CN112264075B - High-efficiency demercuration photocatalyst suitable for medium-low temperature condition and preparation method thereof - Google Patents
High-efficiency demercuration photocatalyst suitable for medium-low temperature condition and preparation method thereof Download PDFInfo
- Publication number
- CN112264075B CN112264075B CN202011239219.9A CN202011239219A CN112264075B CN 112264075 B CN112264075 B CN 112264075B CN 202011239219 A CN202011239219 A CN 202011239219A CN 112264075 B CN112264075 B CN 112264075B
- Authority
- CN
- China
- Prior art keywords
- tio
- photocatalyst
- ceo
- demercuration
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract description 83
- 239000011258 core-shell material Substances 0.000 claims abstract description 20
- 238000010438 heat treatment Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 11
- 239000004202 carbamide Substances 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 10
- 239000012298 atmosphere Substances 0.000 claims description 8
- 238000001354 calcination Methods 0.000 claims description 8
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 4
- 238000011065 in-situ storage Methods 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 238000000137 annealing Methods 0.000 claims 1
- 238000004140 cleaning Methods 0.000 claims 1
- 238000007598 dipping method Methods 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 239000003054 catalyst Substances 0.000 abstract description 21
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 abstract description 18
- 229910052753 mercury Inorganic materials 0.000 abstract description 14
- 230000001699 photocatalysis Effects 0.000 abstract description 12
- 230000000694 effects Effects 0.000 abstract description 3
- 230000003197 catalytic effect Effects 0.000 abstract description 2
- 239000013078 crystal Substances 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract 1
- 239000008367 deionised water Substances 0.000 description 9
- 229910021641 deionized water Inorganic materials 0.000 description 9
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 8
- 239000003546 flue gas Substances 0.000 description 8
- 229910002492 Ce(NO3)3·6H2O Inorganic materials 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000012717 electrostatic precipitator Substances 0.000 description 1
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8665—Removing heavy metals or compounds thereof, e.g. mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/396—Distribution of the active metal ingredient
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/60—Heavy metals or heavy metal compounds
- B01D2257/602—Mercury or mercury compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种适用于中低温条件的高效脱汞(Hg0)光催化剂及其制备方法。首先通过高暴露(001)晶面的TiO2(001)制备核壳结构的g‑C3N4@TiO2,再将CeO2高度分散地负载在g‑C3N4@TiO2上,显著提高Ce原子的利用效率,从而制备出具有高光催化除汞活性的CeO2‑g‑C3N4@TiO2。在50~250℃下,本催化剂表现出优异的光催化除Hg0性能,且催化性能长期保持稳定。本发明中的光催化剂制备方法简单且重复性强,原材料价格低廉且环保,具有很强的实用价值和应用潜力。
The invention discloses a high-efficiency mercury removal (Hg 0 ) photocatalyst suitable for medium and low temperature conditions and a preparation method thereof. The core-shell structure g‑C 3 N 4 @TiO 2 was first prepared by TiO 2 (001) with high exposure of the (001) crystal plane, and then CeO 2 was highly dispersedly supported on g‑C 3 N 4 @TiO 2 , The utilization efficiency of Ce atoms is significantly improved, thereby preparing CeO 2 ‑g‑C 3 N 4 @TiO 2 with high photocatalytic mercury removal activity. At 50-250°C, the catalyst exhibits excellent photocatalytic Hg 0 removal performance, and the catalytic performance remains stable for a long time. The preparation method of the photocatalyst in the present invention is simple and repeatable, the raw material is cheap and environmentally friendly, and has strong practical value and application potential.
Description
技术领域technical field
本发明涉及催化剂技术领域,特别是涉及脱除烟气中气态Hg0的催化剂。The invention relates to the technical field of catalysts, in particular to a catalyst for removing gaseous Hg 0 in flue gas.
背景技术Background technique
我国是大气汞(Hgg)污染最严重的国家,火力发电厂因其排放量巨大,成为Hgg排放的主要污染源之一,其释放的汞主要以三种形式存在,即元素汞(也称气态单质汞,Hg0)、氧化汞(Hg2+)和颗粒结合汞(Hgp)。Hg2+容易被胺溶液吸收,Hgp容易被布袋、静电除尘器或织物过滤器捕获,然而,Hg0由于其高挥发性和不溶性,很难被去除。目前,从气流中去除Hg0的技术有多种,如湿法深度氧化、催化氧化、光化学氧化、吸附法。使用催化剂催化氧化废气中的Hg0,使废气中的Hg0去除或转化为Hg2+,再利用燃煤电厂已经相对成熟的湿法脱硫技术与设备将汞脱除,是目前众多的燃煤烟气脱汞技术中一种既经济有效又很有应用前景的方法。因此,有必要开发高效的中低温的环境友好型催化剂。China is the country with the most serious atmospheric mercury (Hg g ) pollution. Thermal power plants have become one of the main sources of Hg g emissions due to their huge emissions. Gaseous elemental mercury, Hg 0 ), oxidized mercury (Hg 2+ ), and particulate bound mercury (Hg p ). Hg 2+ is easily absorbed by amine solutions, and Hg p is easily captured by cloth bags, electrostatic precipitators or fabric filters, however, Hg 0 is difficult to remove due to its high volatility and insolubility. At present, there are various techniques for removing Hg 0 from gas streams, such as wet deep oxidation, catalytic oxidation, photochemical oxidation, and adsorption. Using catalyst to catalyze the oxidation of Hg 0 in the exhaust gas to remove or convert the Hg 0 in the exhaust gas into Hg 2+ , and then use the relatively mature wet desulfurization technology and equipment for coal-fired power plants to remove the mercury, which is the most widely used coal-fired technology. It is a cost-effective and promising method in flue gas mercury removal technology. Therefore, it is necessary to develop efficient medium-low temperature environment-friendly catalysts.
发明内容SUMMARY OF THE INVENTION
为了克服上述现有技术的不足,本发明提供一种适用于中低温条件的高效脱汞光催化剂及其制备方法。所述脱汞光催化剂应用于光催化除Hg0中,可以在中低温条件下有效脱除气体中的气态单质汞Hg0,所述气体包括大气、烟气等。In order to overcome the above-mentioned deficiencies of the prior art, the present invention provides a high-efficiency mercury removal photocatalyst suitable for medium and low temperature conditions and a preparation method thereof. The mercury removal photocatalyst is used in photocatalytic removal of Hg 0 , and can effectively remove gaseous elemental mercury Hg 0 in a gas including atmosphere, flue gas and the like under medium and low temperature conditions.
本发明解决其技术问题所采用的技术方案之一是:One of the technical solutions adopted by the present invention to solve its technical problems is:
一种适用于中低温条件的高效脱汞(Hg0)光催化剂,其为负载了CeO2的g-C3N4@TiO2,且所述g-C3N4@TiO2具有核壳结构,以g-C3N4(石墨相氮化碳)为壳,以TiO2(001)为核。A high-efficiency mercury removal (Hg 0 ) photocatalyst suitable for medium and low temperature conditions, which is gC 3 N 4 @TiO 2 loaded with CeO 2 , and the gC 3 N 4 @TiO 2 has a core-shell structure, with gC 3 N 4 @TiO 2 3 N 4 (graphitic carbon nitride) is the shell and TiO 2 (001) is the core.
本发明的一种适用于中低温条件的高效除气态单质汞(Hg0)光催化剂,通过高暴露(001)晶面的TiO2(001)制备具有核壳结构的g-C3N4@TiO2,再将CeO2高度分散地负载在g-C3N4@TiO2上,显著提高Ce原子的利用效率,从而制备出具有高光催化除汞活性的催化剂CeO2-g-C3N4@TiO2。A high-efficiency degassing elemental mercury (Hg 0 ) photocatalyst suitable for medium and low temperature conditions of the present invention prepares gC 3 N 4 @TiO 2 with core-shell structure through TiO 2 (001) with high exposure (001) crystal plane. , and then CeO 2 was highly dispersed on gC 3 N 4 @TiO 2 to significantly improve the utilization efficiency of Ce atoms, thus preparing a catalyst CeO 2 -gC 3 N 4 @TiO 2 with high photocatalytic mercury removal activity.
进一步地,所述脱汞光催化剂的应用温度范围为50~250℃。在50~250℃下,CeO2-g-C3N4@TiO2光催化剂具有优异的除Hg0性能。优选地,在50~100℃下除Hg0效果最佳。Further, the application temperature range of the mercury removal photocatalyst is 50-250°C. The CeO 2 -gC 3 N 4 @TiO 2 photocatalyst exhibits excellent Hg 0 removal performance at 50-250 °C. Preferably, the effect of removing Hg 0 is best at 50-100°C.
进一步地,所述脱汞光催化剂中,CeO2的相对含量(质量百分比)为1~7wt%。优选地,CeO2的相对含量为2~4wt%。Further, in the mercury removal photocatalyst, the relative content (mass percentage) of CeO 2 is 1-7 wt %. Preferably, the relative content of CeO 2 is 2-4 wt %.
本发明解决其技术问题所采用的技术方案之二是:The second of the technical solutions adopted by the present invention to solve its technical problems is:
一种适用于中低温条件的高效脱汞(Hg0)光催化剂的制备方法,以TiO2(001)为基础通过原位生长法合成具有核壳结构的g-C3N4@TiO2,再通过浸渍法将CeO2高度分散负载在g-C3N4@TiO2上,并通过高温(例如200~500℃)煅烧获得CeO2-g-C3N4@TiO2光催化剂。A preparation method of a high-efficiency mercury removal (Hg 0 ) photocatalyst suitable for medium and low temperature conditions. Based on TiO 2 (001), gC 3 N 4 @TiO 2 with a core-shell structure was synthesized by an in-situ growth method, and then passed through an in-situ growth method. CeO 2 is highly dispersed and supported on gC 3 N 4 @TiO 2 by impregnation method, and CeO 2 -gC 3 N 4 @TiO 2 photocatalyst is obtained by calcination at high temperature (eg, 200-500 °C).
进一步地,所述方法还包括采用水热法制备TiO2(001),钛酸四丁酯和HF按照体积比3~5:1的比例混合,在190~210℃下进行水热反应22~26h,冷却后,调节pH值至中性,干燥后,以1~3℃/min的升温速度升至540~560℃,煅烧1~3h,制得TiO2(001)。其中,制备参数的优选,例如包括:18~22mL的钛酸四丁酯和4~6mL的47~49%HF混合后放入高压反应釜中,在195~205℃下加热23~25h;冷却后,用去离子水调节pH至6.8~7.2,干燥后,以1.5~2.5℃/min的升温速度升至545~555℃,煅烧1.5~2.5h,制得TiO2(001)。Further, the method further includes preparing TiO 2 (001) by a hydrothermal method, mixing tetrabutyl titanate and HF in a volume ratio of 3-5:1, and performing a hydrothermal reaction at 190-210° C. for 22- 26h, after cooling, adjust the pH value to neutral, after drying, raise the temperature to 540-560°C at a heating rate of 1-3°C/min, and calcinate for 1-3h to obtain TiO 2 (001). Among them, the preferred preparation parameters include, for example: 18-22 mL of tetrabutyl titanate and 4-6 mL of 47-49% HF are mixed, put into a high-pressure reactor, heated at 195-205 ° C for 23-25 h; cooled Then, the pH was adjusted to 6.8-7.2 with deionized water, and after drying, the temperature was raised to 545-555°C at a heating rate of 1.5-2.5°C/min, and calcined for 1.5-2.5h to obtain TiO 2 (001).
进一步地,所述具有核壳结构的g-C3N4@TiO2的制备方法包括:将尿素和TiO2(001)溶于水中,在真空中充分混合,随后固液分离,干燥,将得到的固体在N2氛围下以4~6℃/min的升温速度升温至510~530℃退火1~3h,得到具有核壳结构的g-C3N4/TiO2。其中,制备参数的优选,例如包括:将不同质量比例的尿素和TiO2(001)溶于25~35mL去离子水中,并在真空系统中磁力搅拌0.5~1.5h后使之充分混合,再以4000~6000r/min的转速离心,干燥;将离心后的固体包上2~4层铝箔,在N2氛围下,以4.5~5.5℃/min的升温速度升温至515~525℃退火1.5~2.5h,得到具有核壳结构的g-C3N4/TiO2。Further, the preparation method of the gC 3 N 4 @TiO 2 with a core-shell structure includes: dissolving urea and TiO 2 (001) in water, thoroughly mixing in a vacuum, then solid-liquid separation, and drying, and the obtained The solid is heated to 510-530°C under N 2 atmosphere at a heating rate of 4-6°C/min and annealed for 1-3h to obtain gC 3 N 4 /TiO 2 with a core-shell structure. Among them, the optimization of the preparation parameters, for example, includes: dissolving urea and TiO 2 (001) in different mass ratios in 25-35 mL of deionized water, and magnetically stirring them in a vacuum system for 0.5-1.5 h to fully mix them, and then adding Centrifuge at 4000-6000 r/min and dry; wrap the centrifuged solid with 2-4 layers of aluminum foil, and under N2 atmosphere, raise the temperature to 515-525 ℃ at a heating rate of 4.5-5.5 ℃/min and anneal for 1.5-2.5 h, to obtain gC 3 N 4 /TiO 2 with a core-shell structure.
其中,尿素和TiO2(001)的质量比为5:1~30:1。优选地,尿素和TiO2(001)的质量比为18~22:1,制得的催化剂的性能较优。Wherein, the mass ratio of urea and TiO 2 (001) is 5:1 to 30:1. Preferably, the mass ratio of urea to TiO 2 (001) is 18-22:1, and the prepared catalyst has better performance.
进一步地,所述将CeO2负载在g-C3N4@TiO2上的方法包括:将具有核壳结构的g-C3N4@TiO2均匀分散在水中,将pH值调至8.8~9.2,再加入Ce(NO3)3·6H2O,常温下搅拌反应后,过滤清洗至pH值呈中性,干燥,得到负载了CeO2的g-C3N4@TiO2;Further, the method for loading CeO 2 on gC 3 N 4 @TiO 2 includes: uniformly dispersing gC 3 N 4 @TiO 2 with a core-shell structure in water, adjusting the pH to 8.8-9.2, and then Ce(NO 3 ) 3 ·6H 2 O was added, and after the reaction was stirred at room temperature, filtered and washed until the pH value was neutral, and dried to obtain gC 3 N 4 @TiO 2 loaded with CeO 2 ;
进一步地,所述通过煅烧获得CeO2-g-C3N4@TiO2光催化剂的方法包括:将负载了CeO2的g-C3N4@TiO2在空气氛围下,以3~5℃/min升温速度升至290~310℃,煅烧1~3h,获得CeO2-g-C3N4@TiO2光催化剂。Further, the method for obtaining a CeO 2 -gC 3 N 4 @TiO 2 photocatalyst by calcination includes: heating the CeO 2 -loaded gC 3 N 4 @TiO 2 at a rate of 3-5°C/min in an air atmosphere The speed is increased to 290~310℃, and calcined for 1~3h to obtain CeO 2 -gC 3 N 4 @TiO 2 photocatalyst.
其中,制备参数的优选,例如包括:将0.40~0.60g核壳g-C3N4@TiO2均匀分散在70~80mL去离子水中,加入氨水将pH调至8.9~9.1左右,再按一定比例加入Ce(NO3)3·6H2O,常温下搅拌2~3h,过滤清洗至pH约为6.8~7.2,干燥。最后将混合物在空气氛围下,以3.5~4.5℃/min升温速度升至295~305℃,煅烧1.5~2.5h。Among them, the optimization of preparation parameters includes, for example: dispersing 0.40-0.60g core-shell gC 3 N 4 @TiO 2 evenly in 70-80 mL deionized water, adding ammonia water to adjust the pH to about 8.9-9.1, and then adding in a certain proportion Ce(NO 3 ) 3 ·6H 2 O, stirred at room temperature for 2 to 3 hours, filtered and washed to a pH of about 6.8 to 7.2, and dried. Finally, the mixture is raised to 295-305°C at a heating rate of 3.5-4.5°C/min under an air atmosphere, and calcined for 1.5-2.5h.
优选的,上述步骤中干燥温度为60~80℃,干燥时间为8~15h,例如为11~13h。Preferably, in the above steps, the drying temperature is 60-80° C., and the drying time is 8-15 h, for example, 11-13 h.
本发明的一个优选实施方案中,将制备得到的催化剂应用于光催化除Hg0中,在50~250℃下,CeO2-g-C3N4@TiO2光催化剂具有优异的除Hg0性能。In a preferred embodiment of the present invention, the prepared catalyst is used in photocatalytic removal of Hg 0. At 50-250°C, the CeO 2 -gC 3 N 4 @TiO 2 photocatalyst has excellent Hg 0 removal performance.
本发明所涉及的设备、试剂、工艺、参数等,除有特别说明外,均为常规设备、试剂、工艺、参数等,不再作实施例。The equipment, reagents, processes, parameters, etc. involved in the present invention, unless otherwise specified, are conventional equipment, reagents, processes, parameters, etc., and no further examples are given.
本发明所列举的所有范围包括该范围内的所有点值。All ranges recited herein include all points within that range.
本发明所述“大约”、“约”或“左右”等指的可以是所述范围或数值的±20%范围内。In the present invention, "about", "about" or "about" and the like can mean within ±20% of the stated range or value.
本发明中,除有特别说明外,%均为质量百分比,比例均为质量比。In the present invention, unless otherwise specified, % is mass percentage, and ratio is mass ratio.
本发明中,所述“常温”即常规环境温度,可以为10~30℃。所述“中低温”指的是50~250℃。In the present invention, the "normal temperature" refers to the normal ambient temperature, which can be 10-30°C. The "medium and low temperature" refers to 50 to 250°C.
本技术方案与背景技术相比,它具有如下优点:Compared with the background technology, the technical solution has the following advantages:
1.本发明通过TiO2(001)制备核壳结构的g-C3N4@TiO2,再将CeO2分散负载在g-C3N4@TiO2上,制备得到的CeO2-g-C3N4@TiO2光催化剂,在中低温下能保持优异的光催化除Hg0性能,稳定性良好,且可重复利用。1. In the present invention, gC 3 N 4 @TiO 2 with a core-shell structure is prepared by TiO 2 (001), and then CeO 2 is dispersed and supported on gC 3 N 4 @TiO 2 to obtain CeO 2 -gC 3 N 4 @ TiO2 photocatalyst can maintain excellent photocatalytic Hg 0 removal performance at medium and low temperature, has good stability and can be reused.
2.本发明方法制备的催化剂在使用过程中不会对环境造成二次污染。2. The catalyst prepared by the method of the present invention will not cause secondary pollution to the environment during use.
3.本发明制备催化剂操作过程简单且重复性很高,催化剂制备过程只需要借助常规的设备和仪器,适合工业化的大规模生产。3. The operation process for preparing the catalyst of the present invention is simple and highly repeatable, and the catalyst preparation process only needs the help of conventional equipment and instruments, which is suitable for industrialized large-scale production.
附图说明Description of drawings
图1为本发明实施例中所制备的不同尿素与TiO2(001)配比的3%CeO2-g-C3N4@TiO2与商业TiO2在50~250℃下的光催化除Hg0性能图,其中横轴为温度,纵轴为Hg0的去除率。Figure 1 shows the photocatalytic Hg removal of 3% CeO 2 -gC 3 N 4 @TiO 2 and commercial TiO 2 with different ratios of urea and TiO 2 (001) prepared in the embodiment of the present invention at 50-250° C. Performance graph with temperature on the horizontal axis and removal rate of Hg 0 on the vertical axis.
具体实施方式Detailed ways
以下通过具体实施方式结合附图对本发明的技术方案进行进一步的说明和描述。The technical solutions of the present invention will be further illustrated and described below through specific embodiments in conjunction with the accompanying drawings.
实施例1:Example 1:
采用制备的CeO2-g-C3N4@TiO2催化剂并用于光催化去除燃煤烟气中的Hg0。具体实施步骤如下:The prepared CeO 2 -gC 3 N 4 @TiO 2 catalyst was used for photocatalytic removal of Hg 0 in coal-fired flue gas. The specific implementation steps are as follows:
(1)20mL的钛酸四丁酯和5mL的48%HF混合后放入高压反应釜中,在200℃下加热24h;冷却后,用去离子水调节pH至7,干燥12h后,以2℃/min的升温速度升至550℃,煅烧2h,制得TiO2(001)。(1) 20 mL of tetrabutyl titanate and 5 mL of 48% HF were mixed and put into a high-pressure reactor, heated at 200 ° C for 24 h; The heating rate of °C/min was increased to 550 °C, and calcined for 2 h to obtain TiO 2 (001).
(2)将20g尿素和1gTiO2(001)溶于30mL去离子水中,均匀的悬浮液在真空系统中磁力搅拌1h后,以5000r/min的转速离心,干燥12h;将固体包上3层铝箔,在N2氛围下,以5℃/min的升温速度升温至520℃退火2h,得到具有核壳结构的g-C3N4/TiO2。(2) Dissolve 20 g of urea and 1 g of TiO 2 (001) in 30 mL of deionized water, stir the uniform suspension magnetically in a vacuum system for 1 h, centrifuge at 5000 r/min, and dry for 12 h; wrap the solid with 3 layers of aluminum foil , and annealed at 520 °C for 2 h at a heating rate of 5 °C/min under N 2 atmosphere to obtain gC 3 N 4 /TiO 2 with a core-shell structure.
(3)将0.50g的g-C3N4@TiO2均匀分散在75mL去离子水中,加入氨水将pH调至9左右,加入一定量的Ce(NO3)3·6H2O使产物中的CeO2质量百分比为3%,常温下搅拌2.5h,过滤清洗至pH约为7,干燥12h。最后将混合物在空气氛围下,以4℃/min升温速度升至300℃,煅烧2h,得到CeO2-g-C3N4@TiO2催化剂,记为3%CeO2-g-C3N4@TiO2(20:1)。(3) Disperse 0.50g of gC 3 N 4 @TiO 2 evenly in 75mL of deionized water, add ammonia water to adjust the pH to about 9, add a certain amount of Ce(NO 3 ) 3 ·6H 2 O to make the CeO in the product 2 The mass percentage is 3%, stirred at room temperature for 2.5 hours, filtered and washed to pH about 7, and dried for 12 hours. Finally, the mixture was heated to 300°C at a heating rate of 4°C/min under air atmosphere, and calcined for 2 hours to obtain a CeO 2 -gC 3 N 4 @TiO 2 catalyst, denoted as 3%CeO 2 -gC 3 N 4 @TiO 2 (20:1).
实施例2:Example 2:
采用制备的CeO2-g-C3N4@TiO2催化剂并用于光催化去除燃煤烟气中的Hg0。具体实施步骤如下:The prepared CeO 2 -gC 3 N 4 @TiO 2 catalyst was used for photocatalytic removal of Hg 0 in coal-fired flue gas. The specific implementation steps are as follows:
(1)20mL的钛酸四丁酯和5mL的48%HF混合后放入高压反应釜中,在200℃下加热24h;冷却后,用去离子水调节pH至7,干燥12h后,以2℃/min的升温速度升至550℃,煅烧2h,制得TiO2(001)。(1) 20 mL of tetrabutyl titanate and 5 mL of 48% HF were mixed and put into a high-pressure reactor, heated at 200 ° C for 24 h; The heating rate of °C/min was increased to 550 °C, and calcined for 2 h to obtain TiO 2 (001).
(2)将25g尿素和1gTiO2(001)溶于30mL去离子水中,均匀的悬浮液在真空系统中磁力搅拌1h后,以5000r/min的转速离心,干燥12h;将固体包上3层铝箔,在N2氛围下,以5℃/min的升温速度升温至520℃退火2h,得到核壳g-C3N4/TiO2。(2) Dissolve 25 g of urea and 1 g of TiO 2 (001) in 30 mL of deionized water, stir the uniform suspension magnetically in a vacuum system for 1 h, centrifuge at 5000 r/min, and dry for 12 h; wrap the solid with 3 layers of aluminum foil and annealed at 520°C for 2h at a heating rate of 5°C/min under N 2 atmosphere to obtain core-shell gC 3 N 4 /TiO 2 .
(3)将0.50g核壳g-C3N4@TiO2均匀分散在75mL去离子水中,加入氨水将pH调至9左右,加入一定量的Ce(NO3)3·6H2O使产物中的CeO2质量百分比为3%,常温下搅拌2.5h,过滤清洗至pH约为7,干燥12h。最后将混合物在空气氛围下,以4℃/min升温速度升至300℃,煅烧2h,得到CeO2-g-C3N4@TiO2催化剂,记为3%CeO2-g-C3N4@TiO2(25:1)。(3) Disperse 0.50g core-shell gC 3 N 4 @TiO 2 evenly in 75mL deionized water, add ammonia water to adjust the pH to about 9, add a certain amount of Ce(NO 3 ) 3 ·6H 2 O to make the The mass percentage of CeO 2 is 3%, stirred at room temperature for 2.5 hours, filtered and washed to pH about 7, and dried for 12 hours. Finally, the mixture was heated to 300°C at a heating rate of 4°C/min under air atmosphere, and calcined for 2 hours to obtain a CeO 2 -gC 3 N 4 @TiO 2 catalyst, denoted as 3%CeO 2 -gC 3 N 4 @TiO 2 (25:1).
实施例3:Example 3:
采用制备的CeO2-g-C3N4@TiO2催化剂并用于光催化去除燃煤烟气中的Hg0。具体实施步骤如下:The prepared CeO 2 -gC 3 N 4 @TiO 2 catalyst was used for photocatalytic removal of Hg 0 in coal-fired flue gas. The specific implementation steps are as follows:
(1)20mL的钛酸四丁酯和5mL的48%HF混合后放入高压反应釜中,在200℃下加热24h;冷却后,用去离子水调节pH至7,干燥12h后,以2℃/min的升温速度升至550℃,煅烧2h,制得TiO2(001)。(1) 20 mL of tetrabutyl titanate and 5 mL of 48% HF were mixed and put into a high-pressure reactor, heated at 200 ° C for 24 h; The heating rate of °C/min was increased to 550 °C, and calcined for 2 h to obtain TiO 2 (001).
(2)将15g尿素和1gTiO2(001)溶于30mL去离子水中,均匀的悬浮液在真空系统中磁力搅拌1h后,以5000r/min的转速离心,干燥12h;将固体包上3层铝箔,在N2氛围下,以5℃/min的升温速度升温至520℃退火2h,得到核壳g-C3N4/TiO2。(2) Dissolve 15 g of urea and 1 g of TiO 2 (001) in 30 mL of deionized water, stir the uniform suspension magnetically in a vacuum system for 1 h, centrifuge at 5000 r/min, and dry for 12 h; wrap the solid with 3 layers of aluminum foil and annealed at 520°C for 2h at a heating rate of 5°C/min under N 2 atmosphere to obtain core-shell gC 3 N 4 /TiO 2 .
(3)将0.50g核壳g-C3N4@TiO2均匀分散在75mL去离子水中,加入氨水将pH调至9左右,加入一定量的Ce(NO3)3·6H2O使产物中的CeO2质量百分比为3%,常温下搅拌2.5h,过滤清洗至pH约为7,干燥12h。最后将混合物在空气氛围下,以4℃/min升温速度升至300℃,煅烧2h,得到CeO2-g-C3N4@TiO2催化剂,记为3%CeO2-g-C3N4@TiO2(15:1)。(3) Disperse 0.50g core-shell gC 3 N 4 @TiO 2 evenly in 75mL deionized water, add ammonia water to adjust the pH to about 9, add a certain amount of Ce(NO 3 ) 3 ·6H 2 O to make the The mass percentage of CeO 2 is 3%, stirred at room temperature for 2.5 hours, filtered and washed to pH about 7, and dried for 12 hours. Finally, the mixture was heated to 300°C at a heating rate of 4°C/min under air atmosphere, and calcined for 2 hours to obtain a CeO 2 -gC 3 N 4 @TiO 2 catalyst, denoted as 3%CeO 2 -gC 3 N 4 @TiO 2 (15:1).
实施例4~5Examples 4 to 5
采用参照实施例1~3的方法,改变步骤(2)中尿素和TiO2(001)的质量比,使其分别为30:1和10:1,得到催化剂3%CeO2-g-C3N4@TiO2(30:1)和催化剂3%CeO2-g-C3N4@TiO2(10:1)。Using the method of Reference Examples 1 to 3, the mass ratio of urea and TiO 2 (001) in step (2) was changed to be 30:1 and 10:1, respectively, to obtain catalyst 3% CeO 2 -gC 3 N 4 @ TiO2 (30:1) and catalyst 3 %CeO2 - gC3N4 @ TiO2 (10:1).
取实施例1~5制得的催化剂0.20g进行光催化除Hg0反应。反应模拟烟气为以高纯氮气作为载气通过蒸气产生装置携带Hg0进入混合器中,同时通入另外一路空气作为稀释气体与汞蒸气混合,总进气流量为1L/min。将模拟烟气通入装有0.20g催化剂的石英反应器中,将反应器分别保持在50℃、100℃、150℃、200℃、250℃,并记录出口处Hg0浓度的变化,计算Hg0的去除率。所得结果如附图1所示。从附图1中可以看出,CeO2-g-C3N4@TiO2具有很好的光催化除Hg0性能,在50℃和100℃时Hg0的去除率稳定在100%左右,250℃时Hg0的去除率稳定在58.2%左右,相较商业TiO2的除汞效率显著提高。Take 0.20 g of the catalysts prepared in Examples 1 to 5 to carry out photocatalytic Hg 0 removal reaction. The reaction simulated flue gas is high-purity nitrogen as the carrier gas to carry Hg 0 into the mixer through the vapor generation device, and at the same time, another channel of air is introduced as a dilution gas to mix with the mercury vapor, and the total intake flow is 1L/min. Pass the simulated flue gas into a quartz reactor equipped with 0.20 g of catalyst, keep the reactors at 50 °C, 100 °C, 150 °C, 200 °C, 250 °C, and record the change of Hg 0 concentration at the outlet to calculate Hg 0 removal rate. The results obtained are shown in FIG. 1 . It can be seen from Fig. 1 that CeO 2 -gC 3 N 4 @TiO 2 has good photocatalytic Hg removal performance, and the Hg removal rate is stable at about 100% at 50 °C and 100 °C, and 250 °C The removal rate of Hg 0 was stable at around 58.2%, which was significantly higher than that of commercial TiO 2 .
以上所述,仅为本发明较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。The above descriptions are only preferred embodiments of the present invention, so the scope of implementation of the present invention cannot be limited accordingly, that is, equivalent changes and modifications made according to the patent scope of the present invention and the contents of the description should still be covered by the present invention. within the range.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011239219.9A CN112264075B (en) | 2020-11-09 | 2020-11-09 | High-efficiency demercuration photocatalyst suitable for medium-low temperature condition and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011239219.9A CN112264075B (en) | 2020-11-09 | 2020-11-09 | High-efficiency demercuration photocatalyst suitable for medium-low temperature condition and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112264075A CN112264075A (en) | 2021-01-26 |
CN112264075B true CN112264075B (en) | 2022-08-26 |
Family
ID=74339808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011239219.9A Active CN112264075B (en) | 2020-11-09 | 2020-11-09 | High-efficiency demercuration photocatalyst suitable for medium-low temperature condition and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112264075B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113019351B (en) * | 2021-03-11 | 2022-12-23 | 昆明理工大学 | Application of three-phase composite photocatalyst in flue gas demercuration |
CN113058630B (en) * | 2021-03-15 | 2022-08-26 | 华侨大学 | Preparation method and application of photocatalyst suitable for efficiently removing formaldehyde at room temperature |
CN113559852B (en) * | 2021-07-23 | 2023-10-31 | 华侨大学 | Hg removing device suitable for medium and low temperature conditions 0 Catalyst and preparation method thereof |
CN117563581B (en) * | 2023-09-12 | 2024-08-09 | 安徽农业大学 | Dy single-atom-loaded TiO2Photocatalyst, preparation method and application thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001010552A1 (en) * | 1999-08-05 | 2001-02-15 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Photocatalytic material, photocatalytic article and method for their preparation |
WO2009054950A1 (en) * | 2007-10-24 | 2009-04-30 | Los Alamos National Security, Llc | Universal nucleation layer/diffusion barrier for ion beam assisted deposition |
CN101791565A (en) * | 2010-03-30 | 2010-08-04 | 湘潭大学 | TiO2@ graphite phase carbon nitride heterojunction composite photocatalyst and preparation method thereof |
CN105642332A (en) * | 2016-03-15 | 2016-06-08 | 辽宁大学 | A kind of g-C3N4/TiO2 composite photocatalyst and preparation method thereof |
CN107362817A (en) * | 2017-06-26 | 2017-11-21 | 上海电力学院 | A kind of preparation method of the adjustable titania modified graphite phase carbon nitride photochemical catalyst of dimension |
CN107413364A (en) * | 2017-05-03 | 2017-12-01 | 中国科学院东北地理与农业生态研究所 | A kind of preparation method and applications of hollow mesoporous titanium dioxide of core-shell structure coated graphite phase carbon nitride composite photo-catalyst |
CN108993493A (en) * | 2018-09-03 | 2018-12-14 | 天津工业大学 | A kind of exposure { 001 } crystal face TiO2Nanometer sheet loaded Agx-Au1-xThe preparation method of photochemical catalyst |
CN111672497A (en) * | 2020-05-20 | 2020-09-18 | 上海工程技术大学 | A method for in-situ synthesis of ceria/graphite phase carbon nitride composite photocatalytic material |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106582771B (en) * | 2016-12-30 | 2018-11-30 | 太原理工大学 | A kind of preparation method of the magnetic photocatalyst of wide spectrum response |
-
2020
- 2020-11-09 CN CN202011239219.9A patent/CN112264075B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001010552A1 (en) * | 1999-08-05 | 2001-02-15 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Photocatalytic material, photocatalytic article and method for their preparation |
WO2009054950A1 (en) * | 2007-10-24 | 2009-04-30 | Los Alamos National Security, Llc | Universal nucleation layer/diffusion barrier for ion beam assisted deposition |
CN101791565A (en) * | 2010-03-30 | 2010-08-04 | 湘潭大学 | TiO2@ graphite phase carbon nitride heterojunction composite photocatalyst and preparation method thereof |
CN105642332A (en) * | 2016-03-15 | 2016-06-08 | 辽宁大学 | A kind of g-C3N4/TiO2 composite photocatalyst and preparation method thereof |
CN107413364A (en) * | 2017-05-03 | 2017-12-01 | 中国科学院东北地理与农业生态研究所 | A kind of preparation method and applications of hollow mesoporous titanium dioxide of core-shell structure coated graphite phase carbon nitride composite photo-catalyst |
CN107362817A (en) * | 2017-06-26 | 2017-11-21 | 上海电力学院 | A kind of preparation method of the adjustable titania modified graphite phase carbon nitride photochemical catalyst of dimension |
CN108993493A (en) * | 2018-09-03 | 2018-12-14 | 天津工业大学 | A kind of exposure { 001 } crystal face TiO2Nanometer sheet loaded Agx-Au1-xThe preparation method of photochemical catalyst |
CN111672497A (en) * | 2020-05-20 | 2020-09-18 | 上海工程技术大学 | A method for in-situ synthesis of ceria/graphite phase carbon nitride composite photocatalytic material |
Non-Patent Citations (2)
Title |
---|
Enhancing promoting effects in g-C3N4-Mn+/CeO2-TiO2 ternarycomposites: Photo-handling of charge carriers;Mario J. Mu˜noz-Batista etal.;《Applied Catalysis B: Environmental》;20150427;全文 * |
Promotion of CeO2–TiO2photoactivity by g-C3N4: Ultraviolet andvisible light elimination of toluene;Mario J. Mu˜noz-Batista etal.;《Applied Catalysis B: Environmental》;20140928;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN112264075A (en) | 2021-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112264075B (en) | High-efficiency demercuration photocatalyst suitable for medium-low temperature condition and preparation method thereof | |
CN110681382B (en) | MOF-cobalt-based metal oxide catalyst for catalytic oxidation of toluene and preparation method thereof | |
CN106268952A (en) | The preparation method of a kind of load type double-metal organic framework material MIL 100 (Fe Cu) and denitration application | |
CN111495352B (en) | Method for efficiently photo-catalytically oxidizing metal doped modified strontium titanate of elemental mercury | |
CN113731401B (en) | La 1-x Mn 1+x O 3 Preparation method of (1) | |
CN110479247A (en) | A kind of red mud based denitration catalyst and its preparation method and application | |
CN111111676B (en) | A kind of wrapped nickel-based catalyst and preparation method thereof | |
CN112844458B (en) | Lamellar molecular sieve low-temperature denitration catalyst and preparation method thereof | |
CN114160104A (en) | Kiln flue gas CO2Trapping and utilizing coupling material and application thereof | |
CN112221488A (en) | Novel core-shell structure catalyst for synergistic denitration and demercuration and preparation method thereof | |
CN106807363A (en) | A kind of manganese systems supported titanium doping nano-tube SCR catalyst and preparation method thereof | |
CN110841653A (en) | Preparation method of low-temperature denitration catalyst | |
CN114789064A (en) | A catalyst for partial oxidation of coalbed methane to methanol and its preparation method and application | |
CN113457669B (en) | MnO (MnO) 2 Catalyst with nano-crystal nucleus shell structure and preparation method and application thereof | |
CN114452989A (en) | A kind of porous structure carbon nitride composite catalyst and its preparation method and application | |
CN116037100A (en) | Manganese oxide aerogel low-temperature SCR catalyst and preparation method thereof | |
WO2021217722A1 (en) | Medium/low temperature supported nano copper oxide particle catalyst and preparation method therefor and application thereof | |
CN114558614B (en) | A kind of La-modified Cu-Ce/TNU-9 denitration catalyst and preparation method thereof | |
CN109603904B (en) | Preparation and application of high-efficiency adipic acid flue gas purification catalyst | |
CN113559852B (en) | Hg removing device suitable for medium and low temperature conditions 0 Catalyst and preparation method thereof | |
CN112023954A (en) | Preparation method of bismuth oxyiodate composite photocatalyst with 2D-2D structure | |
CN118384914B (en) | A method for preparing a spherical Cu-SSZ-13 molecular sieve catalyst with a large specific surface area | |
CN111617764B (en) | In-situ growth of Co on wood carbon 3 O 4 Catalyst of nano particles and preparation method thereof | |
CN111250078A (en) | MnOx @ Eu-CeOx low-temperature SCR flue gas denitration catalyst and preparation method and application thereof | |
CN112044455A (en) | Preparation method of phosphorus-doped cerium-titanium selective catalytic reduction and denitration catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |