[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN112382745A - 一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料及其制备方法 - Google Patents

一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料及其制备方法 Download PDF

Info

Publication number
CN112382745A
CN112382745A CN202011260347.1A CN202011260347A CN112382745A CN 112382745 A CN112382745 A CN 112382745A CN 202011260347 A CN202011260347 A CN 202011260347A CN 112382745 A CN112382745 A CN 112382745A
Authority
CN
China
Prior art keywords
graphene oxide
pmo
anode material
polyoxometallate
polydopamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011260347.1A
Other languages
English (en)
Other versions
CN112382745B (zh
Inventor
黄鹏
胡海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Yifan Battery Co ltd
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN202011260347.1A priority Critical patent/CN112382745B/zh
Publication of CN112382745A publication Critical patent/CN112382745A/zh
Application granted granted Critical
Publication of CN112382745B publication Critical patent/CN112382745B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料,该材料为PMo10V2@CN‑RGO。本发明还公开了其制备方法,具体的制备步骤如下:A.将多巴胺粉末和氧化石墨烯溶液加入到PMo10V2水溶液中,并将混合物进一步搅拌1h;B.将所得混合物转移到衬有特氟龙的高压釜中,并在160℃热处理16小时。冷却至室温后,获得黑色粉末状的PMo10V2@CN‑RGO。本发明通过加入多巴胺聚合,使多金属氧酸盐簇可以均匀地固定在碳载体氧化石墨烯板上,提高了阳极材料的电导率和可加工性,具有极高的机械强度和化学稳定性。本发明的制备方法步骤少,反应条件温和,成本低,产率高。

Description

一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳 极材料及其制备方法
技术领域
本发明涉及钠金属电池技术领域,具体是一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料及其制备方法。
背景技术
由于可靠且经济地存储电的需求已被确定为广泛领域中的关键因素,电化学储能领域的研究越来越受到社会的重视。钠离子电池是一种很有前途的候选产品,这是由于地壳中钠的含量相对较高,因此其成本较低。然而,当前的阳极材料具有低的活性和较窄的层间间距,这严重限制了SIB的进一步应用。因此,设计和制造层间间距增大,活性位点丰富,电子/离子传递能力快,结构稳定性好的高级阳极材料具有重要意义。
在现有的高级阳极材料中,基于多金属氧酸盐的复合材料在储能领域受到了广泛关注。多金属氧酸盐是一类众所周知的离散的早期过渡金属氧化物纳米团簇,具有无与伦比的通用物理性质化学性质,包括引人入胜的分子和电子结构,化学可调性以及独特的电化学氧化还原行为。由于多金属氧酸盐分子具有复杂的多电子传输特性,因此已被视为电子储存器或海绵,并且是钠离子电池中电极材料的理想选择。但是,多金属氧酸盐的电导率低,电解质的部分降解以及可加工性差,这阻碍了它们作为电极材料的应用。多金属氧酸盐与合适的有机碳基材材料的组合是克服这些缺点的有效策略。多金属氧酸盐/有机碳基材复合材料能实现无机和有机部分的增强的稳定性和协同功能,不仅提供更大的表面积,而且还能大大提高复合材料的导电性,特别是用于氧化石墨烯,具有独特的性能,例如高机械强度和化学稳定性,对电极支架有利。但是,带负电荷的多金属氧酸盐簇很难固定在带负电荷的碳载体氧化石墨烯板上。此外,负载的多金属氧酸盐很容易堆叠在氧化石墨烯上或从氧化石墨烯上剥离,这不可避免地减少了与电解质接触的氧化还原活性位。
发明内容
为解决上述问题,本发明的目的是提供一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料,使多金属氧酸盐簇可以均匀地固定在碳载体氧化石墨烯板上,增加其与电解质接触的氧化还原活性位。本发明的另一个目的是提供一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料的制备方法,该方法步骤少,反应条件温和,成本低,产率高。
为实现上述目的,本发明采用的技术方案是:一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料,该材料为PMo10V2@CN-RGO。
一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料的制备方法,所述阳极材料由PMo10V2和多巴胺聚合成均匀的微球形态的PMo10V2@CN负载还原氧化石墨烯中,制成PMo10V2@CN-RGO;其具体的制备步骤如下:
A.将多巴胺粉末和氧化石墨烯溶液加入到PMo10V2水溶液中,并将混合物进一步搅拌 1h;
B.将所得混合物转移到衬有特氟龙的高压釜中,并在160℃热处理16小时。冷却至室温后,获得黑色粉末状的PMo10V2@CN-RGO。
优选地,所述步骤A中的多巴胺粉末的质量为20mg;所述氧化石墨烯溶液的质量为4.4mg,其浓度为2mg/mL;所述PMo10V2水溶液的浓度为2mM,体积为10mL。
本发明的一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料,通过加入多巴胺聚合,使多金属氧酸盐簇可以均匀地固定在碳载体氧化石墨烯板上,增加其与电解质接触的氧化还原活性位,提高了阳极材料的电导率和可加工性,具有极高的机械强度和化学稳定性。
本发明的一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料的制备方法,该方法步骤少,反应条件温和,成本低,产率高。
附图说明
图1是实施例1制备PMo10V2@CN-RGO的流程图。
图2是实施例1制得的PMo10V2@CN-RGO、PMo10V2@CN、PMo10V2的X-射线粉末衍射图。
图3是实施例1制得的PMo10V2@CN-RGO的扫描电镜图。
图4是实施例1制得的PMo10V2@CN-RGO的小电流50mA g-1图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细说明。
实施例1
按如下步骤制备PMo10V2@CN-RGO:
A.将多巴胺粉末和氧化石墨烯溶液加入到PMo10V2水溶液中,并将混合物进一步搅拌 1h;
B.将所得混合物转移到衬有特氟龙的高压釜中,并在160℃热处理16小时。冷却至室温后,获得黑色粉末状的PMo10V2@CN-RGO。(图1)
如图2所示,PMo10V2的X射线衍射(XRD)图谱中,Keggin型多金属氧酸盐的特征峰,在PMo10V2@CN和PMo10V2@CN-RGO中,出现“面包”形的衍射峰,并且PMo10V2的特征衍射峰不可见,表明粘附性聚多巴胺的非晶形态和PMo10V2分子的均匀分散。
如图3所示,用扫描电子显微镜(SEM)研究了PMo10V2@CN-RGO复合材料的形貌和结构。放大的SEM图像显示,具有均匀微球(PMo10V2@CN)包覆在还原氧化石墨烯中。
将PMo10V2@CN-RGO与乙炔黑、PVDF以7:2:1的比例混合,使用N-甲基吡咯烷酮制备成电极材料浆液均匀涂抹在铜箔上,在100摄氏度下真空干燥12小时。使用新威纽扣电池进行电化学性能测试。该材料在测试的过程中表现出了良好电化学性能,具有较高的可逆容量和优良的循环稳定性。如图4所示,化合物在作为钠离子电池阳极材料时表现出了良好的电化学性能,在50mA/g的电流密度下,在100次循环后放电容量稳定在约258 mAh/g。这表明PMo10V2@CN-RGO在钠离子电池方面具有良好的应用潜力。

Claims (3)

1.一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料,其特征在于,该材料为PMo10V2@CN-RGO。
2.一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料的制备方法,其特征在于,所述阳极材料由PMo10V2和多巴胺聚合成均匀的微球形态的PMo10V2@CN负载还原氧化石墨烯中,制成PMo10V2@CN-RGO;其具体的制备步骤如下:
A.将多巴胺粉末和氧化石墨烯溶液加入到PMo10V2水溶液中,并将混合物进一步搅拌1h;
B.将所得混合物转移到衬有特氟龙的高压釜中,并在160℃热处理16小时。冷却至室温后,获得黑色粉末状的PMo10V2@CN-RGO。
3.根据权利要求2的一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料的制备方法,其特征在于,所述步骤A中的多巴胺粉末的质量为20mg;所述氧化石墨烯溶液的质量为4.4mg,其浓度为2mg/mL;所述PMo10V2水溶液的浓度为2mM,体积为10mL。
CN202011260347.1A 2020-11-12 2020-11-12 一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺钠离子电池阳极材料及其制备方法 Active CN112382745B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011260347.1A CN112382745B (zh) 2020-11-12 2020-11-12 一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺钠离子电池阳极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011260347.1A CN112382745B (zh) 2020-11-12 2020-11-12 一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺钠离子电池阳极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112382745A true CN112382745A (zh) 2021-02-19
CN112382745B CN112382745B (zh) 2022-04-19

Family

ID=74583156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011260347.1A Active CN112382745B (zh) 2020-11-12 2020-11-12 一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺钠离子电池阳极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112382745B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824318A (zh) * 2022-05-23 2022-07-29 山东师范大学 一种同轴碳纳米管/多金属氧酸盐/导电聚合物电催化剂及制备方法
CN115555047A (zh) * 2022-11-02 2023-01-03 天津大学 一种用于甲基丙烯酸合成的丝网状纳米聚合物微球催化剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108565406A (zh) * 2018-01-09 2018-09-21 安普瑞斯(无锡)有限公司 一种锂离子电池复合材料及其复合电极的制备方法
CN109524657A (zh) * 2018-11-27 2019-03-26 中国矿业大学 一种锂离子电池用三维多孔SnS复合电极及其制备方法
CN110314671A (zh) * 2019-07-31 2019-10-11 东北大学 一种磷酸化蛋白富集材料的制备方法及其应用方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108565406A (zh) * 2018-01-09 2018-09-21 安普瑞斯(无锡)有限公司 一种锂离子电池复合材料及其复合电极的制备方法
CN109524657A (zh) * 2018-11-27 2019-03-26 中国矿业大学 一种锂离子电池用三维多孔SnS复合电极及其制备方法
CN110314671A (zh) * 2019-07-31 2019-10-11 东北大学 一种磷酸化蛋白富集材料的制备方法及其应用方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824318A (zh) * 2022-05-23 2022-07-29 山东师范大学 一种同轴碳纳米管/多金属氧酸盐/导电聚合物电催化剂及制备方法
CN114824318B (zh) * 2022-05-23 2023-12-29 山东师范大学 一种同轴碳纳米管/多金属氧酸盐/导电聚合物电催化剂及制备方法
CN115555047A (zh) * 2022-11-02 2023-01-03 天津大学 一种用于甲基丙烯酸合成的丝网状纳米聚合物微球催化剂及其制备方法
CN115555047B (zh) * 2022-11-02 2023-08-08 天津大学 一种用于甲基丙烯酸合成的丝网状纳米聚合物微球催化剂及其制备方法

Also Published As

Publication number Publication date
CN112382745B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
Song et al. 3D catalytic MOF-based nanocomposite as separator coatings for high-performance Li-S battery
Ren et al. Synergistic adsorption-electrocatalysis of 2D/2D heterostructure toward high performance Li-S batteries
Tang et al. An aqueous rechargeable lithium battery of excellent rate capability based on a nanocomposite of MoO 3 coated with PPy and LiMn 2 O 4
Shen et al. Synthesis of Nb2C MXene-based 2D layered structure electrode material for high-performance battery-type supercapacitors
Tang et al. Aqueous supercapacitors of high energy density based on MoO 3 nanoplates as anode material
Simotwo et al. Polyaniline-based electrodes: recent application in supercapacitors and next generation rechargeable batteries
CN108649190A (zh) 具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料及其制备方法和应用
Li et al. Encapsulating nanoscale silicon inside carbon fiber as flexible self-supporting anode material for lithium-ion battery
CN104681784A (zh) 一种钒酸锂负极材料、负极、电池以及负极材料制备方法
Xu et al. Achieving Ultralong‐Cycle Zinc‐Ion Battery via Synergistically Electronic and Structural Regulation of a MnO2 Nanocrystal–Carbon Hybrid Framework
CN112382745B (zh) 一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺钠离子电池阳极材料及其制备方法
CN110085849B (zh) 一种具有网状结构的碳包覆磷酸焦磷酸锰钠@swcnt复合材料及其制备及应用
CN112421017B (zh) 一种无粘结剂水系锌离子电池正极复合材料的制备方法
Moon et al. Polypyrrole coated g-C3N4/rGO/S composite as sulfur host for high stability lithium-sulfur batteries
CN110707299B (zh) 一种钒氧化物/碳/粘土复合正极材料及其制备方法和在水系电池中应用
Pang et al. Graphene-oxide-modified MnO2 composite electrode for high-performance flexible quasi-solid-state zinc-ion batteries
Zhang et al. Phosphate synergism activation strategy for amorphous vanadium oxide cathode materials of high-performance aqueous zinc ion batteries
Gang et al. Highly (002)-oriented ZnO in ZnO-NC microflakes coating layer for stable zinc anode in zinc-air batteries
CN108649191B (zh) 一种用于钠离子电池的锑/氮掺杂石墨烯复合物的制备方法及其所得材料和应用
Wang et al. Preparation and the electrochemical performance of MnO2/PANI@ CNT composite for supercapacitors
Yang et al. Antimony/Polypyrrole/CNTs composites with three-dimensional structure as highly stable anodes for potassium ion battery
Luo et al. Enhanced electrochemical performance of CNTs/α-Fe2O3/PPy composite as anode material for lithium ion batteries
CN116344763B (zh) 一种金属/碳包覆氧化锂复合正极材料及其制备方法以及包含该正极材料的正极片和电池
CN111916767A (zh) 金属碳化物催化剂及其制备方法与在锂氧气电池中的应用
CN116130256B (zh) 氧化钨纳米线/碳化钛纳米片复合材料的制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240108

Address after: 461000, 3rd Floor, Office Building, No. 66 Xuzhou Road, Urban Rural Integration Demonstration Zone, Xuchang City, Henan Province

Patentee after: Henan Yifan Battery Co.,Ltd.

Address before: 221116 No. 101, Shanghai Road, Copper Mt. New District, Jiangsu, Xuzhou

Patentee before: Jiangsu Normal University