[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN112495421A - 一种氮掺杂碳量子点修饰富氮石墨型氮化碳光催化剂的制备方法 - Google Patents

一种氮掺杂碳量子点修饰富氮石墨型氮化碳光催化剂的制备方法 Download PDF

Info

Publication number
CN112495421A
CN112495421A CN202011430849.4A CN202011430849A CN112495421A CN 112495421 A CN112495421 A CN 112495421A CN 202011430849 A CN202011430849 A CN 202011430849A CN 112495421 A CN112495421 A CN 112495421A
Authority
CN
China
Prior art keywords
ncds
nitrogen
preparation
stirring
quantum dot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011430849.4A
Other languages
English (en)
Other versions
CN112495421B (zh
Inventor
林雪
石春丽
刘畅
王静波
杨爽
刘亚楠
孙苇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihua University
Original Assignee
Beihua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihua University filed Critical Beihua University
Priority to CN202011430849.4A priority Critical patent/CN112495421B/zh
Publication of CN112495421A publication Critical patent/CN112495421A/zh
Application granted granted Critical
Publication of CN112495421B publication Critical patent/CN112495421B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种氮掺杂碳量子点修饰富氮石墨型氮化碳光催化剂的制备方法。使用简单的水浴加热、低温煅烧方法合成的C3N5,首先,将制备好的C3N5加入到无水乙醇溶液中搅拌均匀,再将NCDs加入以上溶液中,然后将悬浊液超声后再搅拌一段时间,最后将样品烘干方可得到产物。本申请催化剂的光催化产氢效率得到有效提高。

Description

一种氮掺杂碳量子点修饰富氮石墨型氮化碳光催化剂的制备 方法
技术领域
本发明属于复合材料制备的技术领域,特别涉及一种氮掺杂碳量子点(NCDs)修饰C3N5光催化剂的制备方法。
背景技术
环境问题一直是人们极其关注的问题。近年来,世界面临着污染、气候变化、传染病等严重的环境挑战。气候变化引发的问题迫切要求我们寻找新的化石燃料替代品。在许多候选物中,氢气(H2)是具有很多优点,可以减少对化石燃料的依赖,包括无碳、自然资源丰富。而与汽油(40kJ·g-1)相比,H2(122kJ·g-1)能量密度高。其中光催化技术是一种很有前途的有效解决当前全球环境污染和能源危机的绿色技术,可以完全利用太阳能将水分解后产生氢气(H2)。
碳量子点(CQD)具有独特的光致发光特性,良好的光稳定性,成本廉价,无毒且易于合成。而氮掺杂可以为CQD带来独特的物理和化学特性。由于NCDs可以有效地引起电荷离域,降低功函数并增强CQD的光致发光发射性能,另外,还可以有效地提高CQD的电子转移能力。
在石墨烯半导体中,石墨氮化碳(g-C3N4)框架中含有大量的富电子位点和碱性氮,促进了烷基化、酯化、氧化等各种催化反应。所以g-C3N4具有环保性、可见光响应和高化学稳定性等独特性能。而在最新的研究中,C3N5框架包含通过偶氮键(-N=N-)桥接在一起的庚嗪部分。由于构成偶氮键的N原子上的p轨道与庚嗪基序的π系统重叠,偶氮键的存在扩展了π共轭网络,从而使电子带隙降低至1.76eV。C3N5在更长的波长下显示出改进的光敏特性,可用于太阳能分解水。
因此,我们期望将NCDs和C3N5复合在一起,形成一种具有高光催化活性的复合光催化剂,用来光催化产氢。
发明内容
本发明的目的是要提供一种氮掺杂碳量子点(NCDs)修饰C3N5光催化剂制备方法。通过低温溶液相技术制备NCDs修饰C3N5光催化剂,以有效将光生载流子加快分离和转移,从而使光催化产氢效率提高。
本发明的技术方案:
本发明的技术方案是通过简单的水浴加热、低温煅烧方法制备NCDs,并使用低温溶液相技术制备复合光催化剂。
一种氮掺杂碳量子点修饰富氮石墨型氮化碳光催化剂,使用简单的水浴加热、低温煅烧方法合成的C3N5,首先,将制备好的C3N5加入到无水乙醇溶液中搅拌均匀,再将NCDs加入以上溶液中,然后将悬浊液超声后再搅拌一段时间,最后将样品烘干即可得到产物。
一种氮掺杂碳量子点修饰富氮石墨型氮化碳光催化剂的制备方法,
C3N5的制备:首先将10g溴化钾固体与30mL蒸馏水混合均匀,然后向其中加入1.5g的3-氨基-1,2,4-三唑固体继续混合均匀,在80℃下进行水浴蒸干,并在60℃烘箱中进行真空干燥,最后放入坩埚中,在马弗炉中以10℃/min-1的速率,加热至500℃,保持3小时,冷却至室温后使用玛瑙研钵进行研磨,即可得到棕色C3N5粉末;
NCDs的制备:首先将17mL蒸馏水与560μL乙二胺混合均匀,然后将1.752g柠檬酸加入至乙二胺溶液中,搅拌均匀之后,放入50mL的不锈钢高压反应釜中,在250℃下保持5h,冷却至室温后,使用透析袋透析72h,最后转移至冰箱中进行保存;
NCDs/C3N5的制备:首先,将制备好的C3N5加入到无水乙醇溶液中搅拌均匀,再将NCDs加入以上溶液中,然后将悬浊液超声后再搅拌一段时间,最后将样品烘干得到NCDs/C3N5粉末。
所述NCDs/C3N5的制备步骤中NCDs用量分别是130μL或255μL或520μL,NCDs浓度为1mg/mL-1
本发明的有益效果是:
从制备方法,前驱体以及产品都是绿色环保,非金属,不污染环境。本发明通过构筑NCDs/C3N5复合光催化材料,能够有效促进电子-空穴对的分离和转移。通过NCDs掺杂增大催化剂比表面积,其中,0.125%NCDs/C3N5比表面积为纯C3N5样品的3倍。本发明利用NCDs的敏化作用,有效拓宽催化剂的光响应范围,使0.125%NCDs/C3N5吸收边波长达700nm。从而使催化剂的光催化产氢效率得到有效提高。
附图说明
图1a为C3N5和C3N4样品的照片,图1b为C3N5样品的核磁谱图。
图2a为C3N5、不同比例的NCDs/C3N5的XRD图。
图2b为C3N5、0.125%NCDs/C3N5的氮气吸附脱附图。
图3为C3N5、不同比例的NCDs/C3N5的FT-IR图。
图4a、b为C3N5的SEM图。
图4c、d为0.125%NCDs/C3N5的SEM图。
图5a为C3N5、不同质量的NCDs/C3N5的4小时内产氢量图,图5b为C3N5、0.125%NCDs/C3N5的紫外可见漫反射光谱图。
图6为C3N5、0.125%NCDs/C3N5的PL图。
图7为C3N5、0.125%NCDs/C3N5的EIS图。
图8为C3N5、0.125%NCDs/C3N5的光电流图。
具体实施方式
实施例1
(一)C3N5的制备
(1)将10g的溴化钾溶解于30mL的去离子水中;
(2)将1.5g 3-氨基-1,2,4-三唑加入到溴化钾溶液中搅拌均匀;
(3)在80℃下进行水浴蒸干,并在60℃烘箱中进行真空干燥;
(4)然后将干燥后的样品放入坩埚中,在马弗炉中以10℃/min-1的速率,加热至500℃,保持3小时;
(5)最后冷却至室温后使用玛瑙研钵进行研磨,即可得到棕色C3N5粉末。
(二)NCDs的制备
(1)首先将17mL蒸馏水与560μL乙二胺混合均匀;
(2)然后将1.752g柠檬酸加入至乙二胺溶液中搅拌均匀;
(3)之后放入50mL的高压反应釜中,在250℃下保持5h;
(4)不锈钢高压反应釜冷却至室温后,使用透析袋透析72h;
(5)最后转移至冰箱中进行保存。
(三)NCDs/C3N5的制备
(1)首先,将0.1g的C3N5加入到50mL无水乙醇溶液中搅拌均匀;
(2)再分别将130μL(0.06%)、255μL(0.125%)以及520μL(0.25%)
的NCDs(浓度为1mg/mL-1)加入以上溶液中;
(3)然后将悬浊液超声1h后再搅拌2h;
(4)最后将样品转移到80℃真空干燥箱中干燥,方可得到产物。
产物NCDs/C3N5的XRD、FT-IR和SEM谱图等分别如图2-6
附图详细说明
图1a为C3N5和C3N4样品的照片,从照片中可以看出C3N5样品颜色更深,证明其可见光吸收范围更宽。图1b为C3N5样品的核磁谱,78ppm处出现了一个非常宽的峰,这可能是由于插入氢,结构紊乱以及残留的末端醛或羧酸氢。
图2a为所制备样品C3N5和不同含量NCDs/C3N5复合物的XRD图。从XRD图中可以看出,NCDs/C3N5复合物的衍射峰基本符合C3N5的衍射峰。说明NCDs对C3N5的结构并没有影响。图2b中可以看出,C3N5和0.125%NCDs/C3N5表现出典型的IV等温线,表明均存在介孔结构。此外,0.125%NCDs/C3N5(55.99m2 g-1)比C3N5(16.2m2 g-1)具有更大的比表面积。
图3为所制备样品C3N5、不同比例的NCDs/C3N5的FT-IR图。图3显示,在不同比例的NCDs/C3N5的红外谱图中都可以找到C3N5的衍射峰,说明NCDs/C3N5光催化剂成功合成。
图4为所制备样品C3N5、0.125%NCDs/C3N5的SEM图。从图4a和b中可以看出C3N5样品的表面较为光滑,整体结构为块状。图4c和d中显示出0.125%NCDs/C3N5复合材料的表面粗糙,并产生了较多微孔,证明NCDs/C3N5二元异质结构光催化剂成功合成。
图5a为C3N5、不同比例的NCDs/C3N5的4小时内产氢量图。可以看出,随着可见光照射时间的延长,所有样品的H2产量都有所增加,尤其是0.125%NCDs/C3N5样品,其产氢量为35μmol,是C3N5(10μmol)的3.5倍。说明NCDs的掺杂提高了C3N5的光催化产氢性能。图5b为C3N5和0.125%NCDs/C3N5样品的紫外-可见光漫反射光谱图。观察到0.125%NCDs/C3N5在紫外光区有较强吸收,吸收边显示出红移,达到700nm,对应其带隙能为1.77eV。这表明了由于NCDs的成功掺杂拓宽了光谱响应范围,增强了复合催化剂的可见光吸收能力。
图6为所制备样品C3N5、0.125%NCDs/C3N5的PL图。从图6可以看出,与C3N5相比,0.125%NCDs/C3N5的PL峰强度有所降低。这是由于在可见光照射下,高效电子从C3N5向NCDs转移,促进了载流子的分离,有利于提高复合材料的光催化活性。
图7为所制备样品C3N5、0.125%NCDs/C3N5的EIS图。如图7所示,0.125%NCDs/C3N5的电弧半径小于C3N5的电弧半径。结果进一步表明,0.125%NCDs/C3N5发生更快的表面反应速率,并且表现出更有效的电荷转移。
图8为所制备样品C3N5、0.125%NCDs/C3N5的光电流响应图。从图8可以看出,0.125%NCDs/C3N5的光电流强度高于C3N5。结果表明,复合材料显著抑制了光生电子-空穴对的分离。

Claims (3)

1.一种氮掺杂碳量子点修饰富氮石墨型氮化碳光催化剂,其特征在于:使用简单的水浴加热、低温煅烧方法合成的C3N5,首先,将制备好的C3N5加入到无水乙醇溶液中搅拌均匀,再将NCDs加入以上溶液中,然后将悬浊液超声后再搅拌一段时间,最后将样品烘干方可得到产物。
2.根据权利要求1所述的一种氮掺杂碳量子点修饰富氮石墨型氮化碳光催化剂的制备方法,其特征在于:
C3N5的制备:首先将10g溴化钾固体与30mL蒸馏水混合均匀,然后向其中加入1.5g的3-氨基-1,2,4-三唑固体继续混合均匀,在80℃下进行水浴蒸干,并在60℃烘箱中进行真空干燥,最后放入坩埚中,在马弗炉中以10℃/min-1的速率,加热至500℃,保持3小时,冷却至室温后使用玛瑙研钵进行研磨,即可得到棕色C3N5粉末;
NCDs的制备:首先将17mL蒸馏水与560μL乙二胺混合均匀,然后将1.752g柠檬酸加入至乙二胺溶液中,搅拌均匀之后,放入50mL的不锈钢高压反应釜中,在250℃下保持5h,冷却至室温后,使用透析袋透析72h,最后转移至冰箱中进行保存;
NCDs/C3N5的制备:首先,将制备好的C3N5加入到无水乙醇溶液中搅拌均匀,再将NCDs加入以上溶液中,然后将悬浊液超声后再搅拌一段时间,最后将样品烘干得到NCDs/C3N5粉末。
3.根据权利要求2所述的一种氮掺杂碳量子点修饰富氮石墨型氮化碳光催化剂的制备方法,其特征在于:NCDs/C3N5的制备步骤中NCDs用量分别是130μL或255μL或520μL,NCDs浓度为1mg/mL-1
CN202011430849.4A 2020-12-09 2020-12-09 一种氮掺杂碳量子点修饰富氮石墨型氮化碳光催化剂的制备方法 Active CN112495421B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011430849.4A CN112495421B (zh) 2020-12-09 2020-12-09 一种氮掺杂碳量子点修饰富氮石墨型氮化碳光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011430849.4A CN112495421B (zh) 2020-12-09 2020-12-09 一种氮掺杂碳量子点修饰富氮石墨型氮化碳光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN112495421A true CN112495421A (zh) 2021-03-16
CN112495421B CN112495421B (zh) 2023-11-24

Family

ID=74970163

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011430849.4A Active CN112495421B (zh) 2020-12-09 2020-12-09 一种氮掺杂碳量子点修饰富氮石墨型氮化碳光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN112495421B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113751049A (zh) * 2021-10-15 2021-12-07 浙大宁波理工学院 一种碳化钛/氮化碳复合光催化剂的制备方法、产品及应用
CN115337954A (zh) * 2022-10-17 2022-11-15 山东环投环境工程有限公司 一种基于氮化碳的复合光催化剂及其制备方法与应用
CN115501893A (zh) * 2022-09-29 2022-12-23 塔里木大学 新型g-C3N5-BiOCl异质结光催化剂的制备方法
CN116713016A (zh) * 2023-05-12 2023-09-08 华南师范大学 表面共修饰石墨相富氮氮化碳的制备方法及其在光催化制氢中的应用
CN117599776A (zh) * 2023-12-20 2024-02-27 昆明理工大学 一种NCDs/WOx类芬顿光催化剂及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105964286A (zh) * 2016-05-18 2016-09-28 江苏理工学院 一种氮掺杂石墨烯量子点与石墨相氮化碳复合光催化剂及其制备方法
CN107626336A (zh) * 2017-09-22 2018-01-26 陕西科技大学 一种碳点/类石墨相氮化碳复合光催化剂的制备方法及应用
CN111054422A (zh) * 2020-01-09 2020-04-24 湖南大学 一种复合光催化剂及其制备方法和应用
CN111203235A (zh) * 2020-02-28 2020-05-29 南京理工大学 Au/NCDs/Bi2S3复合光催化剂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105964286A (zh) * 2016-05-18 2016-09-28 江苏理工学院 一种氮掺杂石墨烯量子点与石墨相氮化碳复合光催化剂及其制备方法
CN107626336A (zh) * 2017-09-22 2018-01-26 陕西科技大学 一种碳点/类石墨相氮化碳复合光催化剂的制备方法及应用
CN111054422A (zh) * 2020-01-09 2020-04-24 湖南大学 一种复合光催化剂及其制备方法和应用
CN111203235A (zh) * 2020-02-28 2020-05-29 南京理工大学 Au/NCDs/Bi2S3复合光催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAIPING LIU, ET AL: "N doped carbon quantum dots modified defect-rich g-C3N4 for enhanced photocatalytic combined pollutions degradation and hydrogen evolution", 《COLLOIDS AND SURFACES A》 *
HAIYAN WANG,ET AL: "A Mesoporous Rod-like g‑C3N5 Synthesized by Salt-Guided Strategy:As a Superior Photocatalyst for Degradation of Organic Pollutant", 《ACS SUSTAINABLE CHEM. ENG.》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113751049A (zh) * 2021-10-15 2021-12-07 浙大宁波理工学院 一种碳化钛/氮化碳复合光催化剂的制备方法、产品及应用
CN115501893A (zh) * 2022-09-29 2022-12-23 塔里木大学 新型g-C3N5-BiOCl异质结光催化剂的制备方法
CN115337954A (zh) * 2022-10-17 2022-11-15 山东环投环境工程有限公司 一种基于氮化碳的复合光催化剂及其制备方法与应用
CN115337954B (zh) * 2022-10-17 2023-01-03 山东环投环境工程有限公司 一种基于氮化碳的复合光催化剂及其制备方法与应用
CN116713016A (zh) * 2023-05-12 2023-09-08 华南师范大学 表面共修饰石墨相富氮氮化碳的制备方法及其在光催化制氢中的应用
CN117599776A (zh) * 2023-12-20 2024-02-27 昆明理工大学 一种NCDs/WOx类芬顿光催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN112495421B (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
CN112495421B (zh) 一种氮掺杂碳量子点修饰富氮石墨型氮化碳光催化剂的制备方法
CN107837817B (zh) 一种碳点/氮化碳/二氧化钛复合材料及其制备方法和应用
CN113318765B (zh) 一种超薄高结晶氮化碳光催化剂的制备方法及应用
CN108067281B (zh) 多孔g-C3N4光催化剂及其制备方法和应用
CN112495401B (zh) 一种Mo掺杂MoO3@ZnIn2S4 Z体系光催化剂及其制备方法与应用
CN115069262A (zh) 一种氧空位修饰的MoO3-x/Fe-W18O49光催化剂及其制备和固氮中的应用
CN111974432A (zh) 一种氧掺杂石墨相氮化碳-硫化镉复合材料的制备方法
CN112791730B (zh) 一种z型纳米钒酸铜基复合光催化剂及其制备方法和应用
CN110961150A (zh) 一种卟啉/氮化碳层层复合结构光催化纳米复合材料的制备方法
CN115999614B (zh) 一种紫外-可见-近红外光响应的二氧化碳还原光催化剂
CN107983386B (zh) 一种超薄BiOCl/氮掺杂石墨烯量子点复合光催化剂及制备方法
CN111036272B (zh) 一种C3N4/LaVO4复合光催化剂及其制备方法
CN114210328B (zh) 一种Rh单原子修饰的PCN光催化剂及其制备方法和应用
CN114849752A (zh) 六方氮化硼/花环状石墨型氮化碳异质结复合光催化剂及其制备方法和应用
CN112547125B (zh) 一种可用于光解水的CdS/NiPc光催化剂及其制备方法
CN114308132A (zh) 一种质子化的CdS-COF-366-M复合光催化剂及其制备方法
CN114345383B (zh) 一种氧化铟/磷化铟空心六棱柱p-n结异质结构光催化剂及其制备和应用
CN116173987A (zh) CdIn2S4/CeO2异质结光催化剂及其制备方法和应用
CN116689008A (zh) 一种用于木质素解聚的过渡金属掺杂缺陷型g-C3N4光催化材料及其制备方法
CN112808290B (zh) 烯醇-酮式共价有机骨架/石墨相氮化碳复合光催化剂及其制备方法和应用
CN111617778B (zh) 一种水热合成花棒状的硫铟锌光催化剂的制备方法
CN111530502B (zh) 一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法
CN113996326A (zh) 一种海胆状复合光催化剂的制备方法
CN113198510A (zh) 一种石墨相氮化碳微米管/镍钴层状双金属氧化物分级中空异质结的制备方法及应用
CN114618556B (zh) 富有硫空位的二硫化钼复合氮化碳材料的制备及其在光催化产氢方面的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant