CN112236713A - 紧凑的可变聚焦配置 - Google Patents
紧凑的可变聚焦配置 Download PDFInfo
- Publication number
- CN112236713A CN112236713A CN201980036675.2A CN201980036675A CN112236713A CN 112236713 A CN112236713 A CN 112236713A CN 201980036675 A CN201980036675 A CN 201980036675A CN 112236713 A CN112236713 A CN 112236713A
- Authority
- CN
- China
- Prior art keywords
- optical element
- viewing component
- head mounted
- motor
- user
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 46
- 239000012530 fluid Substances 0.000 claims abstract description 38
- 239000012528 membrane Substances 0.000 claims abstract description 35
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 description 20
- 230000033001 locomotion Effects 0.000 description 16
- 230000008878 coupling Effects 0.000 description 10
- 238000010168 coupling process Methods 0.000 description 10
- 238000005859 coupling reaction Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- 230000003190 augmentative effect Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0176—Head mounted characterised by mechanical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/004—Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/12—Fluid-filled or evacuated lenses
- G02B3/14—Fluid-filled or evacuated lenses of variable focal length
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B2027/0178—Eyeglass type
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lens Barrels (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Prostheses (AREA)
Abstract
一个实施例涉及一种用于向用户呈现虚拟图像信息的头戴式观看部件,其包括:头戴式框架;用于用户的左眼的左光学元件,该左光学元件被耦接到头戴式框架并包括左流体/膜透镜,该左流体/膜透镜被配置为具有针对用户的左眼的电机可调整的焦距;用于用户的右眼的右光学元件,该右光学元件被耦接到头戴式框架并包括右流体/膜透镜,该右流体/膜透镜被配置为具有针对用户的右眼的电机可调整的焦距;以及控制器,其被可操作地耦接到左光学元件和右光学元件,并被配置为提供一个或多个。
Description
相关申请数据:
本申请要求2018年5月30日提交的美国临时申请序列No.62/678,234的依据35U.S.C.§119的权益。上述申请通过引用整体并入本申请。
技术领域
本发明涉及观看光学组件,更具体地,涉及紧凑的可变聚焦配置。
背景技术
期望混合现实或增强现实的近眼式显示器轻巧、低成本、具有小的形状因子、具有宽的虚拟图像视场并且尽可能透明。另外,期望具有在多个焦平面(例如,两个或更多个)中呈现虚拟图像信息的配置,以便在不超过关于辐辏-调节(vergence-accommodation)不匹配的可接受容差情况下适用于多种使用情况。参照图1,示出了增强现实系统,其包括头戴式观看部件(2)、手持式控制器部件(4)以及被配置为被佩戴作为用户的腰包等的互连辅助计算或控制器部件(6)。这些部件中的每一个可以经由有线或无线通信配置(例如,由IEEE802.11、蓝牙(RTM)和其他连接标准和配置指定的那些)被可操作地耦接到(10、12、14、16、16、17、18)彼此和其他连接的资源(8),诸如云计算或云存储资源。如所描述的,例如,在以下每一者都通过引用被整体并入到本文中的美国专利申请序列号14/555,585、14/690,401、14/331,218、15/481,255和62/518,539中,描述了这些部件的各个方面,诸如两个所描绘的光学元件(20)的各种实施例,用户可以通过它们以及用于增强现实体验的可以由相关联的系统部件产生的视觉部件看到周围的世界。在一些变型中,真正的可变聚焦部件可以用作光学元件(20)的部件,以不仅提供一个或两个聚焦平面,而且还提供其光谱,该光谱由集成控制系统可选择或可调谐的。参照图2A-2C和图3,一类可变聚焦配置包括流体类型的透镜,其被耦接到膜并被可调整地容纳,以使得在电机(24)旋转时,相关联的机械驱动组件(26)相对于杆组件(30)旋转地驱动凸轮构件(28),这使两个相对的周边板(38、40)相对于主壳体组件(41)旋转(48、46)并围绕相关联的旋转销接头(32、34)旋转以使得挤压流体/膜透镜(36)(44/42;或释放,取决于电机24/凸轮28的方向/位置),如图3所示。该挤压/释放以及相对的周边板(38、40)相对于彼此的重新定向改变了流体/膜透镜(36)的聚焦,从而提供了电机可调整的可变聚焦组件。具有这种配置的挑战之一是,从几何角度来看,它相对笨重,而无法集成到头戴式类型的系统部件(2)中。另一个挑战是,采用这种配置时,由于系统的性质,即,当相对的周边板(38、40)中的每一个相对于耦接组件的框架在底部转动时,相对的周边板(38、40)相对于彼此重新定向,使得随着聚焦的变化,图像位置也会随之变化;这带来了另一个不希望的复杂变量,该变量必须在校准或其他步骤或配置中进行处理。需要紧凑的可变聚焦透镜系统和组件,这些系统和组件被优化用于可穿戴计算系统。
发明内容
一个实施例涉及一种用于向用户呈现虚拟图像信息的头戴式观看部件,其包括:头戴式框架;用于用户的左眼的左光学元件,该左光学元件被耦接到头戴式框架并包括左流体/膜透镜,该左流体/膜透镜被配置为具有针对用户的左眼的电机可调整的焦距;用于用户的右眼的右光学元件,该右光学元件被耦接到头戴式框架并包括右流体/膜透镜,该右流体/膜透镜被配置为具有针对用户的右眼的电机可调整的焦距;以及控制器,其被可操作地耦接到左光学元件和右光学元件,并被配置为向左光学元件和右光学元件提供一个或多个命令以修改左光学元件和右光学元件的焦距。根据权利要求1所述的头戴式观看部件,其中,左光学元件和右光学元件中的至少一个包括被互耦接在两个框架构件之间的致动电机。致动电机可以被配置为提供线性致动。致动电机可以被配置为提供旋转致动。两个框架构件可以被耦接到左流体/膜透镜,并被配置为通过相对于彼此移动来改变用户的焦距。两个框架构件可以相对于彼此可旋转以修改用户的焦距。两个框架构件可以以非旋转的方式相对于彼此可移位。致动电机可以包括步进电机。致动电机可以包括伺服电机。致动电机可以包括压电致动器。致动电机可以包括超声电机。致动电机可以包括电磁致动器。致动电机可以包括形状记忆金属合金致动器。控制器可以被配置为命令左光学元件和右光学元件调整为两个可选择的预定焦距中的一个。控制器可以被配置为命令左光学元件和右光学元件调整为三个或更多个可选择的预定焦距中的一个。
附图说明
图1示出了根据本发明的具有头戴式部件的系统配置,该头戴式部件具有左光学元件和右光学元件。
图2A-2c和图3示出了流体透镜系统的各个方面。
图4A-4B示出了根据本发明的单电机紧凑的流体透镜配置的各个方面。
图5、6和7A-7B示出了根据本发明的多电机紧凑的流体透镜配置的各个方面。
图8A和图8B示出了根据本发明的具有头戴式部件的系统配置的各个方面,该头戴式部件包括左光学元件和右光学元件。
具体实施方式
参照图4A,一个有创造力的可变聚焦组件(50)的两个主要元件是置于两个相对刚性的周边框架构件(70、72)之间的流体/膜透镜(36)。在所描绘的实施例中,在流体/膜透镜(36)与每个刚性周边框架构件(70、72)之间是可旋转的调整周边构件(52、54),其使用紧凑的致动电机(64)可相对于刚性周边框架构件(70、72)可控制地且可旋转地调整,其中,致动电机(64)例如步进电机、伺服电机、超声电机(即,例如包括多个压电材料部件的那些,该多个压电材料部件包括一种或多种压电材料,例如锆钛酸铅、铌酸锂或其他单晶材料,其中该多个压电材料部件以大致圆形的布置来配置并被可操作地耦接到定子和转子以产生旋转超声电机激活、或被可操作地耦接到定子和滑动件以产生线性平移超声电机激活)、或其他电机致动器,其中,致动电机(64)可以被耦接到刚性周边框架构件(56、58),并且也可以被使用诸如图4B所示的耦接组件耦接到可旋转的调整周边构件(52、54),该耦接组件特征在于轴(shaft)(62)被耦接到筒形构件(60),该镜筒构件(60)被耦接到销(61),该销(61)与可旋转的调整周边构件(52、54)接合,如图所示。在一个实施例中,电机(64)可被配置为相对于电机(64)的所示圆柱形壳体(63)产生轴(62)和互耦接的筒形构件(60)的受控线性运动,以使得借助于互耦接的销(61),可旋转的调整周边构件(52、54)相对于刚性周边框架构件(70、72)围绕与中心轴线(65)基本平行的轴线旋转,该中心轴线(65)垂直于互耦接的流体/膜透镜(36)的中心。在另一实施例中,电机(64)可被配置为产生轴(62)相对于电机(64)的所示圆柱形壳体(63)的旋转运动,以及轴(62)与筒形构件(60)之间的机械耦接可包括螺纹接口,以使得借助于互耦接的销(61),可旋转的调整周边构件(52、54)相对于刚性周边框架构件(70、72)围绕与中心轴线(65)基本平行的轴线旋转,该中心轴线(65)垂直于互耦接的流体/膜透镜(36)的中心。可旋转的调整周边构件(52、54)和刚性周边框架构件(70、72)之间的机械接口可被配置为包括在周边定位的特征,例如斜坡、隆起或台阶,这将导致互耦接的流体/膜透镜(36)被以基本上均匀的周边载荷挤压或松开,例如通过三个或更多个接口特征分组(即,围绕位于可旋转的调整周边构件(52、54)与刚性周边框架构件(70、72)之间的360度周边接口的每120度一个。换句话说,流体/膜透镜(36)可以被相对均匀地松开(loosen)或挤紧(tighten),最好不使图像位置相对于透镜的平面发生实质性移动或重新定向。此外,机械周边接口可以被配置为使得可预测地获得流体/膜透镜(36)的挤紧或松开的顺序水平。例如。在一个实施例中,电机可以被可操作地耦接到控制器,例如微控制器或微处理器,以使得经由从控制器到电机的命令,可靠地获得(优选地以相对低的等待时间)可以与用于流体/膜透镜(36)的预定焦距相关联的流体/膜透镜(36)的期望或命令的挤紧或松开。参照图4A和4B示出和描述的这种配置的一个优势是可以利用单个电机来控制流体/膜透镜(36)的焦距。
参照图5-7B,示出了其他实施例,其被配置为针对具有互耦接的流体/膜透镜(36)的紧凑的可变聚焦配置提供基本均匀的周边载荷(从而提供在没有图像位置的实质移动或重新定向的情况下的聚焦调整)。
参照图5,紧凑的可变聚焦组件(68)具有两个刚性周边框架构件(70、72)和互耦接的流体/膜透镜(36),其中流体/膜透镜(36)的基本均匀的周边载荷由多个电磁致动器(76、77、78)提供,该多个电磁制动器可用于使两个刚性周边框架构件(70、72)相对于彼此可控制地推动(urge)或排斥,以提供可控的聚焦调整。电磁致动器(76、77、78)优选地沿周边彼此等距放置(即,彼此约120度),以使用3-致动器配置提供均匀的载荷,如图所示。其他实施例可以包括更多的致动器,例如四个彼此间隔90度的致动器等。在一个实施例中,电磁致动器(76、77、78)中的每一个被可操作地耦接在周边框架构件(70、72)之间,以使得在致动时,通过线性致动使周边框架构件(70、72)相对于彼此推动或排斥;在另一实施例中,电磁致动器(76、77、78)中的每一个可以被可操作地耦接在周边框架构件(70、72)之间,以使得在致动时,引起互耦接构件的旋转运动,该互耦接构件例如与图4B的组件中的可以与螺纹构件接合的轴构件(62)类似的互耦接构件,该螺纹构件例如与图4B的组件中的筒形构件(60)类似的螺纹构件,该筒形构件(60)可以被耦接到周边框架构件(70、72)中的一个,例如以被转换成线性运动来使周边框架构件(70、72)相对于彼此推动或排斥。换句话说,电磁致动器(76、77、78)可以被配置为产生线性或旋转致动运动,并且该线性或旋转致动运动可以用于使两个刚性周边框架构件(70、72)相对于彼此推动或排斥,以提供可控的聚焦调整。
优选地,可以通过电磁致动器(76、77、78)的操作获得流体/膜透镜(36)的一个或多个可预测的挤紧或松开水平。例如,在一个实施例中,电磁致动器(76、77、78)可以被可操作地耦接到控制器,例如微控制器或微处理器,以使得经由从控制器到电磁致动器(76、77、78)的命令,可靠地获得(优选地以相对低的等待时间)可以与用于流体/膜透镜(36)的预定焦距相关联的流体/膜透镜(36)的期望或命令的挤紧或松开。
参照图6,紧凑的可变聚焦组件(74)具有两个刚性周边框架构件(70、72)和互耦接的流体/膜透镜(36),其中流体/膜透镜(36)的基本均匀的周边载荷由多个形状记忆金属合金致动器(80、82、84)提供,该多个形状记忆金属合金致动器可用于使两个刚性周边框架构件(70、72)相对于彼此可控制地推动或排斥,以提供可控的聚焦调整。形状记忆金属合金致动器(80、82、84)优选地沿周边彼此等距放置(即,彼此约120度),以使用3-致动器配置提供均匀的载荷,如图所示。其他实施例可以包括更多的致动器,例如四个间隔90度的致动器等。在一个实施例中,形状记忆金属合金致动器(80、82、84)中的每一个被可操作地耦接在周边框架构件(70、72)之间,以使得在致动时,通过线性致动使周边框架构件(70、72)相对于彼此推动或排斥;在另一实施例中,形状记忆金属合金致动器(80、82、84)中的每一个可以被可操作地耦接在周边框架构件(70、72)之间,以使得在致动时,引起互耦接构件的旋转运动,该互耦接构件例如与图4B的组件中的可以与螺纹构件接合的轴构件(62)类似的互耦接构件,该螺纹构件例如与图4B的组件中的筒形构件(60)类似的螺纹构件,该筒形构件(60)可以被耦接到周边框架构件(70、72)中的一个,例如以被转换成线性运动来使周边框架构件(70、72)相对于彼此推动或排斥。换句话说,形状记忆金属合金致动器(80、82、84)可以被配置为产生线性或旋转致动运动,并且该线性或旋转致动运动可以用于使两个刚性周边框架构件(70、72)相对于彼此推动或排斥,以提供可控的聚焦调整。
优选地,可以通过形状记忆金属合金致动器(80、82、84)的操作获得流体/膜透镜(36)的一个或多个可预测的挤紧或松开水平。例如,在一个实施例中,形状记忆金属合金致动器(80、82、84)可以被可操作地耦接到控制器,例如微控制器或微处理器,以使得经由从控制器到形状记忆金属合金致动器(80、82、84)的命令,可靠地获得(优选地以相对低的等待时间)可以与用于流体/膜透镜(36)的预定焦距相关联的流体/膜透镜(36)的期望或命令的挤紧或松开。
参照图7A和7B,紧凑的可变聚焦组件(76)具有两个刚性周边框架构件(70、72)和互耦接的流体/膜透镜(36),其中流体/膜透镜(36)的基本均匀的周边载荷由多个压电致动器(86、88、90)提供,该多个压电致动器可用于使两个刚性周边框架构件(70、72)相对于彼此可控制地推动或排斥,以提供可控的聚焦调整。压电致动器(80、82、84)中的每一个可以包括被配置为在致动时产生给定的载荷和位移变化的一个或多个压电单元,或者可以包括所谓的“超声”或“超声波”致动器配置(即,例如包括多个压电材料部件的那些,该多个压电材料部件包括一种或多种压电材料,例如锆钛酸铅、铌酸锂或其他单晶材料,其中该多个压电材料部件以大致圆形的布置来配置并被可操作地耦接到定子和转子以产生旋转超声电机激活、或被可操作地耦接到定子和滑动件以产生线性平移超声电机激活)。压电致动器(80、82、84)优选地沿周边彼此等距放置(即,彼此约120度),以使用3-致动器配置提供均匀的载荷,如图所示。其他实施例可以包括更多的致动器,例如四个间隔90度的致动器等。在一个实施例中,压电致动器(80、82、84)中的每一个可以被可操作地耦接在周边框架构件(70、72)之间,以使得在致动时,通过线性致动使周边框架构件(70、72)相对于彼此推动或排斥;在另一实施例中,压电致动器(80、82、84)中的每一个可以被可操作地耦接在周边框架构件(70、72)之间,以使得在致动时,引起互耦接构件的旋转运动,该互耦接构件例如与图4B的组件中的可以与螺纹构件接合的轴构件(62)类似的互耦接构件,该螺纹构件例如与图4B的组件中的筒形构件(60)类似的螺纹构件,该筒形构件(60)可以被耦接到周边框架构件(70、72)中的一个,例如以被转换成线性运动来使周边框架构件(70、72)相对于彼此推动或排斥。换句话说,压电致动器(80、82、84)可以被配置为产生线性或旋转致动运动,并且该线性或旋转致动运动可以用于使两个刚性周边框架构件(70、72)相对于彼此推动或排斥,以提供可控的聚焦调整。
优选地,可以通过压电致动器(80、82、84)的操作获得流体/膜透镜(36)的一个或多个可预测的挤紧或松开水平。例如,在一个实施例中,压电致动器(80、82、84)可以被可操作地耦接到控制器,例如微控制器或微处理器,以使得经由从控制器到压电致动器(80、82、84)的命令,可靠地获得(优选地以相对低的等待时间)可以与用于流体/膜透镜(36)的预定焦距相关联的流体/膜透镜(36)的期望或命令的挤紧或松开。
参照图7B,取决于对于给定的可变聚焦透镜配置使得压电致动器中的每一个需要多少机械行程(throw),压电致动器中的每一个可以包括具有被互耦接的一系列单独的压电装置(92、94等)的组件,以使得每个单独的压电装置的激活提供给定的机械行程,该给定的机械行程被添加到组件中的其他单独的压电装置,以产生适合于该应用的整体组件行程。
参照图8A,示出了具有诸如以上参考图4A和4B所讨论的部件的组件配置,其中头戴式部件(2)包括可安装在用户的头部上的框架(130),以使得用户的左眼(100))和右眼(102)暴露于光学元件(20;这里左光学元件110和右光学元件112被分别标记;这些光学元件分别具有左和右液体/膜透镜36和37)。左(114)和右(116)电机被配置为电机地调整每个光学元件的焦距,例如,如上面参考图4A和4B所描述的。可以利用诸如微控制器或微处理器的控制器(108)来向电机(114、116)发出命令以调整焦距。在各种实施例中,相机(104、106)可以被耦接到框架(130),并且被配置为捕获与每只眼睛(100、102)的位置有关的数据;控制器(108)可以利用该信息来确定如何根据期望的焦距来命令电机(114、116)。例如,如果确定用户聚焦在相对于可穿戴部件(2)的近距离物体上,则该系统可以被配置为使控制器利用电机来切换到更近的焦距。图8B示出了类似于图8A的配置,但是具有类似于参考图5-7B所描述的电机致动配置,其中多个电机或致动器(118、120、122;124、126、128)可以被可操作地耦接到控制器(108)并用于调整光学元件(110、112)的焦距。
本文描述了本发明的各种示例实施例。在非限制性意义上参考这些示例。提供它们是为了说明本发明的更广泛适用的方面。在不脱离本发明的真实精神和范围的情况下,可以对所描述的本发明进行各种改变,并且可以替换等同方案。另外,可以进行许多修改以使特定情况、材料、物质的组成、过程、一个或多个过程动作或一个或多个步骤适应于本发明的一个或多个目的、精神或范围。此外,如本领域技术人员将理解的,在不脱离本发明的范围或精神的情况下,在此所描述和示出的各个变型中的每一个具有分离的组件和特征,其可以容易地与其它若干实施例中的任一特征分离或组合。所有这些修改旨在处于与本公开相关联的权利要求的范围内。
本发明包括可以使用主题装置执行的方法。该方法可以包括提供这种合适的装置的动作。这种提供可以由用户执行。换句话说,“提供”动作仅仅需要用户获得、访问、接近、定位、设置、激活、开启或以其它方式提供在该方法中的必要装置。在此所述的方法可以按逻辑上可能的所述事件的任何顺序以及按照所记载的事件顺序进行。
以上已经阐述了本发明的示例性方面以及关于材料选择和制造的细节。关于本发明的其它细节,可以结合上述参考的专利和出版物以及本领域技术人员通常所知或理解的来理解这些。关于根据本发明的基础方法的方面在通常或逻辑上利用的附加动作方面同样可以成立。
另外,虽然已经参考可选地并入各种特征的若干示例描述了本发明,但是本发明不限于针对本发明的每个变型所构想的描述或指示的发明。在不脱离本发明的精神和范围的情况下,可以对所描述的本发明进行各种改变,并且可以替代等同物(为了简洁起见,不论在此是否包括)。此外,在提供了值的范围的情况下,应当理解,在该范围的上限和下限之间的每个中间值以及在该所述范围内的任何其它所述或中间值都包含在本发明内。
另外,可构想的是所描述的本发明变形的任何可选特征可独立地或与在此所描述的特征中的任何一个或多个相结合来陈述和要求权利。引用单数项包括可能存在相同项的复数。更具体地,如在此和关联权利要求书所使用的,单数形式“一”、“一个”、“所述”和“该”包括复数对象,除非另有明确说明。换句话说,在上述描述以及与本公开关联的权利要求中,允许使用冠词的“至少一个”目标项。进一步应注意,可以起草这种权利要求以排除任何可选要素。因此,结合权利要求要素或使用“负面”限制,本声明旨在作为使用“单独地”、“仅”等排他性术语的先行基础。
在不使用这种排他性术语的情况下,与本公开相关联的权利要求中的术语“包括”应允许包括任何附加元素,不考虑在这种权利要求中是否列举了给定数量的要素或添加特征可以被认为是改变在权利要求中所述的元素的性质。除了在此具体定义之外,应在保持权利要求有效性的同时给定在此使用的所有技术和科学术语尽可能广泛的通常理解含义。
本发明的广度不限于提供的实施例和/或主题说明书,而是仅由与本公开相关联的权利要求语言的范围限定。
Claims (15)
1.一种用于向用户呈现虚拟图像信息的头戴式观看部件,包括:
a.头戴式框架;
b.用于所述用户的左眼的左光学元件,所述左光学元件被耦接到所述头戴式框架并包括左流体/膜透镜,所述左流体/膜透镜被配置为具有针对所述用户的所述左眼的电机可调整的焦距;
c.用于所述用户的右眼的右光学元件,所述右光学元件被耦接到所述头戴式框架并包括右流体/膜透镜,所述右流体/膜透镜被配置为具有针对所述用户的所述右眼的电机可调整的焦距;以及
d.控制器,其被可操作地耦接到所述左光学元件和所述右光学元件,并被配置为向所述左光学元件和所述右光学元件提供一个或多个命令以修改所述左光学元件和所述右光学元件的所述焦距。
2.根据权利要求1所述的头戴式观看部件,其中,所述左光学元件和所述右光学元件中的至少一个包括被互耦接在两个框架构件之间的致动电机。
3.根据权利要求2所述的头戴式观看部件,其中,所述致动电机被配置为提供线性致动。
4.根据权利要求2所述的头戴式观看部件,其中,所述致动电机被配置为提供旋转致动。
5.根据权利要求2所述的头戴式观看部件,其中,所述两个框架构件被耦接到所述左流体/膜透镜,并被配置为通过相对于彼此移动来改变所述用户的所述焦距。
6.根据权利要求2所述的头戴式观看部件,其中,所述两个框架构件相对于彼此可旋转以修改所述用户的所述焦距。
7.根据权利要求2所述的头戴式观看部件,其中,所述两个框架构件以非旋转的方式相对于彼此可移位。
8.根据权利要求2所述的头戴式观看部件,其中,所述致动电机包括步进电机。
9.根据权利要求2所述的头戴式观看部件,其中,所述致动电机包括伺服电机。
10.根据权利要求2所述的头戴式观看部件,其中,所述致动电机包括压电致动器。
11.根据权利要求2所述的头戴式观看部件,其中,所述致动电机包括超声电机。
12.根据权利要求2所述的头戴式观看部件,其中,所述致动电机包括电磁致动器。
13.根据权利要求2所述的头戴式观看部件,其中,所述致动电机包括形状记忆金属合金致动器。
14.根据权利要求2所述的头戴式观看部件,其中,所述控制器被配置为命令所述左光学元件和所述右光学元件调整为两个可选择的预定焦距中的一个。
15.根据权利要求2所述的头戴式观看部件,其中,所述控制器被配置为命令所述左光学元件和所述右光学元件调整为三个或更多个可选择的预定焦距中的一个。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862678234P | 2018-05-30 | 2018-05-30 | |
US62/678,234 | 2018-05-30 | ||
PCT/US2019/034763 WO2019232282A1 (en) | 2018-05-30 | 2019-05-30 | Compact variable focus configurations |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112236713A true CN112236713A (zh) | 2021-01-15 |
CN112236713B CN112236713B (zh) | 2023-01-24 |
Family
ID=68694710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980036675.2A Active CN112236713B (zh) | 2018-05-30 | 2019-05-30 | 紧凑的可变聚焦配置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11204491B2 (zh) |
EP (1) | EP3803488A4 (zh) |
JP (2) | JP2021525902A (zh) |
CN (1) | CN112236713B (zh) |
WO (1) | WO2019232282A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11662550B1 (en) | 2019-09-25 | 2023-05-30 | Meta Platforms Technologies, Llc | Systems and methods for varifocal adjustments |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112424648B (zh) * | 2018-07-18 | 2023-10-03 | 奥普图恩公司 | 包括用于调节光学装置的凸轮和马达的光学装置 |
US10989927B2 (en) * | 2019-09-19 | 2021-04-27 | Facebook Technologies, Llc | Image frame synchronization in a near eye display |
CN111580278B (zh) * | 2020-06-11 | 2022-06-17 | 京东方科技集团股份有限公司 | 一种ar或vr眼镜 |
CN113489876B (zh) * | 2021-07-26 | 2023-05-23 | 维沃移动通信有限公司 | 摄像模组和电子设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0504930A1 (en) * | 1991-03-22 | 1992-09-23 | Nikon Corporation | Optical apparatus for correcting image deviation |
TW201219829A (en) * | 2010-11-08 | 2012-05-16 | Seereal Technologies Sa | Display device, in particular a head-mounted display |
WO2017120475A1 (en) * | 2016-01-06 | 2017-07-13 | University Of Utah Research Foundation | Low-power large aperture adaptive lenses for smart eyeglasses |
TW201800101A (zh) * | 2016-06-28 | 2018-01-01 | 國立高雄應用科技大學 | 頭皮養護組成物 |
Family Cites Families (248)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6541736B1 (en) | 2001-12-10 | 2003-04-01 | Usun Technology Co., Ltd. | Circuit board/printed circuit board having pre-reserved conductive heating circuits |
US4344092A (en) | 1980-10-21 | 1982-08-10 | Circon Corporation | Miniature video camera means for video system |
US4652930A (en) | 1984-11-19 | 1987-03-24 | Rca Corporation | Television camera structure |
US4810080A (en) | 1987-09-03 | 1989-03-07 | American Optical Corporation | Protective eyewear with removable nosepiece and corrective spectacle |
US4997268A (en) | 1989-07-24 | 1991-03-05 | Dauvergne Hector A | Corrective lens configuration |
US5074295A (en) | 1989-08-03 | 1991-12-24 | Jamie, Inc. | Mouth-held holder |
US5007727A (en) | 1990-02-26 | 1991-04-16 | Alan Kahaney | Combination prescription lens and sunglasses assembly |
US5240220A (en) | 1990-09-12 | 1993-08-31 | Elbex Video Ltd. | TV camera supporting device |
WO1993001743A1 (en) | 1991-07-22 | 1993-02-04 | Adair Edwin Lloyd | Sterile video microscope holder for operating room |
US5224198A (en) | 1991-09-30 | 1993-06-29 | Motorola, Inc. | Waveguide virtual image display |
US5497463A (en) | 1992-09-25 | 1996-03-05 | Bull Hn Information Systems Inc. | Ally mechanism for interconnecting non-distributed computing environment (DCE) and DCE systems to operate in a network system |
US5410763A (en) | 1993-02-11 | 1995-05-02 | Etablissments Bolle | Eyeshield with detachable components |
US5682255A (en) | 1993-02-26 | 1997-10-28 | Yeda Research & Development Co. Ltd. | Holographic optical devices for the transmission of optical signals of a plurality of channels |
US6023288A (en) | 1993-03-31 | 2000-02-08 | Cairns & Brother Inc. | Combination head-protective helmet and thermal imaging apparatus |
US5455625A (en) | 1993-09-23 | 1995-10-03 | Rosco Inc. | Video camera unit, protective enclosure and power circuit for same, particularly for use in vehicles |
US5835061A (en) | 1995-06-06 | 1998-11-10 | Wayport, Inc. | Method and apparatus for geographic-based communications service |
US5864365A (en) | 1996-01-26 | 1999-01-26 | Kaman Sciences Corporation | Environmentally controlled camera housing assembly |
US5854872A (en) | 1996-10-08 | 1998-12-29 | Clio Technologies, Inc. | Divergent angle rotator system and method for collimating light beams |
US8005254B2 (en) | 1996-11-12 | 2011-08-23 | Digimarc Corporation | Background watermark processing |
US6012811A (en) | 1996-12-13 | 2000-01-11 | Contour Optik, Inc. | Eyeglass frames with magnets at bridges for attachment |
JP3465528B2 (ja) | 1997-04-22 | 2003-11-10 | 三菱瓦斯化学株式会社 | 新規な光学材料用樹脂 |
JPH11142783A (ja) | 1997-11-12 | 1999-05-28 | Olympus Optical Co Ltd | 画像表示装置 |
US6191809B1 (en) | 1998-01-15 | 2001-02-20 | Vista Medical Technologies, Inc. | Method and apparatus for aligning stereo images |
US6076927A (en) * | 1998-07-10 | 2000-06-20 | Owens; Raymond L. | Adjustable focal length eye glasses |
JP2000099332A (ja) | 1998-09-25 | 2000-04-07 | Hitachi Ltd | 遠隔手続き呼び出し最適化方法とこれを用いたプログラム実行方法 |
US6918667B1 (en) | 1998-11-02 | 2005-07-19 | Gary Martin Zelman | Auxiliary eyewear attachment apparatus |
US6556245B1 (en) | 1999-03-08 | 2003-04-29 | Larry Allan Holmberg | Game hunting video camera |
US6375369B1 (en) | 1999-04-22 | 2002-04-23 | Videolarm, Inc. | Housing for a surveillance camera |
WO2001056007A1 (en) | 2000-01-28 | 2001-08-02 | Intersense, Inc. | Self-referenced tracking |
JP4921634B2 (ja) | 2000-01-31 | 2012-04-25 | グーグル インコーポレイテッド | 表示装置 |
JP4646374B2 (ja) | 2000-09-29 | 2011-03-09 | オリンパス株式会社 | 画像観察光学系 |
TW522256B (en) | 2000-12-15 | 2003-03-01 | Samsung Electronics Co Ltd | Wearable display system |
JP2002228816A (ja) * | 2001-01-29 | 2002-08-14 | Olympus Optical Co Ltd | 可変形状鏡の駆動装置 |
US6807352B2 (en) | 2001-02-11 | 2004-10-19 | Georgia Tech Research Corporation | Optical waveguides with embedded air-gap cladding layer and methods of fabrication thereof |
US6931596B2 (en) | 2001-03-05 | 2005-08-16 | Koninklijke Philips Electronics N.V. | Automatic positioning of display depending upon the viewer's location |
US20020140848A1 (en) | 2001-03-30 | 2002-10-03 | Pelco | Controllable sealed chamber for surveillance camera |
EP1249717A3 (en) | 2001-04-10 | 2005-05-11 | Matsushita Electric Industrial Co., Ltd. | Antireflection coating and optical element using the same |
JP4682470B2 (ja) | 2001-07-16 | 2011-05-11 | 株式会社デンソー | スキャン型ディスプレイ装置 |
US6762845B2 (en) | 2001-08-23 | 2004-07-13 | Zygo Corporation | Multiple-pass interferometry |
IL160902A0 (en) | 2001-09-25 | 2004-08-31 | Cambridge Flat Projection | Flat-panel projection display |
US6833955B2 (en) | 2001-10-09 | 2004-12-21 | Planop Planar Optics Ltd. | Compact two-plane optical device |
US7305020B2 (en) | 2002-02-04 | 2007-12-04 | Vizionware, Inc. | Method and system of reducing electromagnetic interference emissions |
US6849558B2 (en) | 2002-05-22 | 2005-02-01 | The Board Of Trustees Of The Leland Stanford Junior University | Replication and transfer of microstructures and nanostructures |
US6714157B2 (en) | 2002-08-02 | 2004-03-30 | The Boeing Company | Multiple time-interleaved radar operation using a single radar at different angles |
KR100480786B1 (ko) | 2002-09-02 | 2005-04-07 | 삼성전자주식회사 | 커플러를 가지는 집적형 광 헤드 |
US7306337B2 (en) | 2003-03-06 | 2007-12-11 | Rensselaer Polytechnic Institute | Calibration-free gaze tracking under natural head movement |
DE10311972A1 (de) | 2003-03-18 | 2004-09-30 | Carl Zeiss | HMD-Vorrichtung |
AU2003901272A0 (en) | 2003-03-19 | 2003-04-03 | Martin Hogan Pty Ltd | Improvements in or relating to eyewear attachments |
US7294360B2 (en) | 2003-03-31 | 2007-11-13 | Planar Systems, Inc. | Conformal coatings for micro-optical elements, and method for making the same |
EP1639394A2 (en) | 2003-06-10 | 2006-03-29 | Elop Electro-Optics Industries Ltd. | Method and system for displaying an informative image against a background image |
JP4699699B2 (ja) | 2004-01-15 | 2011-06-15 | 株式会社東芝 | ビーム光走査装置及び画像形成装置 |
CN100410727C (zh) | 2004-03-29 | 2008-08-13 | 索尼株式会社 | 光学装置以及虚像显示装置 |
GB0416038D0 (en) | 2004-07-16 | 2004-08-18 | Portland Press Ltd | Document display system |
US20070189669A1 (en) | 2004-07-22 | 2007-08-16 | Maurizio Tormen | Integrated wavelength selective grating-based filter |
WO2006016366A2 (en) | 2004-08-12 | 2006-02-16 | Elop Electro-Optical Industries Ltd. | Integrated retinal imager and method |
US9030532B2 (en) | 2004-08-19 | 2015-05-12 | Microsoft Technology Licensing, Llc | Stereoscopic image display |
US7029114B2 (en) | 2004-09-03 | 2006-04-18 | E'lite Optik U.S. L.P. | Eyewear assembly with auxiliary frame and lens assembly |
JP4858170B2 (ja) | 2004-09-16 | 2012-01-18 | 株式会社ニコン | 非晶質酸化珪素バインダを有するMgF2光学薄膜の製造方法 |
US20060126181A1 (en) | 2004-12-13 | 2006-06-15 | Nokia Corporation | Method and system for beam expansion in a display device |
US8619365B2 (en) | 2004-12-29 | 2013-12-31 | Corning Incorporated | Anti-reflective coating for optical windows and elements |
GB0502453D0 (en) | 2005-02-05 | 2005-03-16 | Cambridge Flat Projection | Flat panel lens |
US7573640B2 (en) | 2005-04-04 | 2009-08-11 | Mirage Innovations Ltd. | Multi-plane optical apparatus |
US20060250322A1 (en) | 2005-05-09 | 2006-11-09 | Optics 1, Inc. | Dynamic vergence and focus control for head-mounted displays |
US7948683B2 (en) * | 2006-05-14 | 2011-05-24 | Holochip Corporation | Fluidic lens with manually-adjustable focus |
JP4567786B2 (ja) | 2005-06-03 | 2010-10-20 | ノキア コーポレイション | 射出瞳を拡大する汎用的な回折的光学方法 |
JP4776285B2 (ja) | 2005-07-01 | 2011-09-21 | ソニー株式会社 | 照明光学装置及びこれを用いた虚像表示装置 |
US20070058248A1 (en) * | 2005-09-14 | 2007-03-15 | Nguyen Minh T | Sport view binocular-zoom lens focus system |
US20080043334A1 (en) | 2006-08-18 | 2008-02-21 | Mirage Innovations Ltd. | Diffractive optical relay and method for manufacturing the same |
EP1938141A1 (en) | 2005-09-28 | 2008-07-02 | Mirage Innovations Ltd. | Stereoscopic binocular system, device and method |
US20070081123A1 (en) | 2005-10-07 | 2007-04-12 | Lewis Scott W | Digital eyewear |
US8696113B2 (en) | 2005-10-07 | 2014-04-15 | Percept Technologies Inc. | Enhanced optical and perceptual digital eyewear |
US11428937B2 (en) | 2005-10-07 | 2022-08-30 | Percept Technologies | Enhanced optical and perceptual digital eyewear |
US9658473B2 (en) | 2005-10-07 | 2017-05-23 | Percept Technologies Inc | Enhanced optical and perceptual digital eyewear |
DE602006005177D1 (de) | 2005-11-03 | 2009-03-26 | Mirage Innovations Ltd | Binokulare optische relaiseinrichtung |
ATE550685T1 (de) | 2005-11-18 | 2012-04-15 | Nanocomp Oy Ltd | Verfahren zum herstellen eines beugungsgitterelements |
US20070171328A1 (en) | 2005-11-21 | 2007-07-26 | Freeman Mark O | Substrate-guided display |
CN101336089A (zh) | 2006-01-26 | 2008-12-31 | 诺基亚公司 | 眼睛跟踪器设备 |
JP2007219106A (ja) | 2006-02-16 | 2007-08-30 | Konica Minolta Holdings Inc | 光束径拡大光学素子、映像表示装置およびヘッドマウントディスプレイ |
US7461535B2 (en) | 2006-03-01 | 2008-12-09 | Memsic, Inc. | Multi-temperature programming for accelerometer |
IL174170A (en) | 2006-03-08 | 2015-02-26 | Abraham Aharoni | Device and method for two-eyed tuning |
CN101449270B (zh) | 2006-03-15 | 2011-11-16 | 谷歌公司 | 自动显示尺寸调整后的图像 |
CN101460882B (zh) | 2006-06-02 | 2010-10-27 | 诺基亚公司 | 用于在出瞳扩大器中提供分色的装置和方法以及电子设备 |
US7692855B2 (en) | 2006-06-28 | 2010-04-06 | Essilor International Compagnie Generale D'optique | Optical article having a temperature-resistant anti-reflection coating with optimized thickness ratio of low index and high index layers |
US7724980B1 (en) | 2006-07-24 | 2010-05-25 | Adobe Systems Incorporated | System and method for selective sharpening of images |
US20080068557A1 (en) | 2006-09-20 | 2008-03-20 | Gilbert Menduni | Lens holding frame |
US20080146942A1 (en) | 2006-12-13 | 2008-06-19 | Ep Medsystems, Inc. | Catheter Position Tracking Methods Using Fluoroscopy and Rotational Sensors |
JP4348441B2 (ja) | 2007-01-22 | 2009-10-21 | 国立大学法人 大阪教育大学 | 位置検出装置、位置検出方法、データ判定装置、データ判定方法、コンピュータプログラム及び記憶媒体 |
US20090017910A1 (en) | 2007-06-22 | 2009-01-15 | Broadcom Corporation | Position and motion tracking of an object |
EP3667399A1 (en) | 2007-06-04 | 2020-06-17 | Magic Leap, Inc. | A diffractive beam expander |
EP2225592B1 (en) | 2007-12-18 | 2015-04-22 | Nokia Technologies OY | Exit pupil expanders with wide field-of-view |
DE102008005817A1 (de) | 2008-01-24 | 2009-07-30 | Carl Zeiss Ag | Optisches Anzeigegerät |
US8494229B2 (en) | 2008-02-14 | 2013-07-23 | Nokia Corporation | Device and method for determining gaze direction |
JP2009244869A (ja) | 2008-03-11 | 2009-10-22 | Panasonic Corp | 表示装置、表示方法、眼鏡型ヘッドマウントディスプレイ、及び自動車 |
US20090309819A1 (en) | 2008-06-13 | 2009-12-17 | Element Labs, Inc. | Collapsible Support Structure for a Display |
JP5181860B2 (ja) | 2008-06-17 | 2013-04-10 | セイコーエプソン株式会社 | パルス幅変調信号生成装置およびそれを備えた画像表示装置、並びにパルス幅変調信号生成方法 |
US10885471B2 (en) | 2008-07-18 | 2021-01-05 | Disney Enterprises, Inc. | System and method for providing location-based data on a wireless portable device |
US7850306B2 (en) | 2008-08-28 | 2010-12-14 | Nokia Corporation | Visual cognition aware display and visual data transmission architecture |
US7885506B2 (en) | 2008-09-26 | 2011-02-08 | Nokia Corporation | Device and a method for polarized illumination of a micro-display |
FR2938349B1 (fr) * | 2008-11-07 | 2011-04-15 | Commissariat Energie Atomique | Dispositif optique a membrane deformable a actionnement perfectionne |
US9775538B2 (en) | 2008-12-03 | 2017-10-03 | Mediguide Ltd. | System and method for determining the position of the tip of a medical catheter within the body of a patient |
US8699141B2 (en) | 2009-03-13 | 2014-04-15 | Knowles Electronics, Llc | Lens assembly apparatus and method |
JP5121764B2 (ja) | 2009-03-24 | 2013-01-16 | 株式会社東芝 | 固体撮像装置 |
US9095436B2 (en) | 2009-04-14 | 2015-08-04 | The Invention Science Fund I, Llc | Adjustable orthopedic implant and method for treating an orthopedic condition in a subject |
JP5316391B2 (ja) | 2009-08-31 | 2013-10-16 | ソニー株式会社 | 画像表示装置及び頭部装着型ディスプレイ |
US11320571B2 (en) | 2012-11-16 | 2022-05-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view with uniform light extraction |
US8305502B2 (en) | 2009-11-11 | 2012-11-06 | Eastman Kodak Company | Phase-compensated thin-film beam combiner |
US8605209B2 (en) | 2009-11-24 | 2013-12-10 | Gregory Towle Becker | Hurricane damage recording camera system |
US8909962B2 (en) | 2009-12-16 | 2014-12-09 | Qualcomm Incorporated | System and method for controlling central processing unit power with guaranteed transient deadlines |
US8565554B2 (en) | 2010-01-09 | 2013-10-22 | Microsoft Corporation | Resizing of digital images |
KR101099137B1 (ko) | 2010-01-29 | 2011-12-27 | 주식회사 팬택 | 이동 통신 시스템에서 증강 현실 정보를 제공하기 위한 장치 및 방법 |
US8467133B2 (en) | 2010-02-28 | 2013-06-18 | Osterhout Group, Inc. | See-through display with an optical assembly including a wedge-shaped illumination system |
US9547910B2 (en) | 2010-03-04 | 2017-01-17 | Honeywell International Inc. | Method and apparatus for vision aided navigation using image registration |
JP5499854B2 (ja) | 2010-04-08 | 2014-05-21 | ソニー株式会社 | 頭部装着型ディスプレイにおける光学的位置調整方法 |
US8118499B2 (en) | 2010-05-19 | 2012-02-21 | LIR Systems, Inc. | Infrared camera assembly systems and methods |
US20110291964A1 (en) | 2010-06-01 | 2011-12-01 | Kno, Inc. | Apparatus and Method for Gesture Control of a Dual Panel Electronic Device |
JP2012015774A (ja) | 2010-06-30 | 2012-01-19 | Toshiba Corp | 立体視映像処理装置および立体視映像処理方法 |
US8854594B2 (en) | 2010-08-31 | 2014-10-07 | Cast Group Of Companies Inc. | System and method for tracking |
KR101479262B1 (ko) | 2010-09-02 | 2015-01-12 | 주식회사 팬택 | 증강현실 정보 이용 권한 부여 방법 및 장치 |
US20120081392A1 (en) | 2010-09-30 | 2012-04-05 | Apple Inc. | Electronic device operation adjustment based on face detection |
KR101260576B1 (ko) | 2010-10-13 | 2013-05-06 | 주식회사 팬택 | Ar 서비스를 제공하기 위한 사용자 단말기 및 그 방법 |
KR20130139952A (ko) * | 2010-10-26 | 2013-12-23 | 옵토투네 아게 | 두 개의 액체 챔버가 구비된 가변 초점 렌즈 |
US20120113235A1 (en) | 2010-11-08 | 2012-05-10 | Sony Corporation | 3d glasses, systems, and methods for optimized viewing of 3d video content |
US9304319B2 (en) * | 2010-11-18 | 2016-04-05 | Microsoft Technology Licensing, Llc | Automatic focus improvement for augmented reality displays |
US9213405B2 (en) | 2010-12-16 | 2015-12-15 | Microsoft Technology Licensing, Llc | Comprehension and intent-based content for augmented reality displays |
US8949637B2 (en) | 2011-03-24 | 2015-02-03 | Intel Corporation | Obtaining power profile information with low overhead |
WO2012135554A1 (en) | 2011-03-29 | 2012-10-04 | Qualcomm Incorporated | System for the rendering of shared digital interfaces relative to each user's point of view |
KR101210163B1 (ko) | 2011-04-05 | 2012-12-07 | 엘지이노텍 주식회사 | 광학 시트 및 이를 포함하는 표시장치 |
US8856355B2 (en) | 2011-05-09 | 2014-10-07 | Samsung Electronics Co., Ltd. | Systems and methods for facilitating communication between mobile devices and display devices |
KR101547740B1 (ko) | 2011-06-01 | 2015-08-26 | 엠파이어 테크놀로지 디벨롭먼트 엘엘씨 | 증강 현실에서 모션 검출을 위한 구조화 광 투사 |
US9087267B2 (en) | 2011-06-10 | 2015-07-21 | Image Vision Labs, Inc. | Image scene recognition |
US10606066B2 (en) * | 2011-06-21 | 2020-03-31 | Gholam A. Peyman | Fluidic light field camera |
US20120326948A1 (en) | 2011-06-22 | 2012-12-27 | Microsoft Corporation | Environmental-light filter for see-through head-mounted display device |
WO2013001388A1 (en) | 2011-06-27 | 2013-01-03 | Koninklijke Philips Electronics N.V. | Live 3d angiogram using registration of a surgical tool curve to an x-ray image |
US9025252B2 (en) | 2011-08-30 | 2015-05-05 | Microsoft Technology Licensing, Llc | Adjustment of a mixed reality display for inter-pupillary distance alignment |
KR101407670B1 (ko) | 2011-09-15 | 2014-06-16 | 주식회사 팬택 | 증강현실 기반 모바일 단말과 서버 및 그 통신방법 |
US8998414B2 (en) | 2011-09-26 | 2015-04-07 | Microsoft Technology Licensing, Llc | Integrated eye tracking and display system |
US9835765B2 (en) | 2011-09-27 | 2017-12-05 | Canon Kabushiki Kaisha | Optical element and method for manufacturing the same |
US8847988B2 (en) | 2011-09-30 | 2014-09-30 | Microsoft Corporation | Exercising applications for personal audio/visual system |
US9125301B2 (en) | 2011-10-18 | 2015-09-01 | Integrated Microwave Corporation | Integral heater assembly and method for carrier or host board of electronic package assembly |
US9678102B2 (en) | 2011-11-04 | 2017-06-13 | Google Inc. | Calibrating intertial sensors using an image sensor |
US8608309B2 (en) | 2011-12-30 | 2013-12-17 | A New Vision Llc | Eyeglass system |
WO2013101273A1 (en) | 2011-12-30 | 2013-07-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for detection and avoidance of collisions of robotically-controlled medical devices |
US9704220B1 (en) | 2012-02-29 | 2017-07-11 | Google Inc. | Systems, methods, and media for adjusting one or more images displayed to a viewer |
WO2013164665A1 (en) | 2012-05-03 | 2013-11-07 | Nokia Corporation | Image providing apparatus, method and computer program |
US8989535B2 (en) | 2012-06-04 | 2015-03-24 | Microsoft Technology Licensing, Llc | Multiple waveguide imaging structure |
US9671566B2 (en) | 2012-06-11 | 2017-06-06 | Magic Leap, Inc. | Planar waveguide apparatus with diffraction element(s) and system employing same |
US9113291B2 (en) | 2012-06-18 | 2015-08-18 | Qualcomm Incorporated | Location detection within identifiable pre-defined geographic areas |
US9031283B2 (en) | 2012-07-12 | 2015-05-12 | Qualcomm Incorporated | Sensor-aided wide-area localization on mobile devices |
WO2014031540A1 (en) | 2012-08-20 | 2014-02-27 | Cameron Donald Kevin | Processing resource allocation |
US9177404B2 (en) | 2012-10-31 | 2015-11-03 | Qualcomm Incorporated | Systems and methods of merging multiple maps for computer vision based tracking |
US9576183B2 (en) | 2012-11-02 | 2017-02-21 | Qualcomm Incorporated | Fast initialization for monocular visual SLAM |
US9584382B2 (en) | 2012-11-28 | 2017-02-28 | At&T Intellectual Property I, L.P. | Collecting and using quality of experience information |
US20140168260A1 (en) | 2012-12-13 | 2014-06-19 | Paul M. O'Brien | Waveguide spacers within an ned device |
US8988574B2 (en) | 2012-12-27 | 2015-03-24 | Panasonic Intellectual Property Corporation Of America | Information communication method for obtaining information using bright line image |
EP2939065A4 (en) | 2012-12-31 | 2016-08-10 | Esight Corp | APPARATUS AND METHOD FOR ATTACHING VISION FIELD INCREASE VISIOCASQUE SYSTEMS |
US9336629B2 (en) | 2013-01-30 | 2016-05-10 | F3 & Associates, Inc. | Coordinate geometry augmented reality process |
GB201301764D0 (en) | 2013-01-31 | 2013-03-20 | Adlens Ltd | Actuation of fluid-filled lenses |
US20160004102A1 (en) | 2013-02-15 | 2016-01-07 | Adlens Limited | Adjustable Lens and Article of Eyewear |
US9600068B2 (en) | 2013-03-13 | 2017-03-21 | Sony Interactive Entertainment Inc. | Digital inter-pupillary distance adjustment |
WO2014144035A1 (en) | 2013-03-15 | 2014-09-18 | Brian Adams Ballard | Method and system for representing and interacting with augmented reality content |
US20140359590A1 (en) | 2013-05-30 | 2014-12-04 | National Instruments Corporation | Development and Deployment of Parallel Floating-Point Math Functionality on a System with Heterogeneous Hardware Components |
JP6232763B2 (ja) | 2013-06-12 | 2017-11-22 | セイコーエプソン株式会社 | 頭部装着型表示装置および頭部装着型表示装置の制御方法 |
WO2014203440A1 (ja) * | 2013-06-19 | 2014-12-24 | パナソニックIpマネジメント株式会社 | 画像表示装置および画像表示方法 |
US9753303B2 (en) | 2013-08-27 | 2017-09-05 | Frameri Inc. | Removable eyeglass lens and frame platform |
US9256072B2 (en) | 2013-10-02 | 2016-02-09 | Philip Scott Lyren | Wearable electronic glasses that detect movement of a real object copies movement of a virtual object |
US20150123966A1 (en) | 2013-10-03 | 2015-05-07 | Compedia - Software And Hardware Development Limited | Interactive augmented virtual reality and perceptual computing platform |
US9996797B1 (en) | 2013-10-31 | 2018-06-12 | Leap Motion, Inc. | Interactions with virtual objects for machine control |
KR102189115B1 (ko) | 2013-11-11 | 2020-12-09 | 삼성전자주식회사 | 대칭형 다중 프로세서를 구비한 시스템 온-칩 및 이를 위한 최대 동작 클럭 주파수 결정 방법 |
US9286725B2 (en) | 2013-11-14 | 2016-03-15 | Nintendo Co., Ltd. | Visually convincing depiction of object interactions in augmented reality images |
CN105706028B (zh) | 2013-11-19 | 2018-05-29 | 麦克赛尔株式会社 | 投影型影像显示装置 |
JP6465030B2 (ja) | 2013-11-26 | 2019-02-06 | ソニー株式会社 | ヘッドマウントディスプレイ |
US9791700B2 (en) | 2013-11-27 | 2017-10-17 | Magic Leap, Inc. | Virtual and augmented reality systems and methods |
US20160327798A1 (en) | 2014-01-02 | 2016-11-10 | Empire Technology Development Llc | Augmented reality (ar) system |
US9600925B2 (en) | 2014-01-06 | 2017-03-21 | Oculus Vr, Llc | Calibration of multiple rigid bodies in a virtual reality system |
US9383630B2 (en) | 2014-03-05 | 2016-07-05 | Mygo, Llc | Camera mouth mount |
US9871741B2 (en) | 2014-03-10 | 2018-01-16 | Microsoft Technology Licensing, Llc | Resource management based on device-specific or user-specific resource usage profiles |
US9251598B2 (en) | 2014-04-10 | 2016-02-02 | GM Global Technology Operations LLC | Vision-based multi-camera factory monitoring with dynamic integrity scoring |
WO2015143641A1 (en) | 2014-03-26 | 2015-10-01 | Empire Technology Development Llc | Compilation of application into multiple instruction sets for a heterogeneous processor |
US20150301955A1 (en) | 2014-04-21 | 2015-10-22 | Qualcomm Incorporated | Extending protection domains to co-processors |
US9626802B2 (en) | 2014-05-01 | 2017-04-18 | Microsoft Technology Licensing, Llc | Determining coordinate frames in a dynamic environment |
WO2016018488A2 (en) | 2014-05-09 | 2016-02-04 | Eyefluence, Inc. | Systems and methods for discerning eye signals and continuous biometric identification |
RU2603238C2 (ru) | 2014-07-15 | 2016-11-27 | Самсунг Электроникс Ко., Лтд. | Световодная структура, голографическое оптическое устройство и система формирования изображений |
US9865089B2 (en) | 2014-07-25 | 2018-01-09 | Microsoft Technology Licensing, Llc | Virtual reality environment with real world objects |
US20160077338A1 (en) | 2014-09-16 | 2016-03-17 | Steven John Robbins | Compact Projection Light Engine For A Diffractive Waveguide Display |
US9494799B2 (en) | 2014-09-24 | 2016-11-15 | Microsoft Technology Licensing, Llc | Waveguide eye tracking employing switchable diffraction gratings |
US10176625B2 (en) | 2014-09-25 | 2019-01-08 | Faro Technologies, Inc. | Augmented reality camera for use with 3D metrology equipment in forming 3D images from 2D camera images |
AU2015323940B2 (en) | 2014-09-29 | 2021-05-20 | Magic Leap, Inc. | Architectures and methods for outputting different wavelength light out of waveguides |
US10048835B2 (en) | 2014-10-31 | 2018-08-14 | Microsoft Technology Licensing, Llc | User interface functionality for facilitating interaction between users and their environments |
US10371936B2 (en) * | 2014-11-10 | 2019-08-06 | Leo D. Didomenico | Wide angle, broad-band, polarization independent beam steering and concentration of wave energy utilizing electronically controlled soft matter |
US20170243403A1 (en) | 2014-11-11 | 2017-08-24 | Bent Image Lab, Llc | Real-time shared augmented reality experience |
US10096162B2 (en) | 2014-12-22 | 2018-10-09 | Dimensions And Shapes, Llc | Headset vision system for portable devices that provides an augmented reality display and/or a virtual reality display |
US10018844B2 (en) | 2015-02-09 | 2018-07-10 | Microsoft Technology Licensing, Llc | Wearable image display system |
US10180734B2 (en) | 2015-03-05 | 2019-01-15 | Magic Leap, Inc. | Systems and methods for augmented reality |
WO2016146963A1 (en) | 2015-03-16 | 2016-09-22 | Popovich, Milan, Momcilo | Waveguide device incorporating a light pipe |
WO2016149536A1 (en) | 2015-03-17 | 2016-09-22 | Ocutrx Vision Technologies, Llc. | Correction of vision defects using a visual display |
CN107533339B (zh) | 2015-04-20 | 2020-05-22 | 深圳市大疆创新科技有限公司 | 用于对传感器操作进行热调节的系统和方法 |
US10909464B2 (en) | 2015-04-29 | 2021-02-02 | Microsoft Technology Licensing, Llc | Semantic locations prediction |
US9664569B2 (en) | 2015-05-15 | 2017-05-30 | Google Inc. | Circuit board configurations facilitating operation of heat sensitive sensor components |
KR20160139727A (ko) * | 2015-05-28 | 2016-12-07 | 엘지전자 주식회사 | 글래스타입 단말기 및 이의 제어방법 |
GB2539009A (en) | 2015-06-03 | 2016-12-07 | Tobii Ab | Gaze detection method and apparatus |
WO2016205396A1 (en) | 2015-06-15 | 2016-12-22 | Black Eric J | Methods and systems for communication with beamforming antennas |
FR3037672B1 (fr) | 2015-06-16 | 2017-06-16 | Parrot | Drone comportant des moyens perfectionnes de compensation du biais de la centrale inertielle en fonction de la temperature |
US9519084B1 (en) | 2015-06-18 | 2016-12-13 | Oculus Vr, Llc | Securing a fresnel lens to a refractive optical element |
WO2017004695A1 (en) | 2015-07-06 | 2017-01-12 | Frank Jones | Methods and devices for demountable head mounted displays |
US20170100664A1 (en) | 2015-10-12 | 2017-04-13 | Osterhout Group, Inc. | External user interface for head worn computing |
US20170038607A1 (en) | 2015-08-04 | 2017-02-09 | Rafael Camara | Enhanced-reality electronic device for low-vision pathologies, and implant procedure |
US20170061696A1 (en) | 2015-08-31 | 2017-03-02 | Samsung Electronics Co., Ltd. | Virtual reality display apparatus and display method thereof |
US10067346B2 (en) | 2015-10-23 | 2018-09-04 | Microsoft Technology Licensing, Llc | Holographic display |
US9671615B1 (en) | 2015-12-01 | 2017-06-06 | Microsoft Technology Licensing, Llc | Extended field of view in near-eye display using wide-spectrum imager |
US10025060B2 (en) | 2015-12-08 | 2018-07-17 | Oculus Vr, Llc | Focus adjusting virtual reality headset |
EP4167020A1 (en) * | 2015-12-22 | 2023-04-19 | e-Vision Smart Optics Inc. | Dynamic focusing head mounted display |
EP3190447B1 (en) | 2016-01-06 | 2020-02-05 | Ricoh Company, Ltd. | Light guide and virtual image display device |
US9978180B2 (en) | 2016-01-25 | 2018-05-22 | Microsoft Technology Licensing, Llc | Frame projection for augmented reality environments |
US9891436B2 (en) | 2016-02-11 | 2018-02-13 | Microsoft Technology Licensing, Llc | Waveguide-based displays with anti-reflective and highly-reflective coating |
JP6686504B2 (ja) | 2016-02-15 | 2020-04-22 | セイコーエプソン株式会社 | 頭部装着型画像表示装置 |
CN108882892A (zh) | 2016-03-31 | 2018-11-23 | Zoll医疗公司 | 跟踪患者运动的系统和方法 |
CN109073819A (zh) | 2016-04-07 | 2018-12-21 | 奇跃公司 | 用于增强现实的系统和方法 |
EP3236211A1 (en) | 2016-04-21 | 2017-10-25 | Thomson Licensing | Method and apparatus for estimating a pose of a rendering device |
US20170312032A1 (en) | 2016-04-27 | 2017-11-02 | Arthrology Consulting, Llc | Method for augmenting a surgical field with virtual guidance content |
US11228770B2 (en) | 2016-05-16 | 2022-01-18 | Qualcomm Incorporated | Loop sample processing for high dynamic range and wide color gamut video coding |
US10215986B2 (en) | 2016-05-16 | 2019-02-26 | Microsoft Technology Licensing, Llc | Wedges for light transformation |
US10078377B2 (en) | 2016-06-09 | 2018-09-18 | Microsoft Technology Licensing, Llc | Six DOF mixed reality input by fusing inertial handheld controller with hand tracking |
KR102715030B1 (ko) * | 2016-07-26 | 2024-10-10 | 삼성전자주식회사 | 투시형 디스플레이 장치 |
JP7094266B2 (ja) | 2016-08-04 | 2022-07-01 | ドルビー ラボラトリーズ ライセンシング コーポレイション | 単一深度追跡型の遠近調節-両眼転導ソリューション |
US10690936B2 (en) | 2016-08-29 | 2020-06-23 | Mentor Acquisition One, Llc | Adjustable nose bridge assembly for headworn computer |
US20180067779A1 (en) | 2016-09-06 | 2018-03-08 | Smartiply, Inc. | AP-Based Intelligent Fog Agent |
EP3512452A1 (en) | 2016-09-16 | 2019-07-24 | Zimmer, Inc. | Augmented reality surgical technique guidance |
EP3516485A4 (en) | 2016-09-26 | 2020-06-03 | Magic Leap, Inc. | CALIBRATION OF MAGNETIC AND OPTICAL SENSORS IN A DISPLAY SYSTEM WITH VIRTUAL REALITY OR ADVANCED REALITY |
EP3320829A1 (en) | 2016-11-10 | 2018-05-16 | E-Health Technical Solutions, S.L. | System for integrally measuring clinical parameters of visual function |
US10489975B2 (en) | 2017-01-04 | 2019-11-26 | Daqri, Llc | Environmental mapping system |
US20180255285A1 (en) | 2017-03-06 | 2018-09-06 | Universal City Studios Llc | Systems and methods for layered virtual features in an amusement park environment |
EP3376279B1 (en) | 2017-03-13 | 2022-08-31 | Essilor International | Optical device for a head-mounted display, and head-mounted device incorporating it for augmented reality |
US10241545B1 (en) | 2017-06-01 | 2019-03-26 | Facebook Technologies, Llc | Dynamic distortion correction for optical compensation |
US20190196690A1 (en) | 2017-06-23 | 2019-06-27 | Zyetric Virtual Reality Limited | First-person role playing interactive augmented reality |
US10402448B2 (en) | 2017-06-28 | 2019-09-03 | Google Llc | Image retrieval with deep local feature descriptors and attention-based keypoint descriptors |
US10578870B2 (en) | 2017-07-26 | 2020-03-03 | Magic Leap, Inc. | Exit pupil expander |
US20190056591A1 (en) | 2017-08-18 | 2019-02-21 | Microsoft Technology Licensing, Llc | Optical waveguide with multiple antireflective coatings |
US9948612B1 (en) | 2017-09-27 | 2018-04-17 | Citrix Systems, Inc. | Secure single sign on and conditional access for client applications |
US10437065B2 (en) | 2017-10-03 | 2019-10-08 | Microsoft Technology Licensing, Llc | IPD correction and reprojection for accurate mixed reality object placement |
WO2019148154A1 (en) | 2018-01-29 | 2019-08-01 | Lang Philipp K | Augmented reality guidance for orthopedic and other surgical procedures |
US10422989B2 (en) * | 2018-02-06 | 2019-09-24 | Microsoft Technology Licensing, Llc | Optical systems including a single actuator and multiple fluid-filled optical lenses for near-eye-display devices |
GB201805301D0 (en) * | 2018-03-29 | 2018-05-16 | Adlens Ltd | Improvements In Or Relating To Variable Focusing Power Optical Devices |
US10969486B2 (en) | 2018-04-26 | 2021-04-06 | SCRRD, Inc. | Augmented reality platform and method for use of same |
US10740966B2 (en) | 2018-05-14 | 2020-08-11 | Microsoft Technology Licensing, Llc | Fake thickness on a two-dimensional object |
WO2020010226A1 (en) | 2018-07-03 | 2020-01-09 | Magic Leap, Inc. | Systems and methods for virtual and augmented reality |
US10516853B1 (en) | 2018-10-10 | 2019-12-24 | Plutovr | Aligning virtual representations to inputs and outputs |
US10678323B2 (en) | 2018-10-10 | 2020-06-09 | Plutovr | Reference frames for virtual environments |
US10838488B2 (en) | 2018-10-10 | 2020-11-17 | Plutovr | Evaluating alignment of inputs and outputs for virtual environments |
-
2019
- 2019-05-30 CN CN201980036675.2A patent/CN112236713B/zh active Active
- 2019-05-30 JP JP2020566620A patent/JP2021525902A/ja active Pending
- 2019-05-30 EP EP19811971.1A patent/EP3803488A4/en active Pending
- 2019-05-30 US US16/427,337 patent/US11204491B2/en active Active
- 2019-05-30 WO PCT/US2019/034763 patent/WO2019232282A1/en unknown
-
2024
- 2024-01-05 JP JP2024000688A patent/JP2024024075A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0504930A1 (en) * | 1991-03-22 | 1992-09-23 | Nikon Corporation | Optical apparatus for correcting image deviation |
TW201219829A (en) * | 2010-11-08 | 2012-05-16 | Seereal Technologies Sa | Display device, in particular a head-mounted display |
WO2017120475A1 (en) * | 2016-01-06 | 2017-07-13 | University Of Utah Research Foundation | Low-power large aperture adaptive lenses for smart eyeglasses |
TW201800101A (zh) * | 2016-06-28 | 2018-01-01 | 國立高雄應用科技大學 | 頭皮養護組成物 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11662550B1 (en) | 2019-09-25 | 2023-05-30 | Meta Platforms Technologies, Llc | Systems and methods for varifocal adjustments |
US11774705B1 (en) * | 2019-09-25 | 2023-10-03 | Meta Platforms Technologies, Llc | Systems and methods for varifocal adjustment brakes |
Also Published As
Publication number | Publication date |
---|---|
EP3803488A4 (en) | 2021-07-28 |
JP2024024075A (ja) | 2024-02-21 |
US20190369383A1 (en) | 2019-12-05 |
US11204491B2 (en) | 2021-12-21 |
JP2021525902A (ja) | 2021-09-27 |
EP3803488A1 (en) | 2021-04-14 |
WO2019232282A1 (en) | 2019-12-05 |
CN112236713B (zh) | 2023-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112236713B (zh) | 紧凑的可变聚焦配置 | |
US11624919B2 (en) | Variable focus assemblies | |
US7646544B2 (en) | Fluidic optical devices | |
US6970284B1 (en) | Variable focusing lens comprising micromirrors with one degree of freedom rotation | |
US8054566B2 (en) | Optical lens displacement systems | |
US20120075519A1 (en) | Wafer level optical system | |
US20050275927A1 (en) | Variable focal length lens comprising micromirrors with two degrees of freedom rotation | |
KR20170042659A (ko) | 매크로 렌즈 | |
CN115398301A (zh) | 致动器组件 | |
JP6584070B2 (ja) | レンズ鏡筒および光学機器 | |
CN103376614B (zh) | 光圈叶片的制造方法 | |
WO2007028125A2 (en) | Automatic focusing by mirror translation | |
CN110383806B (zh) | 镜头装置、摄像系统以及移动体 | |
JPWO2020243012A5 (zh) | ||
EP4085279A2 (en) | Adaptive optical device | |
US10139612B2 (en) | Image-capturing device with a moving device for a digital microscope, and digital microscope | |
CN103071992B (zh) | 径向张开装置及方法 | |
CN117013874A (zh) | 基于可变模态共振驱动的压电多自由度执行器 | |
JP2014002196A (ja) | レンズ駆動機構 | |
KR20070035611A (ko) | 고속 자동 초점 시스템 | |
JP2013242377A (ja) | レンズ駆動機構 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |