CN112585305B - GaN层叠基板的制造方法 - Google Patents
GaN层叠基板的制造方法 Download PDFInfo
- Publication number
- CN112585305B CN112585305B CN201980052719.0A CN201980052719A CN112585305B CN 112585305 B CN112585305 B CN 112585305B CN 201980052719 A CN201980052719 A CN 201980052719A CN 112585305 B CN112585305 B CN 112585305B
- Authority
- CN
- China
- Prior art keywords
- gan
- substrate
- film
- thin film
- epitaxial growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 323
- 238000000034 method Methods 0.000 title claims description 66
- 238000004519 manufacturing process Methods 0.000 title claims description 47
- 239000010408 film Substances 0.000 claims abstract description 184
- 239000010409 thin film Substances 0.000 claims abstract description 117
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 108
- 239000010980 sapphire Substances 0.000 claims abstract description 108
- 238000005468 ion implantation Methods 0.000 claims abstract description 53
- 239000002335 surface treatment layer Substances 0.000 claims abstract description 15
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 12
- 239000010703 silicon Substances 0.000 claims abstract description 9
- 238000005121 nitriding Methods 0.000 claims abstract description 7
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 308
- 239000010410 layer Substances 0.000 claims description 43
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 29
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 27
- 239000013078 crystal Substances 0.000 claims description 18
- 150000002500 ions Chemical class 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 12
- 238000004381 surface treatment Methods 0.000 claims description 11
- 238000002513 implantation Methods 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- -1 hydrogen ions Chemical class 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- 239000005388 borosilicate glass Substances 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims 1
- 229910010293 ceramic material Inorganic materials 0.000 abstract 1
- 229910002601 GaN Inorganic materials 0.000 description 292
- 206010040844 Skin exfoliation Diseases 0.000 description 28
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 18
- 230000015572 biosynthetic process Effects 0.000 description 14
- 238000012546 transfer Methods 0.000 description 14
- 238000005498 polishing Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- 238000009832 plasma treatment Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 239000002313 adhesive film Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000001450 anions Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 150000001768 cations Chemical group 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010023 transfer printing Methods 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/38—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/186—Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/01—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0272—Deposition of sub-layers, e.g. to promote the adhesion of the main coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C23C16/303—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/183—Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B31/00—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
- C30B31/20—Doping by irradiation with electromagnetic waves or by particle radiation
- C30B31/22—Doping by irradiation with electromagnetic waves or by particle radiation by ion-implantation
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/06—Joining of crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02488—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02502—Layer structure consisting of two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
- H01L21/2003—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
- H01L21/2007—Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer
-
- H01L21/205—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/7806—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78681—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising AIIIBV or AIIBVI or AIVBVI semiconductor materials, or Se or Te
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- High Energy & Nuclear Physics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Electromagnetism (AREA)
- Recrystallisation Techniques (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
将偏角0.5~5度的C面蓝宝石薄膜(1t)转印至由800K下的热膨胀率比硅大、比C面蓝宝石小的陶瓷材料构成的操作基板上,从而制作GaN外延生长用基板(11);进行GaN外延生长用基板(11)的高温氮化处理而将C面蓝宝石薄膜(1t)表面用由AlN构成的表面处理层(11a)被覆;使GaN在该表面处理层(11a)上外延生长,制作表面由N极性面构成的GaN膜负载体;对GaN膜(13)进行离子注入;将经离子注入的GaN膜负载体的GaN膜侧表面与支撑基板(12)贴合以接合;在GaN膜(13)中的离子注入区域(13ion)进行剥离而将GaN薄膜(13a)转印至支撑基板(12)上,得到在支撑基板(12)上具有表面由Ga极性面构成的结晶性和平坦性良好的GaN薄膜(13a)的GaN层叠基板(10)。
Description
技术领域
本发明涉及表面由Ga极性面(Ga面)构成的GaN层叠基板的制造方法。
背景技术
结晶性GaN具有比Si和GaAs宽的带隙,有望作为高速高功率装置用途。但是,其中具有良好的结晶性的块状(Bulk)GaN基板的孔径小并且非常高价,因此成为阻碍其普及的主要原因。
相对于此,通过借由氢化物气相生长法(HVPE法)或有机金属气相生长法(MOCVD法)等使GaN在AlN基板或Al2O3(蓝宝石)基板上异质外延生长,可得到较大口径的GaN薄膜,但无法得到特性太高的膜。
另外,在作为半导体材料一般地广泛普及的Si基板上形成了GaN薄膜的层叠基板可得到GaN的优异的基本特性并且能够应用Si半导体装置的先进工艺技术,因此非常期待作为高性能装置用基板。
在此,作为在Si基板上形成GaN薄膜的手法,开发了在Si<111>面上直接以异质外延生长法将GaN成膜的手法,直径200mm的基板也已实用化。
但是,在该手法中,为了得到结晶性良好的GaN,Si基板与GaN薄膜之间需要多个厚的缓冲层。原因在于,由于GaN膜与Si基板的热膨胀率大不相同并且构成两者的晶体的晶格常数不一致,因此作为层叠基板存在容易发生翘曲的倾向,GaN膜厚越厚或者基板的口径变得越大,该翘曲越增大,存在各种晶体缺陷产生并扩大这样的问题。另外,若层叠基板的翘曲增大,则存在最终层叠基板断裂的问题;即使不至于断裂,在半导体装置工艺中也产生各种问题。特别是在微细加工时的曝光工艺中成为严重的问题。因此,为了缓和该翘曲,需要在Si基板与GaN薄膜间插入考虑了这两种材料的中间的线膨胀率和晶格常数的厚的缓冲层。
但是,即使是该手法也难以在层叠基板上使特性良好的GaN层变厚。
作为解决这样的问题的手法,想出了以下的程序的转印所致的GaN层叠基板的制造方法。
即,首先准备第一基板,使一定膜厚以上的GaN膜在表面上外延生长。接着,对该基板进行离子注入,在距表面一定深度处形成脆化层(离子注入区域)。使该基板与第二基板接合后,由脆化层进行剥离,使GaN薄膜转印至第二基板而得到GaN层叠基板。
在此,在一般的GaN的外延生长(即在上述第一基板上所形成的GaN外延生长膜)中,生长面(表面)侧成为Ga极性面(下称Ga面)。因此,离子注入面侧成为Ga面,经剥离而转印至第二基板上之后的表面成为N极性面(N面)。通常,作为电子零件用途,装置制造面使用可得到高特性的Ga面,因此需要将转印至第二基板的GaN薄膜再次接合并转印至第三基板而使表面成为Ga面。因此,迄今为止也进行了许多研究,尝试使经剥离而转印至第二基板上之后的表面成为Ga面(即,使第一基板上的外延生长面成为N面),然而,通常在N面的外延生长中,GaN膜的结晶性和平坦性差,作为装置用途的使用是困难的。
从上述的GaN外延生长的特性来看,需要使最终的GaN层叠基板的生长面(表面)成为Ga面,因此迄今为止的状况是,不得不特意实施两次GaN薄膜的转印。因此,工艺变得繁杂,成为低成品率、高成本的主要原因。
予以说明,作为与本发明相关的现有技术,列举日本特表2016-511934号公报(专利文献1)。
现有技术文献
专利文献
专利文献1:日本特表2016-511934号公报
发明内容
发明所要解决的课题
本发明鉴于上述情况而完成,目的在于提供一种能够简便地制造具有Ga面的表面、结晶性和平坦性良好的GaN层叠基板、进而可大口径化至直径150mm以上的GaN层叠基板的制造方法。
用于解决课题的手段
为了达成上述目的,本发明提供下述的GaN层叠基板的制造方法。
1.GaN层叠基板的制造方法,其具有:
将利用离子注入剥离法从偏角0.5~5度的C面蓝宝石基板剥离的C面蓝宝石薄膜转印至由800K下的热膨胀率比硅大、比C面蓝宝石小的玻璃、陶瓷或单晶材料构成的操作基板上,从而制作GaN外延生长用基板的工序,
进行上述GaN外延生长用基板在800~1000℃下的高温氮化处理和/或结晶性AlN在该GaN外延生长用基板的C面蓝宝石薄膜上的堆积处理而对上述GaN外延生长用基板进行表面处理,将C面蓝宝石薄膜表面用由AlN构成的表面处理层被覆的工序,
使GaN在经上述表面处理的GaN外延生长用基板的表面处理层上外延生长,制作表面由N极性面构成的GaN膜负载体的工序,
对上述GaN膜进行离子注入,形成离子注入区域的工序,
将经上述离子注入的GaN膜负载体的GaN膜侧表面与支撑基板贴合以进行接合的工序,和
在上述GaN膜的离子注入区域进行剥离而将GaN薄膜转印至支撑基板上,得到在支撑基板上具有表面由Ga极性面构成的GaN薄膜的GaN层叠基板的工序。
2.
根据1所述的GaN层叠基板的制造方法,其中,上述操作基板由硼硅酸系玻璃、GaN烧结体、AlN烧结体或GaAs单晶构成。
3.
根据1或2所述的GaN层叠基板的制造方法,其中,使氧化硅、氮化硅或氧氮化硅的薄膜介于上述操作基板与C面蓝宝石薄膜之间而转印该C面蓝宝石薄膜。
4.
根据1~3的任一项所述的GaN层叠基板的制造方法,其特征在于,使GaN外延生长用基板的翘曲量为300μm以下。
5.
根据1~4的任一项所述的GaN层叠基板的制造方法,其中,上述GaN外延生长在超过1000℃且1200℃以下进行。
6.
根据1~5的任一项所述的GaN层叠基板的制造方法,其中,利用MOCVD法进行上述GaN的外延生长。
7.
根据1~6的任一项所述的GaN层叠基板的制造方法,其中,在对上述C面蓝宝石基板进行表面处理后,在700℃以下在表面处理层上形成GaN缓冲层,接着在该GaN缓冲层上进行上述GaN外延生长。
8.
根据7所述的GaN层叠基板的制造方法,其中,上述GaN缓冲层的厚度为20~40nm。
9.
根据1~8的任一项所述的GaN层叠基板的制造方法,其中,在利用所述外延生长形成GaN膜后,进一步在该GaN膜上形成氧化硅膜而制成上述GaN膜负载体。
10.
根据1~9的任一项所述的GaN层叠基板的制造方法,其中,进一步在上述离子注入前将GaN膜负载体的离子注入面平滑化至算术平均粗糙度Ra0.3nm以下。
11.
根据1~10的任一项所述的GaN层叠基板的制造方法,其中,对上述GaN膜的离子注入为使用了氢离子(H+)和/或氢分子离子(H2 +)的注入能为100~160keV、剂量为1.0×1017~3.5×1017atom/cm2的处理。
12.
根据1~11的任一项所述的GaN层叠基板的制造方法,其中,上述支撑基板由Si、Al2O3、SiC、AlN或SiO2构成。
13.
根据12所述的GaN层叠基板的制造方法,其中,上述支撑基板为在与GaN膜负载体的接合面形成了氧化硅膜的支撑基板,其中不包括支撑基板由SiO2构成的情形。
发明效果
根据本发明,对GaN外延生长用基板中具有规定的偏角的C面蓝宝石薄膜进行规定的表面处理,在该薄膜上进行GaN外延生长,从而能够形成表面由N极性面构成的结晶性良好的GaN膜,因此,能够以一次的GaN薄膜转印得到表面由Ga极性面构成的GaN层叠基板。通过比起以往可减少转印次数,能够降低工艺成本。进而,能够减少因转印而消失的GaN膜,能够降低材料成本。另外,膜厚的面内偏差和表面粗糙度因转印次数而相应增大,由于比起以往可减少转印次数,因此能够抑制该增大。
进而,通过将GaN外延生长用基板的操作基板与GaN膜的热膨胀率之差抑制得小,能够抑制利用外延生长形成GaN膜而制作的GaN膜负载体的翘曲,能够作为大口径的GaN膜负载体进行GaN膜转印,可实现具有Ga面的表面、结晶性和平坦性良好的GaN层叠基板的大口径化。
另外,根据本发明,由于使用容易大口径化的经外延生长的基板作为GaN薄膜转印的施主(donor)基板,因此与使用高价且小口径的块状GaN基板作为施主基板的情形相比,可得到低成本且大口径的GaN层叠基板。通过本发明中得到的表面由Ga极性面构成的GaN层叠基板用作GaN模板基板,进一步进行GaN的外延成膜,从而可得到高耐压、高特性、低成本的GaN基板。
附图说明
图1为示出本发明涉及的GaN层叠基板的制造方法的一实施方式的制造工序中与GaN外延生长用基板的制作有关的制造工序的图,(a)为C面蓝宝石基板和操作基板的准备,(b)为在C面蓝宝石基板上形成薄膜,(c)为离子注入处理,(d)为贴合接合,(e)为C面蓝宝石薄膜的剥离转印。
图2为示出本发明涉及的GaN层叠基板的制造方法的一实施方式的制造工序中使用了图1中制作的GaN外延生长用基板的GaN层叠基板的制造工序的图,(a)为GaN外延生长用基板和支撑基板的准备,(b)为GaN外延生长用基板的表面处理,(c)为GaN外延生长,(d)为离子注入处理,(e)为贴合接合,(f)为GaN薄膜的剥离转印。
具体实施方式
以下,对本发明涉及的GaN层叠基板的制造方法进行说明。予以说明,在此,数值范围“A~B”包含其两端的数值,是指A以上且B以下。
本发明涉及的GaN层叠基板的制造方法的特征在于,具有:将利用离子注入剥离法从偏角0.5~5度的C面蓝宝石基板剥离的C面蓝宝石薄膜转印至由800K下的热膨胀率比硅大、比C面蓝宝石小的玻璃、陶瓷或单晶材料构成的操作基板上,从而制作GaN外延生长用基板的工序;进行上述GaN外延生长用基板在800~1000℃下的高温氮化处理和/或结晶性AlN在该GaN外延生长用基板的C面蓝宝石薄膜上的堆积处理而对上述GaN外延生长用基板进行表面处理,将C面蓝宝石薄膜表面用由AlN构成的表面处理层被覆的工序;使GaN在经上述表面处理的GaN外延生长用基板的表面处理层上外延生长,制作表面由N极性面构成的GaN膜负载体的工序;对上述GaN膜进行离子注入,形成离子注入区域的工序;将经上述离子注入的GaN膜负载体的GaN膜侧表面与支撑基板贴合以进行接合的工序;和在上述GaN膜的离子注入区域进行剥离而将GaN薄膜转印至支撑基板上,得到在支撑基板上具有表面由Ga极性面构成的GaN薄膜的GaN层叠基板的工序。
以下,基于图1和图2详细地说明本发明涉及的GaN层叠基板的制造方法。
本发明涉及的GaN层叠基板的制造方法首先如图1所示那样,按照(a)C面蓝宝石基板和操作基板的准备工序(工序1-1)、(b)在C面蓝宝石基板上形成薄膜的工序(工序1-2)、(c)C面蓝宝石基板的离子注入处理工序(工序1-3)、(d)C面蓝宝石基板与操作基板的贴合接合工序(工序1-4)、(e)C面蓝宝石薄膜的剥离、转印工序(工序1-5)的顺序进行处理,制作GaN外延生长用基板。
(工序1-1:C面蓝宝石基板和操作基板的准备)
首先,准备C面蓝宝石基板1和操作基板2(图1(a))。
在此,C面蓝宝石基板1为由以C面((0001)面)作为基板面的蓝宝石(α-Al2O3)构成的基板。另外,C面蓝宝石基板1的c轴偏角(下称偏角)为0.5~5度,优选为2~3度。通过将偏角设为该范围内,其后在由该C面蓝宝石基板1剥离·转印而形成的C面蓝宝石薄膜1t上所形成的GaN膜13中,成为其表面为N极性面(下称N面)并且平滑性良好且结晶性好的外延生长膜,在进一步采用离子注入剥离法将GaN膜13的一部分剥离而转印至支撑基板12的情况下,该转印薄膜13a的平滑性变得优异。予以说明,所谓偏角,是使基板表面(要进行晶体生长的面)从密排面向特定方向稍微倾斜时的该角度,所谓c轴偏角,是指C面蓝宝石基板1的c轴(C面的法线轴)向a轴方向的倾角(斜率)的大小。
操作基板2是由800K下的热膨胀率比硅大、比C面蓝宝石小的玻璃、陶瓷或单晶材料构成的基板,作为在本制作工序中制作的GaN外延生长用基板11的基底基板。
另外,操作基板2优选由GaN外延生长时的基板温度、例如1000℃的热膨胀率与室温(20℃)的热膨胀率之差(Δα)比硅大、比C面蓝宝石小的玻璃、陶瓷或单晶材料构成,更优选由尽可能接近GaN的材料构成。操作基板2特别优选由硼硅酸系玻璃、GaN烧结体、AlN烧结体或GaAs单晶构成。予以说明,作为硼硅酸系玻璃,可举出在JIS R3503:2007中规定的硼硅酸玻璃-1(JR-1)、硼硅酸玻璃-2(JR-2)。
此次所说的热膨胀率,是指规定温度下该材料的线膨胀率。予以说明,热膨胀率为温度的函数,因此在本发明中用外延生长时的温度与室温的中间温度下的值来判断。
以下示出代表性材料的800K下的热膨胀率的例子。
GaN:6.0×10-6/K(800K)
C面蓝宝石:8.0×10-6/K(800K)
AlN:5.2×10-6/K(800K)
Si:4.1×10-6/K(800K)
GaAs单晶:6.9×10-6/K(800K)
操作基板2表面的算术平均粗糙度Ra(JIS B0601:2013,以下相同)优选为0.5nm以下。由此,在与C面蓝宝石基板1的接合时可实现更牢固的接合。
(工序1-2:在C面蓝宝石基板上形成薄膜)
在C面蓝宝石基板1的表面形成薄膜1a(图1(b))。
薄膜1a介于C面蓝宝石基板1(最终为C面蓝宝石薄膜1t)与贴合对象的操作基板2之间而用于提高两者的接合强度,优选由氧化硅(SiO2)、氮化硅(Si3N4)或氧氮化硅(SiOxNy)构成。另外,该薄膜1a的膜厚优选为300~1000nm。
薄膜1a可采用溅射法、等离子体CVD法等形成。
予以说明,即使未夹着薄膜1a,在C面蓝宝石基板1与操作基板2之间仍可得到充分的接合强度时(即,C面蓝宝石薄膜1t转印至操作基板2而不剥离时),可以省略该工序。
(工序1-3:C面蓝宝石基板1的离子注入处理工序)
接着,对上述C面蓝宝石基板1的薄膜1a形成面进行离子注入,在C面蓝宝石基板1中形成层状的离子注入区域1ion(图1(c))。
此时,优选使用氢离子(H+)和/或氢分子离子(H2 +)作为注入离子。
另外,注入能规定离子注入深度(即剥离膜(C面蓝宝石薄膜1t)的膜厚),优选为110~160keV。若设为注入能110keV以上,则能够使C面蓝宝石薄膜1t的膜厚成为500nm以上。另一方面,若设为超过160keV,则注入能变大,担心招致剥离的薄膜的结晶性的劣化。
另外,剂量优选为1.0×1017~3.5×1017atom/cm2。由此,能够在C面蓝宝石基板1中形成成为剥离层(脆化层)的离子注入区域1ion。予以说明,离子注入温度为室温。
在此,上述离子注入处理可以对在前工序1-2中直接形成了薄膜1a的C面蓝宝石基板1实施,若直接形成的薄膜1a的表面(在没有形成薄膜1a时为C面蓝宝石基板1表面)粗糙,则对应于其表面凹凸,离子注入深度变得不均匀,剥离后的C面蓝宝石薄膜1t的剥离面(表面)的凹凸会变大。
因此,可上述离子注入前将C面蓝宝石基板1的离子注入面(即,薄膜1a表面或C面蓝宝石基板1表面)平滑化至算术平均粗糙度优选成为0.3nm以下。例如,可对在工序1-2中形成的薄膜1a表面或者在没有形成薄膜1a时为C面蓝宝石基板1表面进行利用CMP等的研磨和/或蚀刻而平滑化至算术平均粗糙度Ra优选成为0.3nm以下。
如以上那样将C面蓝宝石基板1的待进行离子注入的面(即,薄膜1a表面或C面蓝宝石基板1表面)平滑化,从而能够使接下来进行的离子注入处理中的离子注入深度固定,进而在与操作基板2贴合后被剥离的情况下,能够得到表面平滑的(表面粗糙度小的)剥离转印层(C面蓝宝石薄膜1t)。
(工序1-4:C面蓝宝石基板1与操作基板2的贴合接合工序)
接着,将经上述离子注入的C面蓝宝石基板1的薄膜1a表面(在没有形成薄膜1a时为C面蓝宝石基板1表面)与操作基板2贴合而进行接合(图1(d))。
在此,C面蓝宝石基板1与操作基板2经由薄膜1a而接合。或者,在没有形成薄膜1a时C面蓝宝石基板1与操作基板2以直接相接的形式接合。
予以说明,在该贴合前,优选对C面蓝宝石基板1的离子注入面、操作基板2的接合面的两者或一者实施等离子体处理作为表面活化处理。
例如,可以将待表面活化处理的C面蓝宝石基板1和/或操作基板2设置于一般的平行平板型等离子体腔室,施加13.56MHz、100W左右的高频,导入Ar、N2、O2等作为工艺气体进行处理。处理时间设为5~30秒。由此,对象的基板表面被活化,贴合后的接合强度增大。
另外,在贴合后,通过实施200~300℃左右的退火,形成更牢固的接合。
(工序1-5:C面蓝宝石薄膜的剥离、转印工序)
接着,在上述C面蓝宝石基板1中的离子注入区域1ion进行剥离以将C面蓝宝石薄膜1t转印至操作基板2上(图1(e))。
剥离处理只要是在离子注入剥离法中通常进行的处理即可,例如可应用将刀片插入等的机械剥离、激光照射等的光剥离、另外喷射水流或超声波等物理冲击剥离。
由此,得到在操作基板2上具有偏角为0.5~5度、优选2~3度且表面平滑的C面蓝宝石薄膜1t的GaN外延生长用基板11。
此时,GaN外延生长用基板11的翘曲量越小越好,就实用性而言,优选设为300μm以下,更优选为200μm以下,进一步优选为150μm以下。予以说明,该情形的基板尺寸以直径150mm(6英寸)以上(上限没有特别限制,通常为直径300mm(12英寸)以下)为前提。由此,能够容易地进行以后的处理工序。
予以说明,GaN外延生长用基板11的翘曲量为配置成GaN外延生长用基板11的C面蓝宝石薄膜1t成为上侧(表面侧)的朝向时的GaN外延生长用基板11的中央部与端部的高度差,将基板的中央部凸向下方时设为负值、凸向上方时设为正值。另外,对于翘曲量的测定,可使用例如垂直入射方式的菲佐干涉仪(Corning Tropel公司制,Flat Master)(在实施例中相同)。
接着,如图2所示,本发明涉及的GaN层叠基板的制造方法按照(a)GaN外延生长用基板和支撑基板的准备工序(工序2-1)、(b)GaN外延生长用基板的表面处理工序(工序2-2)、(c)GaN外延生长工序(工序2-3)、(d)离子注入处理工序(工序2-4)、(e)贴合接合工序(工序2-5)、(f)GaN薄膜的剥离、转印工序(工序2-6)的顺序进行处理。
(工序2-1:GaN外延生长用基板和支撑基板的准备)
首先,准备GaN外延生长用基板11和支撑基板12(图2(a))。
在此,GaN外延生长用基板11为通过上述那样的工序制作而成,在操作基板2上具有偏角为0.5~5度、优选2~3度的C面蓝宝石薄膜1t。
通过将偏角设为该范围内,其后在C面蓝宝石薄膜1t上形成的GaN膜13中,成为其表面为N极性面(下称N面)并且平滑性良好且结晶性好的外延生长膜,在进一步采用离子注入剥离法将其一部分剥离而转印至支撑基板12的情况下,该转印薄膜13a的平滑性变得优异。
另外,C面蓝宝石薄膜1t表面的算术平均粗糙度Ra优选为0.5nm以下。由此,外延成膜的GaN膜13的表面变得更平滑,在与支撑基板12的贴合接合时可形成更牢固的接合。
支撑基板12为最终支撑GaN薄膜13a的基板,优选由Si、Al2O3、SiC、AlN或SiO2构成。该构成材料可根据使用得到的GaN层叠基板而制作的半导体装置的用途适当选定。
支撑基板12表面的算术平均粗糙度Ra优选为0.5nm以下。由此,在与GaN外延生长用基板11上具有GaN层13的GaN层负载体接合时可形成更牢固的接合。
另外,可采用溅射法、等离子体CVD法等或者在支撑基板12由Si构成时为热氧化法,将由氧化硅(SiOx薄膜,其中0<x≤2)构成的粘合膜(bond film)设为支撑基板12的最表层(其中不包括支撑基板12由SiO2构成的情形)。进而,在支撑基板12自身的表面粗糙度不是非常小的情况下(例如支撑基板12表面的算术平均粗糙度Ra超过0.5nm的情况下),可以采用化学机械研磨(CMP)等对该粘合膜进行处理而使其表面平滑化。由此,能够更进一步增大与具有GaN外延生长用基板11和GaN层13的GaN层负载体的接合强度。
予以说明,该粘合膜的膜厚优选为约300~1000nm。
(工序2-2:GaN外延生长用基板的表面处理)
接着,进行GaN外延生长用基板的表面处理(图2(b))。
即,进行GaN外延生长用基板11在800~1000℃下的高温氮化处理和/或结晶性AlN在GaN外延生长用基板11的C面蓝宝石薄膜1t上的堆积处理而对GaN外延生长用基板11进行表面处理,将C面蓝宝石薄膜1t表面用由AlN构成的表面处理层11a被覆。
其中,GaN外延生长用基板11的高温氮化处理将GaN外延生长用基板11在含氮气氛中加热至比其后进行的GaN外延生长的成膜温度略低的温度(具体为800~1000℃),而至少在C面蓝宝石薄膜1t的表面形成AlN膜作为表面处理层11a。该处理优选在使GaN膜外延生长的MOCVD装置的相同的处理室中以原位(in situ)的状态实施,在比GaN外延生长的成膜温度(1050~1100℃)略低的温度(800~1000℃)实施。此时,若处理温度低于800℃,则GaN膜的N极生长不发生,进而若超过1000℃,在其后进行的外延生长的GaN生成中平滑性劣化。另外,作为工艺气体使用纯氮,也可使用氨气。通过使用氨气,更活性的N原子产生,能够改善GaN膜的表面形态(晶体结构)。另外,高温氮化处理时间可设为30秒~30分钟左右。通过延长处理时间,可改善GaN膜的表面形态(晶体结构)。
结晶性AlN在C面蓝宝石薄膜1t上的形成处理采用蓝宝石的氮化、化学气相沉积法(CVD法)或物理气相沉积法(PVD法)在C面蓝宝石薄膜1t上形成结晶性AlN膜作为表面处理层11a。该堆积处理在能够将至少C面蓝宝石薄膜1t表面用结晶性AlN膜(表面处理层11a)被覆的形成条件下进行即可。
予以说明,如上所述在C面蓝宝石薄膜1t上形成结晶性AlN膜作为表面处理层11a之后,优选在GaN外延生长前进行热处理以使结晶性AlN膜稳定化。
(工序2-3:GaN外延生长工序)
接着,使GaN在经上述表面处理的C面蓝宝石薄膜1t的表面处理层11a上外延生长而形成表面由N极性面构成的GaN膜13,制作GaN膜负载体。
作为GaN膜的外延生长法,已知分子束外延(MBE)法、氢化物气相生长(HVPE)法、有机金属气相生长(MOCVD)法,为了在C面蓝宝石薄膜1t上直接生长低缺陷的GaN薄膜,MOCVD是最合适的和优选的。
此时,采用MOCVD法进行的GaN膜13的外延生长优选在超过1000℃下进行,在上述工序2-2中进行高温氮化处理的情况下,优选在比其处理温度更高的温度下进行,宜为可取得GaN膜13的膜质与成膜速度的平衡的超过1000℃且1200℃以下。另外,工艺气体使用三甲基镓(TMG)和氨(NH3),作为载气可使用氢。
另外,GaN膜13的厚度取决于最终想要得到的GaN薄膜13a的厚度,例如为1~30μm。
予以说明,优选在工序2-2中对C面蓝宝石薄膜1t进行表面处理后,在表面处理层11a上在低温(例如700℃以下)形成GaN缓冲层,接着在该GaN缓冲层上进行上述采用MOCVD法的GaN外延生长,形成GaN膜13。
此时,在GaN缓冲层的成膜时,若成膜温度超过700℃,则缓冲层上的GaN膜13无法顺利地进行N极生长,若低于400℃,则有时成膜自身无法进行,因此优选在400~700℃、更优选400~600℃进行成膜。另外,GaN缓冲层的厚度若过薄,则有时无法得到缓冲效果,若过厚,则担心招致膜质下降,因此设为优选20~40nm、更优选20~25nm。
通过以上一系列的GaN膜13的形成工序,在GaN外延生长用基板11的C面蓝宝石薄膜1t(表面处理层11a)上成膜表面由N面构成、结晶性非常好的GaN膜13(至此为图2(c))。
在此,GaN等化合物半导体晶体表面具有极性,例如由构成元素Ga和N构成的单晶的GaN膜必然具有由Ga原子构成(终端)、该Ga原子的悬键露出的极性面(Ga极性面(也称作Ga面))和由N原子构成(终端)、该N原子的悬键露出的极性面(N极性面(也称作N面))。
另外,GaN的晶体结构为六方晶系,其极性面出现在晶格的密排面。予以说明,六方晶系化合物半导体晶体的密排面为{0001}面,(0001)面与(000-1)面不等价,前者为阳离子原子露出的面,后者为阴离子原子露出的面,在氮化镓(GaN)中(0001)面为Ga面,(000-1)面为N面。
再有,在采用上述外延生长形成GaN膜13后,可以进一步采用溅射法、等离子体CVD法等在该GaN膜13上形成氧化硅(SiOx薄膜,其中0<x≤2)膜作为用于与支撑基板12贴合的粘合层而制成上述GaN膜负载体。此时的氧化硅膜的厚度(在进行CMP研磨时为CMP研磨后的厚度)优选为200~1000nm。
(工序2-4:对GaN膜13的离子注入工序)
接着,从上述GaN膜负载体的GaN膜13的表面进行离子注入,在GaN膜13中形成层状的离子注入区域13ion(图2(d))。
此时,优选使用氢离子(H+)和/或氢分子离子(H2 +)作为注入离子。
另外,注入能规定离子注入深度(即剥离膜(GaN薄膜13a)的膜厚),优选为100~160keV。若设为注入能100keV以上,则能够使GaN薄膜13a的膜厚成为500nm以上。另一方面,若设为超过160keV,则注入能变大,担心招致剥离的薄膜的结晶性的劣化。
另外,剂量优选为1.0×1017~3.5×1017atom/cm2。由此,能够在GaN膜13中形成成为剥离层(脆化层)的离子注入区域13ion,并且能够抑制GaN膜负载体的温度上升。予以说明,离子注入温度为室温,若成为高温,则担心GaN膜负载体断裂,因此可将GaN膜负载体冷却。
在此,上述离子注入处理可对于在工序2-3中直接形成GaN膜13的GaN膜负载体实施,若直接形成的GaN膜13的表面粗糙,则对应于其表面凹凸,离子注入深度变得不均匀,剥离后的GaN薄膜13a的剥离面(表面)的凹凸会变大。
因此,可上述离子注入前将GaN膜负载体的离子注入面平滑化至算术平均粗糙度优选成为0.3nm以下、更优选0.2nm以下。
例如,可将在工序2-3中形成的GaN膜13表面进行采用CMP等的研磨和/或蚀刻而平滑化至算术平均粗糙度Ra优选成为0.3nm以下、更优选0.2nm以下。
或者,在上述GaN膜13(即直接成膜的、或者进行研磨和/或蚀刻而平滑化的GaN膜13)上形成氧化硅膜作为粘合层的情况下,可将该氧化硅膜表面进行采用CMP等的研磨和/或蚀刻而平滑化至算术平均粗糙度Ra优选成为0.3nm以下。GaN膜13的厚度薄,在难以通过研磨等平坦化的情况下是特别有效的。
如以上那样将GaN膜负载体的待进行离子注入的面(即,GaN膜13或作为上述粘合层的氧化硅膜表面)平滑化,从而能够使接着进行的离子注入处理中的离子注入深度固定,进而在与支撑基板12贴合后被剥离的情况下,能够得到表面平滑的(表面粗糙度小的)剥离转印层(GaN薄膜13a)。
(工序2-5:GaN膜负载体与支撑基板12的贴合接合工序)
接着,将经上述离子注入的GaN膜负载体的GaN膜13侧表面与支撑基板12贴合而接合(图2(e))。
在此,在没有形成粘合层(氧化硅膜)的GaN膜负载体与支撑基板12的贴合的情况下,GaN膜负载体的GaN膜13表面(N面)与支撑基板12表面接合。即,成为GaN外延生长用基板11(操作基板2/薄膜1a/C面蓝宝石薄膜1t)/表面处理层11a/(GaN缓冲层)/GaN膜13(N面)/支撑基板12的层叠结构。
另外,在将粘合层(氧化硅膜)形成于至少任一者的表面的GaN膜负载体与支撑基板12的贴合的情况下,GaN膜负载体的GaN膜13表面(N面)与支撑基板12表面经由它们之间的粘合层(氧化硅膜)而接合。即,成为GaN外延生长用基板11(操作基板2/薄膜1a/C面蓝宝石薄膜1t)/表面处理层11a/(GaN缓冲层)/GaN膜13(N面)/粘合层(氧化硅膜)/支撑基板12的层叠结构。
予以说明,在该贴合前,优选对GaN膜负载体的离子注入面、支撑基板12的接合面的两者或一者实施等离子体处理作为表面活化处理。
例如,可以将待表面活化处理GaN膜负载体和/或支撑基板12设置于一般的平行平板型等离子体腔室,施加13.56MHz、100W左右的高频,导入Ar、N2、O2等作为工艺气体进行处理。处理时间设为5~30秒。由此,对象的基板表面被活化,贴合后的接合强度增大。
另外,在贴合后,通过实施200~300℃、5~24小时左右的退火,形成更牢固的接合,因而优选。
(工序2-6:GaN薄膜的剥离、转印工序)
接着,在上述GaN膜13中的离子注入区域13ion进行剥离以将GaN薄膜13a转印至支撑基板12上(图2(f))。
剥离处理只要是在离子注入剥离法中通常进行的处理即可,例如可应用将刀片插入等的机械剥离、激光照射等的光剥离、另外喷射水流或超声波等物理冲击剥离。
由此,可得到在支撑基板12上具有表面由Ga极性面构成、结晶性良好且表面平滑的GaN薄膜13a的GaN层叠基板10。
予以说明,剥离后经转印的GaN薄膜13a的表面十分平滑,但可以根据使用该GaN层叠基板10的装置的要求特性而通过研磨等进一步平滑化。另外,通过使GaN膜进一步外延生长于该GaN层叠基板10,也能够制造低缺陷且厚膜的GaN基板。
予以说明,确认GaN层叠基板10的GaN薄膜13a表面的极性面的方法例如可观察采用KOH水溶液的刻蚀速率的不同来判断。即,N面的蚀刻速率大于Ga面。例如,在40℃、2mol/L的KOH水溶液中浸渍了45分钟的情况下,Ga面未被蚀刻,而N面被蚀刻,因此能够确认。
实施例
以下,举出实施例和比较例更具体地说明本发明,但本发明不限定于这些实施例。
[实施例1]
在以下的条件下制作了GaN层叠基板。
(实施例1-1)
准备由直径12英寸、厚度750μm、热膨胀率5.2×10-6/k(800K)的AlN烧结体(陶瓷)构成的操作基板和直径12英寸、厚度750μm、算术平均粗糙度Ra0.3nm、热膨胀率8.0×10-6/k(800K)、c轴偏角1.5度的C面蓝宝石基板。予以说明,该操作基板与GaN(热膨胀率6.0×10-6/k(800K))的热膨胀率之差为-0.8×10-6/k。
接着,在该C面蓝宝石基板表面利用溅射法形成厚度150nm的SiO2薄膜,从该SiO2薄膜表面将氢分子离子H2 +以注入能150keV、剂量2×1017atm/cm2进行离子注入。
接着,对C面蓝宝石基板的离子注入面(SiO2薄膜形成面)和操作基板表面实施Ar等离子体处理。接着,将两者的Ar等离子体处理面彼此贴合而接合后,从贴合体在离子注入区域将C面蓝宝石基板机械地剥离,在操作基板上转印C面蓝宝石薄膜而得到GaN外延生长用基板。该GaN外延生长用基板的翘曲量为100μm。
将该基板用RCA清洗进行清洗后,在MOCVD装置中实施基板温度900℃的高温氮化处理(等离子体气体:纯氮)30分钟,接着在基板温度400℃成膜了厚度20nm的GaN缓冲层后,进而在基板温度1050℃使用工艺气体:TMG和NH3进行外延生长,成膜了10μm的GaN膜。该GaN膜的算术平均粗糙度Ra为8nm。
接着,在该GaN膜上利用等离子体CVD法成膜了厚度2μm的氧化硅膜作为粘合层后,用CMP装置将该氧化硅膜研磨至300nm。得到的GaN膜负载体的算术平均粗糙度Ra为0.3nm。
接着,由该GaN膜负载体的氧化硅膜表面以注入能160keV、剂量3.1×1017atm/cm2将氢分子离子H2 +进行离子注入。
接着,作为支撑基板准备直径12英寸、厚度750μm的Si基板,在Si基板上形成厚度300nm的热氧化膜。热氧化膜形成后的Si基板的算术平均粗糙度Ra=0.5nm。
对该Si基板、上述GaN膜负载体各自的热氧化膜、氧化硅膜(离子注入面)表面实施Ar等离子体处理。接着,将Ar等离体子体处理面彼此贴合后,在氮气氛下于200℃退火12小时。退火后,对GaN膜的离子注入区域插入金属刀片进行剥离,在Si基板上转印GaN薄膜而得到GaN层叠基板。
得到的GaN层叠基板的GaN薄膜表面的算术平均粗糙度Ra为10nm。另外,对得到的GaN层叠基板的GaN薄膜采用X射线摇摆曲线法(rocking curve method)评价了结晶性。详细地,采用X射线衍射求出上述GaN薄膜的GaN(0002)面反射的摇摆曲线(ω扫描)中的倾斜分布(半宽度),结果为310arcsec而显示良好的结晶性。
另外,作为GaN薄膜的表面的极性面的确认,将样品在40℃、2mol/L的KOH水溶液中浸渍45分钟后,观察表面,结果GaN薄膜表面未被蚀刻,可知GaN薄膜表面成为Ga面。
(实施例1-2)
在实施例1-1中,将操作基板设为由硼硅酸玻璃(热膨胀率6.8×10-6/k(800K))构成,将C面蓝宝石基板的偏角设为3度(算术平均粗糙度Ra:0.3nm),除此以外,与实施例1-1同样地制作了GaN外延生长用基板。该GaN外延生长用基板的翘曲量为150μm。
接着,使用该GaN外延生长用基板外延生长了厚度5μm的GaN膜后,对该GaN膜表面(该GaN膜算术平均粗糙度Ra:6nm)进行CMP研磨,使该表面的算术平均粗糙度Ra成为0.2nm,在未形成粘合层的状态下直接转印至由石英构成的支撑基板(石英基板)。除此以外,与实施例1-1同样地得到了GaN层叠基板。
得到的GaN层叠基板的GaN薄膜表面的算术平均粗糙度Ra为0.3nm。另外,对得到的GaN层叠基板的GaN薄膜,与实施例1-1同样地采用X射线摇摆曲线法评价了结晶性,结果成为FWHM 280arcsec,显示与实施例1-1同等的结晶性。
另外,与实施例1-1同样地确认GaN薄膜的表面的极性面,结果为Ga面。
(比较例1-1)
在实施例1-1中,将C面蓝宝石基板的c轴偏角设为0.05度(算术平均粗糙度Ra:0.3nm)而使用,除此以外,与实施例1-1同样地制作了GaN层叠基板。予以说明,GaN膜成膜后的该GaN膜算术平均粗糙度Ra为135nm,氧化硅膜CMP研磨后的GaN膜负载体的算术平均粗糙度Ra为0.2nm。
得到的GaN层叠基板的GaN薄膜表面的算术平均粗糙度Ra为150nm,平滑性差。另外,对得到的GaN层叠基板的GaN薄膜,与实施例1-1同样地采用X射线摇摆曲线法评价了结晶性,结果成为FWHM 850arcsec,结晶性劣化。
另外,与实施例1-1同样地确认GaN薄膜的表面的极性面,结果为Ga面。
(比较例1-2)
在实施例1-1中,将C面蓝宝石基板的c轴偏角设为6度(算术平均粗糙度Ra:0.3nm)而使用,除此以外,与实施例1-1同样地制作了GaN层叠基板。予以说明,GaN膜成膜后的该GaN膜算术平均粗糙度Ra为80nm,氧化硅膜CMP研磨后的GaN膜负载体的算术平均粗糙度Ra为0.3nm。
得到的GaN层叠基板的GaN薄膜表面的算术平均粗糙度Ra为120nm。另外,对得到的GaN层叠基板的GaN薄膜,与实施例1-1同样地采用X射线摇摆曲线法评价了结晶性,结果成为FWHM 960arcsec,结晶性劣化。
另外,与实施例1-1同样地确认GaN薄膜的表面的极性面,结果为Ga面。
(比较例1-3)
将实施例1-1中所使用的C面蓝宝石基板直接用作GaN外延生长用基板,在该GaN外延生长用基板上与实施例1-1同样地形成GaN膜,结果GaN成膜后的基板的翘曲非常大至约3mm,不能与支撑基板贴合,中止了以后的工序。
将以上的结果示于表1。根据本发明,可知即使是直径12英寸的大口径的基板,也可得到具有优异的平滑性和结晶性的GaN层叠基板。予以说明,表中的表面粗糙度Ra为算术平均粗糙度Ra。
表1
*:GaN(0002)面反射摇摆曲线(ω扫描)中的半高宽(FWHM)
予以说明,至此已以上述实施方式对本发明进行了说明,但本发明不限定于该实施方式,其它实施方式、追加、改变、删除等,可在本领域技术人员能够想到的范围内进行改变,在任何方案中只要取得本发明的作用效果,就都包含在本发明的范围内。
附图标记说明
1、1’ C面蓝宝石基板
1a 薄膜
1ion、13ion 离子注入区域
1t C面蓝宝石薄膜
2 操作基板
10 GaN层叠基板
11 GaN外延生长用基板
11a 表面处理层
12 支撑基板
13 GaN膜
13a GaN薄膜
Claims (13)
1.GaN层叠基板的制造方法,其具有:
将利用离子注入剥离法从偏角0.5~5度的C面蓝宝石基板剥离的C面蓝宝石薄膜转印至由800K下的热膨胀率比硅大、比C面蓝宝石小的玻璃、陶瓷或单晶材料构成的操作基板上,从而制作GaN外延生长用基板的工序;
进行上述GaN外延生长用基板在800~1000℃下的高温氮化处理和/或结晶性AlN在该GaN外延生长用基板的C面蓝宝石薄膜上的堆积处理而对上述GaN外延生长用基板进行表面处理,将C面蓝宝石薄膜表面用由AlN构成的表面处理层被覆的工序;
使GaN在经上述表面处理的GaN外延生长用基板的表面处理层上外延生长,制作表面由N极性面构成的GaN膜负载体的工序;
对上述GaN膜进行离子注入,形成离子注入区域的工序;
将经上述离子注入的GaN膜负载体的GaN膜侧表面与支撑基板贴合以进行接合的工序;和
在上述GaN膜的离子注入区域进行剥离而将GaN薄膜转印至支撑基板上,得到在支撑基板上具有表面由Ga极性面构成的GaN薄膜的GaN层叠基板的工序。
2.根据权利要求1所述的GaN层叠基板的制造方法,其中,上述操作基板由硼硅酸系玻璃、GaN烧结体、AlN烧结体或GaAs单晶构成。
3.根据权利要求1或2所述的GaN层叠基板的制造方法,其中,使氧化硅、氮化硅或氧氮化硅的薄膜介于上述操作基板与C面蓝宝石薄膜之间而转印该C面蓝宝石薄膜。
4.根据权利要求1~3的任一项所述的GaN层叠基板的制造方法,其特征在于,使GaN外延生长用基板的翘曲量为300μm以下。
5.根据权利要求1~4的任一项所述的GaN层叠基板的制造方法,其中,上述GaN外延生长在超过1000℃且1200℃以下进行。
6.根据权利要求1~5的任一项所述的GaN层叠基板的制造方法,其中,利用MOCVD法进行上述GaN的外延生长。
7.根据权利要求1~6的任一项所述的GaN层叠基板的制造方法,其中,在对上述C面蓝宝石基板进行表面处理后,在700℃以下在表面处理层上形成GaN缓冲层,接着在该GaN缓冲层上进行上述GaN外延生长。
8.根据权利要求7所述的GaN层叠基板的制造方法,其中,上述GaN缓冲层的厚度为20~40nm。
9.根据权利要求1~8的任一项所述的GaN层叠基板的制造方法,其中,在利用所述外延生长形成GaN膜后,进一步在该GaN膜上形成氧化硅膜而制成上述GaN膜负载体。
10.根据权利要求1~9的任一项所述的GaN层叠基板的制造方法,其中,进一步在上述离子注入前将GaN膜负载体的离子注入面平滑化至算术平均粗糙度Ra0.3nm以下。
11.根据权利要求1~10的任一项所述的GaN层叠基板的制造方法,其中,对上述GaN膜的离子注入为使用了氢离子(H+)和/或氢分子离子(H2 +)的注入能为100~160keV、剂量为1.0×1017~3.5×1017atom/cm2的处理。
12.根据权利要求1~11的任一项所述的GaN层叠基板的制造方法,其中,上述支撑基板由Si、Al2O3、SiC、AlN或SiO2构成。
13.根据权利要求12所述的GaN层叠基板的制造方法,其中,上述支撑基板为在与GaN膜负载体的接合面形成了氧化硅膜的支撑基板,其中不包括支撑基板由SiO2构成的情形。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018149939 | 2018-08-09 | ||
JP2018-149939 | 2018-08-09 | ||
PCT/JP2019/030164 WO2020031829A1 (ja) | 2018-08-09 | 2019-08-01 | GaN積層基板の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112585305A CN112585305A (zh) | 2021-03-30 |
CN112585305B true CN112585305B (zh) | 2023-03-28 |
Family
ID=69414175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980052719.0A Active CN112585305B (zh) | 2018-08-09 | 2019-08-01 | GaN层叠基板的制造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11479876B2 (zh) |
JP (1) | JP7044161B2 (zh) |
CN (1) | CN112585305B (zh) |
DE (1) | DE112019003987T5 (zh) |
GB (1) | GB2591348B (zh) |
TW (1) | TWI834703B (zh) |
WO (1) | WO2020031829A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022012558A (ja) * | 2020-07-01 | 2022-01-17 | 信越化学工業株式会社 | 大口径iii族窒化物系エピタキシャル成長用基板とその製造方法 |
CN112164672B (zh) * | 2020-09-09 | 2023-07-11 | 广东省科学院半导体研究所 | 一种衬底剥离方法 |
JP2023550606A (ja) * | 2020-11-03 | 2023-12-04 | コーニング インコーポレイテッド | 仮結合プロセスを使用する基板の薄化 |
CN115867107B (zh) * | 2023-02-27 | 2023-12-08 | 青禾晶元(天津)半导体材料有限公司 | 一种利用键合技术同步制备两片复合压电衬底的方法 |
TWI835575B (zh) * | 2023-03-02 | 2024-03-11 | 佳霖科技股份有限公司 | 半導體晶圓的製造方法 |
CN117660879B (zh) * | 2023-12-08 | 2024-05-14 | 广州市艾佛光通科技有限公司 | 一种AlN薄膜及其制备方法和应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1174562A (ja) * | 1997-06-30 | 1999-03-16 | Nichia Chem Ind Ltd | 窒化物半導体素子 |
JP2009231816A (ja) * | 2008-02-29 | 2009-10-08 | Shin Etsu Chem Co Ltd | 単結晶薄膜を有する基板の製造方法 |
CN102246291A (zh) * | 2008-12-19 | 2011-11-16 | 硅绝缘体技术有限公司 | 应变改造复合半导体基片和其形成方法 |
CN104488081A (zh) * | 2012-07-25 | 2015-04-01 | 信越化学工业株式会社 | Sos基板的制造方法和sos基板 |
CN107750400A (zh) * | 2015-06-19 | 2018-03-02 | Qmat股份有限公司 | 接合和释放层转移工艺 |
CN108367973A (zh) * | 2015-12-17 | 2018-08-03 | 信越化学工业株式会社 | 蓝宝石复合基材及其制造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1885918B1 (en) * | 2005-05-11 | 2017-01-25 | North Carolina State University | Methods of preparing controlled polarity group iii-nitride films |
WO2008060349A2 (en) * | 2006-11-15 | 2008-05-22 | The Regents Of The University Of California | Method for heteroepitaxial growth of high-quality n-face gan, inn, and ain and their alloys by metal organic chemical vapor deposition |
US20090278233A1 (en) * | 2007-07-26 | 2009-11-12 | Pinnington Thomas Henry | Bonded intermediate substrate and method of making same |
CN101521155B (zh) * | 2008-02-29 | 2012-09-12 | 信越化学工业株式会社 | 制备具有单晶薄膜的基板的方法 |
JP6248135B2 (ja) | 2011-09-12 | 2017-12-13 | 住友化学株式会社 | 窒化物半導体結晶の製造方法 |
JP6026188B2 (ja) | 2011-09-12 | 2016-11-16 | 住友化学株式会社 | 窒化物半導体結晶の製造方法 |
US10041187B2 (en) | 2013-01-16 | 2018-08-07 | QMAT, Inc. | Techniques for forming optoelectronic devices |
JP6776711B2 (ja) | 2016-08-08 | 2020-10-28 | 三菱ケミカル株式会社 | GaN単結晶およびGaN単結晶製造方法 |
JP6232150B1 (ja) * | 2017-01-10 | 2017-11-15 | 古河機械金属株式会社 | Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法 |
JP6915591B2 (ja) * | 2018-06-13 | 2021-08-04 | 信越化学工業株式会社 | GaN積層基板の製造方法 |
-
2019
- 2019-08-01 DE DE112019003987.3T patent/DE112019003987T5/de active Pending
- 2019-08-01 WO PCT/JP2019/030164 patent/WO2020031829A1/ja active Application Filing
- 2019-08-01 JP JP2020535710A patent/JP7044161B2/ja active Active
- 2019-08-01 GB GB2102099.5A patent/GB2591348B/en active Active
- 2019-08-01 US US17/266,178 patent/US11479876B2/en active Active
- 2019-08-01 CN CN201980052719.0A patent/CN112585305B/zh active Active
- 2019-08-08 TW TW108128217A patent/TWI834703B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1174562A (ja) * | 1997-06-30 | 1999-03-16 | Nichia Chem Ind Ltd | 窒化物半導体素子 |
JP2009231816A (ja) * | 2008-02-29 | 2009-10-08 | Shin Etsu Chem Co Ltd | 単結晶薄膜を有する基板の製造方法 |
CN102246291A (zh) * | 2008-12-19 | 2011-11-16 | 硅绝缘体技术有限公司 | 应变改造复合半导体基片和其形成方法 |
CN104488081A (zh) * | 2012-07-25 | 2015-04-01 | 信越化学工业株式会社 | Sos基板的制造方法和sos基板 |
CN107750400A (zh) * | 2015-06-19 | 2018-03-02 | Qmat股份有限公司 | 接合和释放层转移工艺 |
CN108367973A (zh) * | 2015-12-17 | 2018-08-03 | 信越化学工业株式会社 | 蓝宝石复合基材及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
GB202102099D0 (en) | 2021-03-31 |
KR20210039438A (ko) | 2021-04-09 |
DE112019003987T5 (de) | 2021-04-22 |
TW202024406A (zh) | 2020-07-01 |
JPWO2020031829A1 (ja) | 2021-08-26 |
US20210301419A1 (en) | 2021-09-30 |
GB2591348B (en) | 2023-02-08 |
US11479876B2 (en) | 2022-10-25 |
CN112585305A (zh) | 2021-03-30 |
JP7044161B2 (ja) | 2022-03-30 |
GB2591348A (en) | 2021-07-28 |
WO2020031829A1 (ja) | 2020-02-13 |
TWI834703B (zh) | 2024-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112585305B (zh) | GaN层叠基板的制造方法 | |
US11208719B2 (en) | SiC composite substrate and method for manufacturing same | |
KR102570935B1 (ko) | GaN 적층 기판의 제조 방법 | |
US10829868B2 (en) | Manufacturing method of SiC composite substrate | |
US8154022B2 (en) | Process for fabricating a structure for epitaxy without an exclusion zone | |
TWI482203B (zh) | And a method for producing a substrate having a single crystal thin film | |
JP5468528B2 (ja) | 単結晶ダイヤモンド成長用基材及びその製造方法並びに単結晶ダイヤモンド基板の製造方法 | |
TWI738665B (zh) | SiC複合基板之製造方法 | |
EP2157602A1 (en) | A method of manufacturing a plurality of fabrication wafers | |
TWI705480B (zh) | 於載體基板上製造裝置的方法及載體基板上的裝置 | |
KR102727343B1 (ko) | GaN 적층 기판의 제조 방법 | |
TW202331794A (zh) | 氮化物半導體基板及氮化物半導體基板的製造方法 | |
JP2022120695A (ja) | 窒化物半導体基板及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |