CN112382745A - 一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料及其制备方法 - Google Patents
一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料及其制备方法 Download PDFInfo
- Publication number
- CN112382745A CN112382745A CN202011260347.1A CN202011260347A CN112382745A CN 112382745 A CN112382745 A CN 112382745A CN 202011260347 A CN202011260347 A CN 202011260347A CN 112382745 A CN112382745 A CN 112382745A
- Authority
- CN
- China
- Prior art keywords
- graphene oxide
- pmo
- anode material
- polyoxometallate
- polydopamine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 31
- 239000010405 anode material Substances 0.000 title claims abstract description 24
- 229920001690 polydopamine Polymers 0.000 title claims abstract description 14
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229960003638 dopamine Drugs 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 239000000243 solution Substances 0.000 claims abstract description 8
- 239000007864 aqueous solution Substances 0.000 claims abstract description 6
- 239000000843 powder Substances 0.000 claims abstract description 6
- 239000004809 Teflon Substances 0.000 claims abstract description 4
- 229920006362 Teflon® Polymers 0.000 claims abstract description 4
- 238000001816 cooling Methods 0.000 claims abstract description 4
- 239000013460 polyoxometalate Substances 0.000 claims description 5
- 239000004005 microsphere Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 150000001875 compounds Chemical class 0.000 abstract description 2
- 150000003839 salts Chemical class 0.000 abstract 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 229910001415 sodium ion Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
- H01M4/602—Polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料,该材料为PMo10V2@CN‑RGO。本发明还公开了其制备方法,具体的制备步骤如下:A.将多巴胺粉末和氧化石墨烯溶液加入到PMo10V2水溶液中,并将混合物进一步搅拌1h;B.将所得混合物转移到衬有特氟龙的高压釜中,并在160℃热处理16小时。冷却至室温后,获得黑色粉末状的PMo10V2@CN‑RGO。本发明通过加入多巴胺聚合,使多金属氧酸盐簇可以均匀地固定在碳载体氧化石墨烯板上,提高了阳极材料的电导率和可加工性,具有极高的机械强度和化学稳定性。本发明的制备方法步骤少,反应条件温和,成本低,产率高。
Description
技术领域
本发明涉及钠金属电池技术领域,具体是一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料及其制备方法。
背景技术
由于可靠且经济地存储电的需求已被确定为广泛领域中的关键因素,电化学储能领域的研究越来越受到社会的重视。钠离子电池是一种很有前途的候选产品,这是由于地壳中钠的含量相对较高,因此其成本较低。然而,当前的阳极材料具有低的活性和较窄的层间间距,这严重限制了SIB的进一步应用。因此,设计和制造层间间距增大,活性位点丰富,电子/离子传递能力快,结构稳定性好的高级阳极材料具有重要意义。
在现有的高级阳极材料中,基于多金属氧酸盐的复合材料在储能领域受到了广泛关注。多金属氧酸盐是一类众所周知的离散的早期过渡金属氧化物纳米团簇,具有无与伦比的通用物理性质化学性质,包括引人入胜的分子和电子结构,化学可调性以及独特的电化学氧化还原行为。由于多金属氧酸盐分子具有复杂的多电子传输特性,因此已被视为电子储存器或海绵,并且是钠离子电池中电极材料的理想选择。但是,多金属氧酸盐的电导率低,电解质的部分降解以及可加工性差,这阻碍了它们作为电极材料的应用。多金属氧酸盐与合适的有机碳基材材料的组合是克服这些缺点的有效策略。多金属氧酸盐/有机碳基材复合材料能实现无机和有机部分的增强的稳定性和协同功能,不仅提供更大的表面积,而且还能大大提高复合材料的导电性,特别是用于氧化石墨烯,具有独特的性能,例如高机械强度和化学稳定性,对电极支架有利。但是,带负电荷的多金属氧酸盐簇很难固定在带负电荷的碳载体氧化石墨烯板上。此外,负载的多金属氧酸盐很容易堆叠在氧化石墨烯上或从氧化石墨烯上剥离,这不可避免地减少了与电解质接触的氧化还原活性位。
发明内容
为解决上述问题,本发明的目的是提供一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料,使多金属氧酸盐簇可以均匀地固定在碳载体氧化石墨烯板上,增加其与电解质接触的氧化还原活性位。本发明的另一个目的是提供一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料的制备方法,该方法步骤少,反应条件温和,成本低,产率高。
为实现上述目的,本发明采用的技术方案是:一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料,该材料为PMo10V2@CN-RGO。
一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料的制备方法,所述阳极材料由PMo10V2和多巴胺聚合成均匀的微球形态的PMo10V2@CN负载还原氧化石墨烯中,制成PMo10V2@CN-RGO;其具体的制备步骤如下:
A.将多巴胺粉末和氧化石墨烯溶液加入到PMo10V2水溶液中,并将混合物进一步搅拌 1h;
B.将所得混合物转移到衬有特氟龙的高压釜中,并在160℃热处理16小时。冷却至室温后,获得黑色粉末状的PMo10V2@CN-RGO。
优选地,所述步骤A中的多巴胺粉末的质量为20mg;所述氧化石墨烯溶液的质量为4.4mg,其浓度为2mg/mL;所述PMo10V2水溶液的浓度为2mM,体积为10mL。
本发明的一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料,通过加入多巴胺聚合,使多金属氧酸盐簇可以均匀地固定在碳载体氧化石墨烯板上,增加其与电解质接触的氧化还原活性位,提高了阳极材料的电导率和可加工性,具有极高的机械强度和化学稳定性。
本发明的一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料的制备方法,该方法步骤少,反应条件温和,成本低,产率高。
附图说明
图1是实施例1制备PMo10V2@CN-RGO的流程图。
图2是实施例1制得的PMo10V2@CN-RGO、PMo10V2@CN、PMo10V2的X-射线粉末衍射图。
图3是实施例1制得的PMo10V2@CN-RGO的扫描电镜图。
图4是实施例1制得的PMo10V2@CN-RGO的小电流50mA g-1图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细说明。
实施例1
按如下步骤制备PMo10V2@CN-RGO:
A.将多巴胺粉末和氧化石墨烯溶液加入到PMo10V2水溶液中,并将混合物进一步搅拌 1h;
B.将所得混合物转移到衬有特氟龙的高压釜中,并在160℃热处理16小时。冷却至室温后,获得黑色粉末状的PMo10V2@CN-RGO。(图1)
如图2所示,PMo10V2的X射线衍射(XRD)图谱中,Keggin型多金属氧酸盐的特征峰,在PMo10V2@CN和PMo10V2@CN-RGO中,出现“面包”形的衍射峰,并且PMo10V2的特征衍射峰不可见,表明粘附性聚多巴胺的非晶形态和PMo10V2分子的均匀分散。
如图3所示,用扫描电子显微镜(SEM)研究了PMo10V2@CN-RGO复合材料的形貌和结构。放大的SEM图像显示,具有均匀微球(PMo10V2@CN)包覆在还原氧化石墨烯中。
将PMo10V2@CN-RGO与乙炔黑、PVDF以7:2:1的比例混合,使用N-甲基吡咯烷酮制备成电极材料浆液均匀涂抹在铜箔上,在100摄氏度下真空干燥12小时。使用新威纽扣电池进行电化学性能测试。该材料在测试的过程中表现出了良好电化学性能,具有较高的可逆容量和优良的循环稳定性。如图4所示,化合物在作为钠离子电池阳极材料时表现出了良好的电化学性能,在50mA/g的电流密度下,在100次循环后放电容量稳定在约258 mAh/g。这表明PMo10V2@CN-RGO在钠离子电池方面具有良好的应用潜力。
Claims (3)
1.一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料,其特征在于,该材料为PMo10V2@CN-RGO。
2.一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料的制备方法,其特征在于,所述阳极材料由PMo10V2和多巴胺聚合成均匀的微球形态的PMo10V2@CN负载还原氧化石墨烯中,制成PMo10V2@CN-RGO;其具体的制备步骤如下:
A.将多巴胺粉末和氧化石墨烯溶液加入到PMo10V2水溶液中,并将混合物进一步搅拌1h;
B.将所得混合物转移到衬有特氟龙的高压釜中,并在160℃热处理16小时。冷却至室温后,获得黑色粉末状的PMo10V2@CN-RGO。
3.根据权利要求2的一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺电池阳极材料的制备方法,其特征在于,所述步骤A中的多巴胺粉末的质量为20mg;所述氧化石墨烯溶液的质量为4.4mg,其浓度为2mg/mL;所述PMo10V2水溶液的浓度为2mM,体积为10mL。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011260347.1A CN112382745B (zh) | 2020-11-12 | 2020-11-12 | 一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺钠离子电池阳极材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011260347.1A CN112382745B (zh) | 2020-11-12 | 2020-11-12 | 一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺钠离子电池阳极材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112382745A true CN112382745A (zh) | 2021-02-19 |
CN112382745B CN112382745B (zh) | 2022-04-19 |
Family
ID=74583156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011260347.1A Active CN112382745B (zh) | 2020-11-12 | 2020-11-12 | 一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺钠离子电池阳极材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112382745B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114824318A (zh) * | 2022-05-23 | 2022-07-29 | 山东师范大学 | 一种同轴碳纳米管/多金属氧酸盐/导电聚合物电催化剂及制备方法 |
CN115555047A (zh) * | 2022-11-02 | 2023-01-03 | 天津大学 | 一种用于甲基丙烯酸合成的丝网状纳米聚合物微球催化剂及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108565406A (zh) * | 2018-01-09 | 2018-09-21 | 安普瑞斯(无锡)有限公司 | 一种锂离子电池复合材料及其复合电极的制备方法 |
CN109524657A (zh) * | 2018-11-27 | 2019-03-26 | 中国矿业大学 | 一种锂离子电池用三维多孔SnS复合电极及其制备方法 |
CN110314671A (zh) * | 2019-07-31 | 2019-10-11 | 东北大学 | 一种磷酸化蛋白富集材料的制备方法及其应用方法 |
-
2020
- 2020-11-12 CN CN202011260347.1A patent/CN112382745B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108565406A (zh) * | 2018-01-09 | 2018-09-21 | 安普瑞斯(无锡)有限公司 | 一种锂离子电池复合材料及其复合电极的制备方法 |
CN109524657A (zh) * | 2018-11-27 | 2019-03-26 | 中国矿业大学 | 一种锂离子电池用三维多孔SnS复合电极及其制备方法 |
CN110314671A (zh) * | 2019-07-31 | 2019-10-11 | 东北大学 | 一种磷酸化蛋白富集材料的制备方法及其应用方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114824318A (zh) * | 2022-05-23 | 2022-07-29 | 山东师范大学 | 一种同轴碳纳米管/多金属氧酸盐/导电聚合物电催化剂及制备方法 |
CN114824318B (zh) * | 2022-05-23 | 2023-12-29 | 山东师范大学 | 一种同轴碳纳米管/多金属氧酸盐/导电聚合物电催化剂及制备方法 |
CN115555047A (zh) * | 2022-11-02 | 2023-01-03 | 天津大学 | 一种用于甲基丙烯酸合成的丝网状纳米聚合物微球催化剂及其制备方法 |
CN115555047B (zh) * | 2022-11-02 | 2023-08-08 | 天津大学 | 一种用于甲基丙烯酸合成的丝网状纳米聚合物微球催化剂及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112382745B (zh) | 2022-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Song et al. | 3D catalytic MOF-based nanocomposite as separator coatings for high-performance Li-S battery | |
Ren et al. | Synergistic adsorption-electrocatalysis of 2D/2D heterostructure toward high performance Li-S batteries | |
Tang et al. | An aqueous rechargeable lithium battery of excellent rate capability based on a nanocomposite of MoO 3 coated with PPy and LiMn 2 O 4 | |
Shen et al. | Synthesis of Nb2C MXene-based 2D layered structure electrode material for high-performance battery-type supercapacitors | |
Tang et al. | Aqueous supercapacitors of high energy density based on MoO 3 nanoplates as anode material | |
Simotwo et al. | Polyaniline-based electrodes: recent application in supercapacitors and next generation rechargeable batteries | |
CN108649190A (zh) | 具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料及其制备方法和应用 | |
Li et al. | Encapsulating nanoscale silicon inside carbon fiber as flexible self-supporting anode material for lithium-ion battery | |
CN104681784A (zh) | 一种钒酸锂负极材料、负极、电池以及负极材料制备方法 | |
Xu et al. | Achieving Ultralong‐Cycle Zinc‐Ion Battery via Synergistically Electronic and Structural Regulation of a MnO2 Nanocrystal–Carbon Hybrid Framework | |
CN112382745B (zh) | 一种还原氧化石墨烯包覆的多金属氧酸盐基聚多巴胺钠离子电池阳极材料及其制备方法 | |
CN110085849B (zh) | 一种具有网状结构的碳包覆磷酸焦磷酸锰钠@swcnt复合材料及其制备及应用 | |
CN112421017B (zh) | 一种无粘结剂水系锌离子电池正极复合材料的制备方法 | |
Moon et al. | Polypyrrole coated g-C3N4/rGO/S composite as sulfur host for high stability lithium-sulfur batteries | |
CN110707299B (zh) | 一种钒氧化物/碳/粘土复合正极材料及其制备方法和在水系电池中应用 | |
Pang et al. | Graphene-oxide-modified MnO2 composite electrode for high-performance flexible quasi-solid-state zinc-ion batteries | |
Zhang et al. | Phosphate synergism activation strategy for amorphous vanadium oxide cathode materials of high-performance aqueous zinc ion batteries | |
Gang et al. | Highly (002)-oriented ZnO in ZnO-NC microflakes coating layer for stable zinc anode in zinc-air batteries | |
CN108649191B (zh) | 一种用于钠离子电池的锑/氮掺杂石墨烯复合物的制备方法及其所得材料和应用 | |
Wang et al. | Preparation and the electrochemical performance of MnO2/PANI@ CNT composite for supercapacitors | |
Yang et al. | Antimony/Polypyrrole/CNTs composites with three-dimensional structure as highly stable anodes for potassium ion battery | |
Luo et al. | Enhanced electrochemical performance of CNTs/α-Fe2O3/PPy composite as anode material for lithium ion batteries | |
CN116344763B (zh) | 一种金属/碳包覆氧化锂复合正极材料及其制备方法以及包含该正极材料的正极片和电池 | |
CN111916767A (zh) | 金属碳化物催化剂及其制备方法与在锂氧气电池中的应用 | |
CN116130256B (zh) | 氧化钨纳米线/碳化钛纳米片复合材料的制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240108 Address after: 461000, 3rd Floor, Office Building, No. 66 Xuzhou Road, Urban Rural Integration Demonstration Zone, Xuchang City, Henan Province Patentee after: Henan Yifan Battery Co.,Ltd. Address before: 221116 No. 101, Shanghai Road, Copper Mt. New District, Jiangsu, Xuzhou Patentee before: Jiangsu Normal University |