连接形成局部两自由度并联关节,整个刚柔软耦合仿生机器人腰关节为八自由度关节,其中刚性中心分支a包括第一虎克铰链101、第二虎克铰链103和第五连杆102,所述第一虎克铰链101、第二虎克铰链103分别与第五连杆102上下串联,柔性约束分支a包括两个连杆分别为第一连杆062、第二连杆064,所述第一连杆062一端通过第一转动副061与柔性定平台010连接,另一端与第二连杆064通过第二转动副063连接,所述第二连杆064另一端通过第三转动副065连接柔性共用平台a,刚性中心分支b、刚性中心分支c、刚性中心分支d结构均与刚性中心分支a相同。A local two-degree-of-freedom rigid-soft coupled bionic robot waist joint, comprising four parallel units superimposed from bottom to top, the four parallel units from bottom to top are a first parallel unit, a second parallel unit, a third parallel unit, The fourth parallel unit, the first parallel mechanism unit has the same structure as the fourth parallel mechanism unit, and the second parallel mechanism unit has the same structure as the third parallel mechanism unit; a flexible shared platform is arranged between each adjacent two of the four parallel units, respectively. It is a flexible shared platform a, a flexible shared platform b, and a flexible shared platform c. The bottom end of the first parallel unit is provided with a flexible
其中,柔性共用平台包括分为设置在第一并联单元和第二并联单元之间的柔性共用平台a,设置在第二并联单元和第三并联单元之间的柔性共用台b,以及设置在第三并联单元和第四并联单元之间的柔性共用平台c,三个柔性共用平台结构相同,具体的柔性共用平台a包括六条相同的力感应分支b,每两条力感应分支b一端通过柔性铰链相互连接;每三条力感应分支b另一端通过铰链相互连接,六条力感应分支b构成纺锤体状,所述柔性共用平台a上下两端之间设置弹簧进行缓冲。The flexible sharing platform includes a flexible sharing platform a arranged between the first parallel unit and the second parallel unit, a flexible sharing platform b arranged between the second parallel unit and the third parallel unit, and a flexible sharing platform b arranged between the second parallel unit and the third parallel unit. The flexible shared platform c between the three parallel units and the fourth parallel unit, the three flexible shared platforms have the same structure, the specific flexible shared platform a includes six identical force-sensing branches b, and one end of each two force-sensing branches b passes through a flexible hinge Connected to each other; the other ends of every three force-sensing branches b are connected to each other by hinges, and the six force-sensing branches b form a spindle shape, and springs are provided between the upper and lower ends of the flexible shared platform a for buffering.
仿生机器人腰关节的四个并联单元的内部机构大致相同,第一并联机构单元中,柔性定平台010与相邻的柔性共用平台a通过三条柔性约束分支a、刚性中心分支a、三组人造肌肉a连接。柔性约束分支060通过第一连杆062、第二连杆064,所述第一连杆062一端通过第一转动副061与柔性定平台010连接,另一端与第二连杆064通过第二转动副063连接,所述第二连杆064另一端通过第三转动副065连接柔性共用平台a,刚性中心分支a上的第五连杆102与柔性定平台010通过第一虎克铰链101连接,与柔性共用平台a通过第二虎克铰链103连接;人造肌肉a一端与柔性定平台010铰接,另一端与柔性共用平台a铰接,柔性约束分支b、柔性约束分支c、柔性约束分支d结构均与柔性约束分支a结构相同。The internal mechanisms of the four parallel units of the bionic robot waist joint are roughly the same. In the first parallel mechanism unit, the flexible
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011289393.4A CN112659099B (en) | 2020-11-17 | 2020-11-17 | Local two-degree-of-freedom rigid-flexible coupling bionic robot waist joint |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011289393.4A CN112659099B (en) | 2020-11-17 | 2020-11-17 | Local two-degree-of-freedom rigid-flexible coupling bionic robot waist joint |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112659099A CN112659099A (en) | 2021-04-16 |
CN112659099B true CN112659099B (en) | 2022-07-29 |
Family
ID=75403506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011289393.4A Active CN112659099B (en) | 2020-11-17 | 2020-11-17 | Local two-degree-of-freedom rigid-flexible coupling bionic robot waist joint |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112659099B (en) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1544210A (en) * | 2003-11-28 | 2004-11-10 | 清华大学 | A two-degree-of-freedom rotating parallel robot mechanism |
CN101246065A (en) * | 2008-03-22 | 2008-08-20 | 燕山大学 | Elastic hinge parallel 6-UPUR six-dimensional force measuring platform |
CN101695838A (en) * | 2009-11-09 | 2010-04-21 | 上海交通大学 | Four-DOF (degree of freedom) waist joint of humanoid robot |
CN101813156A (en) * | 2010-04-20 | 2010-08-25 | 江苏工业学院 | Flexible high-precision spacial vibration damping platform |
CN101947785A (en) * | 2010-08-30 | 2011-01-19 | 苏州博实机器人技术有限公司 | Reconfigurable in-parallel robot |
CN102072383A (en) * | 2010-11-27 | 2011-05-25 | 江西理工大学 | Spatial four-degree-of-freedom oligodynamic ultra-precision positioning platform with full-compliant branched chains |
CN102922511A (en) * | 2012-11-02 | 2013-02-13 | 清华大学 | Three-move one-rotation four-freedom degree space parallel connection mechanism |
CN103552061A (en) * | 2013-11-18 | 2014-02-05 | 山东理工大学 | Parallel micro-motion platform with one translational degree of freedom and two rotational degrees of freedom |
CN104002299A (en) * | 2014-05-12 | 2014-08-27 | 西安理工大学 | Six-degree-of-freedom parallel micro platform |
CN104827462A (en) * | 2015-05-07 | 2015-08-12 | 上海交通大学 | Three-degree-of-freedom spherical parallel mechanism with driven branched chain |
CN106695771A (en) * | 2017-03-15 | 2017-05-24 | 天津大学 | Modular bionic snake-shaped robot based on RSR configuration parallel mechanisms |
CN108393872A (en) * | 2018-04-20 | 2018-08-14 | 燕山大学 | A kind of anthropomorphic robot waist joint based on 3-RRR sphere parallel mechanisms |
CN108858273A (en) * | 2018-07-17 | 2018-11-23 | 东北大学 | A kind of submissive joint of six degree of freedom of pneumatic muscles driving |
CN110653798A (en) * | 2019-09-25 | 2020-01-07 | 中国地质大学(武汉) | A three-branch, three-shift, two-turn non-overconstrained parallel robot |
-
2020
- 2020-11-17 CN CN202011289393.4A patent/CN112659099B/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1544210A (en) * | 2003-11-28 | 2004-11-10 | 清华大学 | A two-degree-of-freedom rotating parallel robot mechanism |
CN101246065A (en) * | 2008-03-22 | 2008-08-20 | 燕山大学 | Elastic hinge parallel 6-UPUR six-dimensional force measuring platform |
CN101695838A (en) * | 2009-11-09 | 2010-04-21 | 上海交通大学 | Four-DOF (degree of freedom) waist joint of humanoid robot |
CN101813156A (en) * | 2010-04-20 | 2010-08-25 | 江苏工业学院 | Flexible high-precision spacial vibration damping platform |
CN101947785A (en) * | 2010-08-30 | 2011-01-19 | 苏州博实机器人技术有限公司 | Reconfigurable in-parallel robot |
CN102072383A (en) * | 2010-11-27 | 2011-05-25 | 江西理工大学 | Spatial four-degree-of-freedom oligodynamic ultra-precision positioning platform with full-compliant branched chains |
CN102922511A (en) * | 2012-11-02 | 2013-02-13 | 清华大学 | Three-move one-rotation four-freedom degree space parallel connection mechanism |
CN103552061A (en) * | 2013-11-18 | 2014-02-05 | 山东理工大学 | Parallel micro-motion platform with one translational degree of freedom and two rotational degrees of freedom |
CN104002299A (en) * | 2014-05-12 | 2014-08-27 | 西安理工大学 | Six-degree-of-freedom parallel micro platform |
CN104827462A (en) * | 2015-05-07 | 2015-08-12 | 上海交通大学 | Three-degree-of-freedom spherical parallel mechanism with driven branched chain |
CN106695771A (en) * | 2017-03-15 | 2017-05-24 | 天津大学 | Modular bionic snake-shaped robot based on RSR configuration parallel mechanisms |
CN108393872A (en) * | 2018-04-20 | 2018-08-14 | 燕山大学 | A kind of anthropomorphic robot waist joint based on 3-RRR sphere parallel mechanisms |
CN108858273A (en) * | 2018-07-17 | 2018-11-23 | 东北大学 | A kind of submissive joint of six degree of freedom of pneumatic muscles driving |
CN110653798A (en) * | 2019-09-25 | 2020-01-07 | 中国地质大学(武汉) | A three-branch, three-shift, two-turn non-overconstrained parallel robot |
Also Published As
Publication number | Publication date |
---|---|
CN112659099A (en) | 2021-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109318214B (en) | An exoskeleton back device that mimics the human spine | |
CN107050763B (en) | Novel ankle joint rehabilitation robot and control method thereof | |
CN103690280B (en) | Continuum transmission mechanism-based under-actuated prosthetic hand | |
CN107745392B (en) | Design method of bionic tension-compression system | |
CN111546326B (en) | A Humanoid Robot System Based on Air Cylinders and Pneumatic Muscles | |
ITPI20120069A1 (en) | EXOSCHELETER FOR PHYSICAL INTERACTION WITH THE MAN | |
CN104799982B (en) | Single motor underactuated prosthetic hand based on continuum differential mechanism | |
CN101695838A (en) | Four-DOF (degree of freedom) waist joint of humanoid robot | |
CN101301755A (en) | 3 DOF spherical parallel bionic shoulder joint with bias output | |
CN108453705A (en) | A kind of human emulated robot system based on cylinder | |
CN102126210A (en) | 7-DOF (Degree of Freedom) pneumatic muscle flexible mechanical arm | |
CN105216901A (en) | A kind of four-degree-of-freedom leg mechanism in parallel of walking robot | |
CN102825601B (en) | A kind of anthropomorphic formula 6DOF robot gravitational equilibrium method | |
CN112659099B (en) | Local two-degree-of-freedom rigid-flexible coupling bionic robot waist joint | |
CN105881509A (en) | Double-regular-tetrahedron superimposed symmetrical coupling mechanism with single-freedom-degree movement | |
CN112659100B (en) | A local three-degree-of-freedom rigid-soft coupled bionic robot waist joint | |
KR20120013560A (en) | Robot hand that can be gripped according to the shape of the object | |
CN108393872A (en) | A kind of anthropomorphic robot waist joint based on 3-RRR sphere parallel mechanisms | |
CN108656100A (en) | Human emulated robot based on cylinder | |
CN111846005A (en) | A bionic quadruped robot based on a tensegrity structure | |
CN205521477U (en) | Parallelly connected bionical ankle joint of redundant two degree of freedom spheres of driven of hydraulic pressure | |
CN111360804A (en) | A Copying Robot System Based on Pneumatic Muscles and Cylinders | |
CN206216703U (en) | Tongue mechanism of robot and the robot with it | |
CN1254350C (en) | Series-parallel man-shaped robot | |
CN117681235A (en) | Under-actuated smart hand capable of swinging laterally |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |