[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN112206742A - 一种高效去除水中有害离子的多孔氧化物吸附材料 - Google Patents

一种高效去除水中有害离子的多孔氧化物吸附材料 Download PDF

Info

Publication number
CN112206742A
CN112206742A CN201910614046.5A CN201910614046A CN112206742A CN 112206742 A CN112206742 A CN 112206742A CN 201910614046 A CN201910614046 A CN 201910614046A CN 112206742 A CN112206742 A CN 112206742A
Authority
CN
China
Prior art keywords
adsorption
precursor
harmful
water
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910614046.5A
Other languages
English (en)
Other versions
CN112206742B (zh
Inventor
黄富强
农淑英
董武杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201910614046.5A priority Critical patent/CN112206742B/zh
Publication of CN112206742A publication Critical patent/CN112206742A/zh
Application granted granted Critical
Publication of CN112206742B publication Critical patent/CN112206742B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种用于水污染治理的过渡金属氧化物材料,能够将水中有害金属离子如铬(VI)、砷(V)、铅(I1)、铀(VI)、镉(I1)等去除达到饮用水标准。可将铬(VI)、砷(V)吸附至10ppb以下,铅(II)、镉(II)、铀(VI)吸附至1ppb以下。此吸附剂通式为MxOy;其中M选自Zr,Ti,Fe,Mn,Mo,W等一种或两种过渡金属元素;并且1≤x≤2,1≤y≤5。此材料的制备采用一种微刻蚀的技术,精准的选择性刻蚀使其具有丰富孔结构、高密度羟基、高比表面积等特点,这些特点使得该吸附剂对有害离子具有强吸附力,达到高效去除效果。另外此材料具有良好的循环利用性能,且合成过程简单,成本低廉,在水污染治理方面具有广阔前景。

Description

一种高效去除水中有害离子的多孔氧化物吸附材料
技术领域
本发明属于水污染治理材料技术领域,具体涉及一种低结晶度的多孔过渡金属氧化物。
技术背景
随着世界人口的不断增加,以及不断推进的工业化进程,水污染问题日益受到全世界的广泛关注,特别是有害金属和非金属离子污染饮用水的问题,普遍存在于世界各地,威胁着人类的健康。铬(VI)、铅(II)、砷(V)、镉(II)、铀(VI)等离子是水中常见的有害元素,来源于各类工业生产如冶金、电镀、发电等行业所排放的废液。其化合物不能自然降解或者含有放射性,引起人类严重的健康问题。我国卫生部在《生活饮用水卫生标准》(GB 5749-2006)中规定饮用水中所含的铬(VI)限值50ppb,镉(II)限值5ppb,铅(II) 限值10ppb,砷(V)限值10ppb,总α放射性限值0.5Bq L-1。目前采取的净化水方式主要有吸附、离子交换、膜分离等技术。其中,吸附法具有操作简单、较为经济、效率高、使用方式灵活等优点,是应用前景最好的技术之一[Khin M M,Nair A S,Babu V J,et al.A review on nanomaterialsfor environmental remediation[J].Energy&Environmental Science,2012,5(8):8075-8109.]。商业化的吸附材料包括活性炭、分子筛、高分子化合物、生物质材料、过渡金属氧化物等。虽然吸附材料多种多样,并且有的材料具有很高的吸附容量,但是目前该技术的瓶颈是在痕量下的吸附,当这些有害金属的浓度低到一定程度(<5ppm)时,很难被现有吸附剂除去。几乎没有吸附剂能直接去除水中痕量的铬(VI)、镉(II)、铅 (II)等离子达到饮用水的标准。尤其铬(VI)在水中以阴离子的形式存在,容易在呈负电性的土壤中扩散,难以被沉淀和吸附。目前尚无良好的材料能够吸附铬(VI)达到50ppb以下。因此,有必要开发能够彻底吸附水中有害离子以达到饮用水标准的新型材料。
分配系数Kd是衡量吸附剂在吸附质浓度极低情况下的吸附能力,Kd值越高代表其吸附能力越强,其计算公式如下:
Kd=(C0-Ce)V/Cem(mL g-1)
其中V(mL)是吸附质溶液的体积,C0(mg L-1或ppm)和Ce(mg L-1或ppm)分别是吸附质初始和平衡浓度, m(g)是使用吸附剂的质量。
目前活性炭、分子筛、高分子材料、生物质材料、硫化物、氧化物等材料已经作为有害离子吸附剂的研究。商业化的活性炭吸附铬(VI)的分配系数Kd值可达8*103[Barkat M,Nibou D,Chegrouche S,et al. Kinetics and thermodynamics studies of chromium(VI)ions adsorption onto activated carbon from aqueous solutions[J].ChemicalEngineeringand Processing:Process Intensification,2009,48(1): 38-47.]。用木苹果硬壳经浓硫酸碳化制成的活性炭,能够对铬(VI)的去除率达95%,吸附容量达151.51mgg-1[Doke K M,Khan E M.Equilibrium,kinetic and diffusion mechanism of Cr(VI)adsorption onto activated carbon derived from wood apple shell[J].ArabianJournal of Chemistry,2017,10: S252-S260.]。MCM-41/ZSM复合的分子筛吸附铬(VI)的分配系数Kd值为1.87*103[Kazemian H,Mallah M H.Removal of chromate ion fromcontaminated synthetic water using mcm-41/zsm-5 composite[J]. Journal ofEnvironmental Health Science&Engineering,2008,5(1):73-77.]。通过阴离子交换的方法去除铬(VI)的金属有机树脂,分配系数Kd值可达1.2-5.5*104,吸附容量达230-240mg g-1[Rapti S, Pournara A,Sarma D,et al.Selective capture of hexavalent chromiumfrom an anion-exchange column of metal organic·resin-alginic acid composite[J].Chemical science,2016,7(3):2427-2436.]。使用MoS4 2插层的层状双氢氧化物能够吸附铅(II)、银(I)、汞(II)等,可以将铅(II)、银(I)、汞(II)吸附至1ppb以下,分配系数Kd高达107[Ma L,Wang Q,Islam S M,et al.Highly selective and efficient removal ofheavy metals by layered double hydroxide intercalated with the MoS42-ion[J].Journal of the American Chemical Society,2016,138(8):2858-2866.]。聚吡咯/MoS4 2的复合物能够去除铅(II)、银(I)、汞(II)达99.6%,残留在2ppb以下,分配系数Kd高达107[Xie L,Yu Z,Islam S M,et al.Remarkable Acid Stability of Polypyrrole-MoS4:AHighly Selective and Efficient Scavenger of Heavy Metals Over a Wide pH Range[J].Advanced Functional Materials,2018,28(20):1800502.]。这些研究具有良好的应用前景,但是目前仍具有许多问题,比如铬(VI)的吸附剂目前最高的分配系数只有104,在处理饮用水方面仍达不到要求。吸附铅(II)、镉(II)等的材料虽然有的吸附性能优良,但是几乎都是硫化物,在使用方面会造成二次污染,存在很大的问题。
过渡金属氧化物如氧化铁、二氧化钛以及复合氧化物作为有害离子吸附剂受到了研究者广泛的关注,因其具有环保无害、抗物理和化学腐蚀、可回收利用等优点。目前制备过渡金属吸附剂的方法主要有溶胶凝胶法、沉淀法、传统水热法。Grssol等采用沉淀法将硝酸铁在碱性条件下沉淀得到纳米氧化铁;Chen 等人使用三氯化铁和盐酸在100℃下搅拌两天进行沉淀得到纳米氧化铁;Hu等人使用溶胶凝胶法制备氧化铁。这些制备方法所制备形成氧化铁纳米颗粒尺寸在3.8-100nm,吸附铬(VI)容量可达19.2mg g-1,吸附铜(II)可达149.25mg g-1[Hua M,Zhang S,Pan B,et al.Heavy metal removal from water/wastewater by nanosized metal oxides:a review[J].Journal of hazardousmaterials,2012,211:317-331.]。 Chen等人利用溶胶凝胶法,使用十六烷基胺、钛酸四丁酯和正丁醇锆为原料,合成多孔ZrO2/TiO2球,吸附铬(VI)容量达25.4mg g-1并且具有良好的循环使用性能[Chen D,Cao L,Hanley T L,et al.Facile synthesis of monodispersemesoporous zirconium titanium oxide microspheres with varying compositionsand high surface areas for heavy metal ion sequestration[J].AdvancedFunctional Materials,2012,22(9):1966-1971.]。Wang等人将硝酸镁、硝酸铝、尿素、硫酸钾和过二硫酸钾混合物水溶液在120-180℃下水热12小时得到Mg-Al LDH/MnO2的复合物,对铅(II)的去除率可达96.73%[Bo L,Li Q,Wang Y,et al.One-pot hydrothermalsynthesis of thrust spherical Mg·Al layered double hydroxides/MnO2 andadsorption for Pb(II)from aqueous solutions[J].Journal of EnvironmentalChemical Engineering,2015,3(3):1468-1475.]。以上的方法合成的氧化物吸附剂都有一定的吸附性能,其作为氧化物在实际应用上具有很大的潜力。然而,由于合成方法的局限性,目前这些方法合成的氧化物吸附剂缺点在于吸附性能不够优越,研究的内容大多局限于吸附容量或者吸附速率,极少涉及高效的痕量吸附。目前没有能够吸附痕量的有害离子直接达到饮用水标准的氧化物吸附剂。
因此急需发展新方法制备过渡金属氧化物,调控吸附剂的表面基团,增强吸附剂和吸附质相互间的亲和力,以达到高效的痕量吸附的目的。目标是经过处理的水有害离子残留量远低于国家规定的饮用水标准,从而保护人类的身体健康。
发明内容
本发明目的是针对水中痕量有害离子难以去除达到饮用水标准的问题,合成一种能够几乎彻底去除水中痕量的有害离子(铬、铅、砷、铀等)的过渡金属氧化物吸附剂。可将水中有害离子铬(VI)从2010ppb 吸附至<6ppb,铅(II)从2000ppb吸附至<0.06ppb,铀(VI)从2000ppb吸附至<0.03ppb,砷(V) 从1000ppb吸附至<10ppb,镉(II)从2000ppb吸附至<1ppb。吸附分配系数Kd值铬(VI)、砷(V)可达>105ml g-1,铅(II)、铀(VI)、镉(II)可达>108ml g-1,是目前已有研究中最高的值。同时具有快速吸附和良好的循环使用性能。
本发明采用的技术方案为:使用一种多孔过渡金属氧化物作为吸附剂,通式为MxOy,其中M选自Zr,Ti, Fe,Mn,Mo,W等一种或多种过渡金属元素;1≤x≤2,1≤y≤5。
进一步地,所述过渡金属氧化物具有以下特点:
1)表面富含羟基,X射线光电子能谱氧的谱峰中羟基氧含量达到50%-80%,羟基密度可达72个羟基每平方纳米,与有害金属离子具有很强的亲和力,可与有害离子形成螯合作用。
2)无定形或者低结晶相,X射线粉末衍射结果无明显衍射峰或衍射峰强度低。
3)颗粒形貌与尺寸多样,颗粒形貌可调控为球形、多面体形、星形、中空等,颗粒尺寸为1纳米至 100微米。
4)具有大量微/纳米孔洞结构,氮气吸附脱附吸附实验证实存在大量介孔或者微孔,具有高达70-300 m2 g-1的比表面积。
进一步地,利用如下微刻蚀法获得所述过渡金属氧化物吸附剂:
1)合成多元复合氧化物AaMxOy前驱体,A为碱金属或碱土金属元素,M为Zr,Ti,Fe,Mn,Mo,W等一种或两种过渡金属元素;1≤a≤4,1≤x≤2,1≤y≤5。所述AaMxOy前驱体合成方法一般使用水热法或者高温固相法烧制,可通过现有技术制备,如Moreira等人所述的BaZrO3[Moreira M L, Andrés J,Mastelaro V R,et al.On the reversed crystalgrowth of BaZrO3 decaoctahedron: shape evolution and mechanism[J].CrystEngComm,2011,13(19):5818-5824.]。Dong等人所述的中空BaZrO3[Dong Z,Ye T,Zhao Y,et al.Perovskite BaZrO3 hollow micro-and nanospheres:controllablefabrication,photoluminescence and adsorption of reactive dyes[J].Journal ofMaterials Chemistry,2011,21(16):5978-5984.]。合成的前驱体可具备多种形貌,包括球形、多面体形、星形、中空等。合成的颗粒大小为1纳米至10微米不等。
2)将前驱体与酸按照比例混合并置于水热条件下刻蚀。选取的酸可以为盐酸、硝酸、甲酸、乙酸等有机酸和无机酸。将前驱体、酸、水按照一定摩尔比混合并搅拌均匀,放入高压反应容器中并加热一定时间。将生成物离心分离和清洗、干燥即可得到产物。具体步骤可参考具体实施实例。通过此步骤的刻蚀反应,前驱体的A元素被溶出,产物通式为MxOx,M为前驱体选取的Zr,Ti,Fe, Mn,Mo,W等一种或两种过渡金属元素;1≤x≤2,1≤y≤5。经过刻蚀反应之后产物保持前驱体原有的形貌,即产物可具备球形、多面体形、星形、中空等形貌,颗粒大小为1纳米至10微米。
与现有吸附剂相比,本发明使用微刻蚀技术制备的吸附剂对痕量有害离子吸附性能突出的原因在于:
1)酸性条件下的微刻蚀促使前驱体颗粒内部阳离子与质子(H)交换,形成高密度的内表面羟基,对有害离子具有强吸附力。微刻蚀过程为在酸性条件下将前驱体内部的碱金属或碱土金属溶出,此过程中大量的质子(H)与碱金属或碱土金属交换,形成内表面羟基。高密度的羟基能够对有害离子形成螯合作用,具有极强的吸附作用力,因此能够将有害离子彻底去除。
2)微刻蚀水热反应实现精准选择性刻蚀。与传统自下而上的水热反应不同,微刻蚀法是一种自上而下的水热法,通过对前驱体选择性地部分刻蚀实现精准造孔,形成丰富的孔道结构和高比表面积,增强对有害离子的锚定并增加吸附容量。
3)通过前驱体诱导调控吸附剂的形貌。使用微刻蚀制备形成过渡金属氧化物产物保留前驱体的形貌,因此选择有利吸附的前驱体形貌,如中空、星形等形貌,能够促进吸附的传质过程并增加比表面积。
样品表征
利用扫描电子显微镜和透射电子显微镜采集样品的形貌及超微结构信息,利用X射线衍射仪采集样品结构信息,利用比表面积测试仪采集样品孔结构信息,利用X射线光电子能谱获得样品表面组成信息,利用电感耦合等离子体发射光谱和质谱获得六价铬的离子浓度。
附图说明
图1显示出本发明制备的前驱体中空BaZrO3,产物中空多孔ZrO2的扫描电子显微镜照片。
图2显示出本发明制备的中空多孔ZrO2的透射电子显微镜照片。
图3显示出本发明制备的前驱体中空BaZrO3,产物中空多孔ZrO2的X射线粉末衍射图以及ZrO2的氮气吸附脱附曲线。
图4显示出本发明制备的中空多孔ZrO2在水溶液中吸附六价铬的等温吸附曲线,吸附动力学曲线,不同 pH环境下吸附性能和循环性能图。
图5显示出本发明制备的前驱体星形BaZrxTi1-xO3(x=0.2-0.8),产物星形多孔ZrxTi1-xO2(x=0.2-0.8)的扫描电子显微镜照片。
图6显示出本发明制备的星形多孔ZrxTi1-xO2(x=0.2-0.8)的透射电子显微镜照片。
图7显示出本发明制备的前驱体星形BaZrxTi1-xO3(x=0.2-0.8),产物星形多孔ZrxTi1-xO2(x=0.2-0.8)的X 射线粉末衍射图以及ZrxTi1-xO2的氮气吸附脱附曲线。
图8显示出本发明制备的星形多孔ZrxTi1-xO2(x=0.2-0.8)在水溶液中吸附六价铬的等温吸附曲线,吸附动力学曲线,不同pH环境下吸附性能和循环性能图。
具体实施方式
下面结合实施实例对本发明作进一步详细说明。需要注意的是,本发明的内容并不限于这些具体的实施方式。在不背离本发明背景和精神的前提下,本领域技术人员在阅读本发明的内容的基础上可以进行等价替换和修改,其内容也包括在本发明要求保护的范围内。
对比实例1
本实例使用传统的制备方法--沉淀法制备过渡金属氧化物ZrO2,首先将ZrOCl2·8H2O溶解于水中,再滴入氨水将pH调至9,获得白色沉淀。将此沉淀用去离子水清洗数遍,置于烘箱中干燥后得到白色粉末。将此白色粉末在400℃下退火4小时,即可得到ZrO2。将其用于铬(VI)离子吸附,能够将铬(VI)从2010ppb 吸附至150ppb。可以看到,这个吸附的残留量150ppb还远高于饮用水允许的标准(50ppb)。因此,用传统沉淀法制备的ZrO2不具备优异的吸附性能。
对比实例2
本实例使用另一种传统的制备方法--溶胶凝胶法制备过渡金属氧化物ZrO2,首先将正丁醇锆溶解于乙醇中,加入聚乙二醇,在70℃下搅拌5小时形成凝胶,使用燃烧法将凝胶燃烧成粉末。置于600℃退火4 小时即可得到ZrO2。将其用于铬(VI)离子吸附,能够将铬(VI)从2010ppb吸附至80ppb。可以看到,此吸附残留量高于饮用水允许的标准(50ppb),经过处理的水仍无法作为饮用水。因此,用传统溶胶凝胶法制备的ZrO2不具备优异的吸附性能。
实施实例1
首先使用水热法制备具有中空球形形貌的BaZrO3前驱体,反应条件为将Ba(OH)2、ZrOCl2·8H2O、KOH和 H2O按照摩尔比1∶1∶10∶100充分搅拌后置于水热装置中,在150℃中反应3天即可制得中空BaZrO3。将前驱体中空BaZrO3、盐酸和水按照1∶10∶100的摩尔比混合,置于高压反应容器中,先在100℃的条件下反应一天,然后转移到150℃的烘箱中反应3小时。经过此步反应之后,Ba全部被溶出,转化成了产物ZrO2。产物通过离心分离和用去离子水清洗,在70℃烘箱内干燥。此产物保留了前驱体中空球形的特点,由图1 可见,前驱体BaZrO3和产物ZrO2都是中空的球形。图2显示了ZrO2的透射电子显微镜图,证实了中空结构的特点。从图2中可见,这个中空结构的氧化锆是由许多小于1纳米的超细颗粒堆积组合而成的。由此可见在刻蚀的过程中,Zr和O原位重新结晶形成非常小的纳米颗粒。在Ba被溶出之后ZrO2整体颗粒仍保持前驱体的形貌特性,即中空球形结构。图3a显示了钙钛矿结构的前驱体BaZrO3和无定形结构的ZrO2的 X射线粉末衍射图。图3b显示了ZrO2氮气吸附脱附的曲线,证明其内部存在大量的介孔,用BET方法计算其比表面积高达120m2 g-1。将此二氧化锆用于净化水吸附六价铬,其吸附性能显示于图4。能够将六价铬在不同pH(2-7)下从2ppm吸附至5ppb以下,耗时不超过1分钟。分配系数Kd高达>105。同时材料具有高的吸附容量(60mg g-1)和优异的循环使用性能。经过此二氧化锆处理的水铬(VI)含量远远低于我国规定的饮用水的标准(<50ppb)。
实施实例2
首先使用水热法制备星形结构的BaZrxTi1-xO3(x=0.2-0.8)前驱体,反应条件为将Ba(OH)2、ZrOCl2·8H2O、 TiCl4和H2O按照摩尔比1∶x∶(1-x)∶100,(x=0.2-0.8)充分搅拌后置于水热装置中,在120℃中反应1天即可制得BaZrxTi1-xO3。将前驱体BaZrxTi1-xO3、盐酸和水按照1∶12∶100的摩尔比混合,置于高压反应容器中,先在110℃的条件下反应一天,然后转移到140℃的烘箱中反应2小时。经过此步反应之后,Ba全部被溶出,转化成了产物ZrxTi1-xO2(x=0.2-0.8)。产物通过离心分离和用去离子水清洗,在70℃烘箱内干燥。产物ZrxTi1-xO2(x=0.2-0.8)具备和前驱体一样星形的特点,由图5的扫描电子显微镜可证实。图6显示了 ZrxTi1-xO2(x=0.2-0.8)的透射电子显微镜图,从图中可见,这个星形的ZrxTi1-xO2(x=0.2-0.8)是由许多小于1纳米的超细颗粒堆积组合而成的,和实例1的现象一致。由此可见刻蚀过程的机理是和实例1一致的。图7a显示了钙钛矿结构的前驱体BaZrxTi1-xO3(x=0.2-0.8)和无定形结构的ZrxTi1-xO2(x=0.2-0.8)的X射线粉末衍射图。图7b显示了ZrO2氮气吸附脱附的曲线,证明其内部存在大量的微孔,用BET方法计算其比表面积高达300m2 g-1。将此材料用于净化水吸附六价铬和五价砷,能够将铬从2ppm吸附至1ppb以下,将砷从2ppm吸附至5ppb以下分配系数Kd高达>105。耗时不超过10秒种,并且此材料具备优秀的循环使用性能,具体可见图8和图9。
实施实例3
首先使用水热法制备具有截角八面体形貌的BaZrO3前驱体,反应条件为将Ba(OH)2、ZrOCl2·8H2O和H2O 按照摩尔比1∶1∶100充分搅拌后置于水热装置中,在130℃中反应1天即可制得截角八面体BaZrO3。将前驱体BaZrO3、盐酸和水按照1∶10∶100的摩尔比混合,置于高压反应容器中,先在110℃的条件下反应一天,然后转移到130℃的烘箱中反应3小时。经过此步反应之后,Ba全部被溶出,转化成了截角八面体状的ZrO2。产物通过离心分离和用去离子水清洗,在70℃烘箱内干燥。制备反应的过程和机理与实例1一致。 X射线粉末衍射显示了此二氧化锆具有无定形的相。将此二氧化锆用于净化水吸附六价铬,能够将六价铬在不同pH环境下从高浓度铬(>2ppm)吸附至4ppb以下,耗时不超过1分钟。分配系数Kd高达>105
实施实例4
使用高温固相法将K2CO3、TiO2按照1∶1摩尔比在850℃下反应10小时,制得层状化合物K2TiO5,将 K2TiO5、水杨酸和水按照1∶5∶10的摩尔比混合,置于高压反应容器中,在100℃的条件下反应一天,然后转移到200℃烘箱中反应3小时。将反应所得物使用乙醇和水洗涤多次,经过干燥之后得到黄色产物。此产物为水杨酸表面修饰的TiO2。将此TiO2作为水中铅(II)的吸附剂,能够将铅从2000ppb吸附低至0.03 ppb。残留值远远低于饮用水允许的标准(<10ppb)。分配系数Kd高达>108
实施实例5
使用高温固相法将K2CO3、TiO2按照2∶1摩尔比在850℃下反应10小时,制得KTiO3,取KTiO3、丙烯酸和水按照摩尔比1∶2∶3混合,置于高压反应容器中,在100℃的条件下反应一天,然后转移到200℃烘箱中反应3小时。将反应所得物使用乙醇和水洗涤多次,经过干燥之后得到乳白色产物TiO2。铀(UO2)吸附的实验证明,此TiO2具有优越的吸附铀性能,能够将铀从2000ppb吸附低至0.01ppb。分配系数Kd高达>107。此材料可用于海水提铀(核裂变重要材料),将海水中极低浓度的铀(<3ppb)吸附并富集。还可以用于处理放射性(UO2)污染的水,不仅可以去除放射性物质,还可以将铀提取富集重复利用。
实施实例6
使用水热法制备球形SrMnO3前驱体,将前驱体、硝酸和水按照1∶2∶100的摩尔比混合,置于高压反应容器中,先在80℃的条件下反应一天,然后转移到120℃的烘箱中反应5小时。经过此步反应之后,Sr 全部被溶出,转化成了产物球形多孔MnO2。将此二氧化锰用于净化水吸附二价镉,能够从高浓度(>2ppm) 吸附至5ppb以下,耗时不超过1分钟。
实施实例7
使用高温固相法制备棒状K2TiO5前驱体,将前驱体、醋酸和水按照1∶30∶10的摩尔比混合,置于高压反应容器中,先在100℃的条件下反应一天,然后转移到160℃的烘箱中反应2小时。经过此步反应之后,钾全部被溶出,转化成了产物棒状多孔TiO2。用于净化水吸附二价铅,能够从高浓度铅(>2ppm)吸附至0.5ppb以下,耗时不超过5分钟。
实施实例8
使用高温固相法制备方块状SrFeO3前驱体,将前驱体和甲酸按照1∶30的摩尔比混合,置于高压反应容器中,先在100℃的条件下反应两天,然后转移到130℃的烘箱中反应2小时。经过此步反应之后,Sr 全部被溶出,转化成了产物方块状多孔Fe2O3。用于净化水吸附二价铅,能够从高浓度铅(>2ppm)吸附至1ppb以下,耗时不超过3分钟。

Claims (9)

1.一种可彻底去除水中有害离子的过渡金属氧化物吸附剂,其吸附特征在于可将水中有害离子如铬(VI)、铅(II)、砷(V)、镉(II)、铀(VI)等离子吸附至饮用水水平;可将铬(VI)从2010ppb吸附至<6ppb,铅(II)从2000ppb吸附至<0.06ppb,铀(VI)从2000ppb吸附至<0.03ppb,砷(V)从1000ppb吸附至<10ppb,镉(II)从2000ppb吸附至<1ppb;吸附分配系数Kd值铬(VI)、砷(V)可达>105ml g1,铅(II)、铀(VI)可达>108ml g1,是目前已有研究中最高的值;同时具有快速吸附和良好的循环使用性能。
2.根据权利要求1所述的过渡金属氧化物吸附剂,其特征在于:
1)通式为
Figure FSA0000185717140000011
其中M选自Zr,Ti,Fe,Mn,Mo,W等一种或多种过渡金属元素;1≤x≤2,1≤y≤5;
2)表面富含羟基,与有害金属离子具有很强的亲和力;
3)无定形或者低结晶相;
4)颗粒形貌与尺寸多样;
5)具有大量微/纳米孔洞结构。
3.根据权利要求1所述的具有快速吸附和良好的循环使用性能,其特征在于吸附能在2秒-10分时间内达到吸附平衡,吸附有害金属后可在一定条件下脱附复原,并且可重新用于吸附。
4.根据权利要求2所述的表面富含羟基,与有害金属离子具有很强的亲和力,其特征在于,X射线光电子能谱氧的谱峰中羟基氧含量达到50%-80%,羟基密度可达72个羟基每平方纳米,经证实高密度的羟基是优异吸附性能的来源,可与有害离子形成螯合作用。
5.根据权利要求2所述的无定形或者低结晶相,其特征在于,X射线粉末衍射结果无明显衍射峰或衍射峰强度低。
6.根据权利要求2所述的颗粒形貌与尺寸多样,其特征在于,颗粒形貌可调控为球形、多面体形、星形、中空等,颗粒尺寸为1纳米至100微米。
7.根据权利要求2所述的大量微/纳米孔洞结构,其特征在于,氮气吸附脱附吸附实验证实存在大量介孔或者微孔结构,具有大的比表面积,为70-300m2 g-1
8.根据权利要2所述的过渡金属氧化物,其特征在于通过以下微刻蚀法的技术路线实现:
1)采用水热法或高温固相法制备多元复合氧化物
Figure FSA0000185717140000012
前驱体。其中A为碱金属或碱土金属元素,M为Zr,Ti,Fe,Mn,Mo,W等一种或多种过渡金属元素,通过调节不同掺杂元素的含量与反应温度,实现形貌与尺寸的可调控性,制备出球形、多面体形、星形、中空等多种结构;
2)将前驱体与无机酸或有机酸混合,采用两步加热法制备过渡金属氧化物
Figure FSA0000185717140000013
(I)将前驱体60-100℃下反应2-10h,(II)100-300℃下继续反应2-10h。经过清洗、分离、干燥后即可得到目标产物,其形貌与前驱体保持一致。
9.根据权利要求8所述的微刻蚀法制备技术,其特征在于对痕量有害离子吸附具有以下优势:
1)酸性条件下的微刻蚀促使前驱体颗粒内部阳离子与质子
Figure FSA0000185717140000022
交换,形成高密度的内表面羟基,对有害离子具有强吸附力,微刻蚀过程即在酸性条件下将前驱体内部的碱金属或碱土金属溶出,大量的质子
Figure FSA0000185717140000021
与碱金属或碱土金属交换,形成内表面羟基,高密度的羟基对有害离子形成螯合作用,具有极强的吸附作用力,能够将有害离子彻底去除;
2)微刻蚀水热反应实现精准选择性刻蚀,酸性下的微刻蚀对前驱体选择性地部分刻蚀实现精准造孔,形成丰富的孔道结构和高比表面积,增强对有害离子的锚定和增加吸附容量;
3)通过前驱体诱导调控吸附剂的形貌,微刻蚀制备形成的过渡金属氧化物产物保留前驱体的形貌,通过选择有利吸附的形貌,促进吸附的传质过程并增加比表面积。
CN201910614046.5A 2019-07-09 2019-07-09 一种高效去除水中有害离子的多孔氧化物吸附材料 Active CN112206742B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910614046.5A CN112206742B (zh) 2019-07-09 2019-07-09 一种高效去除水中有害离子的多孔氧化物吸附材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910614046.5A CN112206742B (zh) 2019-07-09 2019-07-09 一种高效去除水中有害离子的多孔氧化物吸附材料

Publications (2)

Publication Number Publication Date
CN112206742A true CN112206742A (zh) 2021-01-12
CN112206742B CN112206742B (zh) 2023-09-15

Family

ID=74048352

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910614046.5A Active CN112206742B (zh) 2019-07-09 2019-07-09 一种高效去除水中有害离子的多孔氧化物吸附材料

Country Status (1)

Country Link
CN (1) CN112206742B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113351153A (zh) * 2021-05-24 2021-09-07 桂林理工大学 一种MgFe-LDO-MnO2复合材料的制备方法及其应用
CN116422288A (zh) * 2023-05-04 2023-07-14 西南科技大学 一种基于电镀污泥构造的LDHs吸附材料的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102068957A (zh) * 2009-11-20 2011-05-25 中国科学院金属研究所 锆基除砷材料及其制备方法与应用
CN102249350A (zh) * 2011-05-13 2011-11-23 北京大学 单相多铁材料及其制备方法
CN102838162A (zh) * 2011-06-21 2012-12-26 中国科学院过程工程研究所 多孔二氧化钛空心球、制备及用于吸附Cr(VI)的方法
CN105289543A (zh) * 2015-11-18 2016-02-03 南京大学 具羧基和羟基且负载纳米水合氧化锆复合水凝胶、制备及应用
CN108147453A (zh) * 2017-12-28 2018-06-12 苏州大学 一种新型二氧化钛微粒材料及其制备方法、在环保领域中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102068957A (zh) * 2009-11-20 2011-05-25 中国科学院金属研究所 锆基除砷材料及其制备方法与应用
CN102249350A (zh) * 2011-05-13 2011-11-23 北京大学 单相多铁材料及其制备方法
CN102838162A (zh) * 2011-06-21 2012-12-26 中国科学院过程工程研究所 多孔二氧化钛空心球、制备及用于吸附Cr(VI)的方法
CN105289543A (zh) * 2015-11-18 2016-02-03 南京大学 具羧基和羟基且负载纳米水合氧化锆复合水凝胶、制备及应用
CN108147453A (zh) * 2017-12-28 2018-06-12 苏州大学 一种新型二氧化钛微粒材料及其制备方法、在环保领域中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WUJIE DONG等: "A Facile Top-Down Method to Fabricate Transition Metal Compounds with Fascinating Structures from Etching method", 《GEN. CHEM.》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113351153A (zh) * 2021-05-24 2021-09-07 桂林理工大学 一种MgFe-LDO-MnO2复合材料的制备方法及其应用
CN113351153B (zh) * 2021-05-24 2022-08-09 桂林理工大学 一种MgFe-LDO-MnO2复合材料的制备方法及其应用
CN116422288A (zh) * 2023-05-04 2023-07-14 西南科技大学 一种基于电镀污泥构造的LDHs吸附材料的制备方法及应用

Also Published As

Publication number Publication date
CN112206742B (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
Liao et al. Efficient removal of uranium from wastewater using pig manure biochar: understanding adsorption and binding mechanisms
Li et al. Versatile inorganic-organic hybrid WO x-ethylenediamine nanowires: Synthesis, mechanism and application in heavy metal ion adsorption and catalysis
Cao et al. Ca–La layered double hydroxide (LDH) for selective and efficient removal of phosphate from wastewater
CN114425340B (zh) 一种生物炭修饰钴铁双金属复合催化剂的制备及在催化降解四环素中应用
CN107138131A (zh) 一种高效吸附Cr(VI)的碳‑氧化铝复合材料的制备方法
JP5352853B1 (ja) 放射性Cs汚染水の処理方法
Wu et al. The removal of tetracycline, oxytetracycline, and chlortetracycline by manganese oxide–doped copper oxide: the behaviors and insights of Cu-Mn combination for enhancing antibiotics removal
CN113145062B (zh) 一种基于普鲁士蓝和水滑石的磁性吸附材料的制备方法
Uddin et al. Adsorptive removal of pollutants from water using magnesium ferrite nanoadsorbent: a promising future material for water purification
Wang et al. Shell biomass material supported nano-zero valent iron to remove Pb2+ and Cd2+ in water
CN112206742B (zh) 一种高效去除水中有害离子的多孔氧化物吸附材料
JP5774619B2 (ja) 低bet四三酸化マンガンの製造及び粒度制御方法、並びに四三酸化マンガン
Zhang et al. Activation of ozone by CoFe-LDO-BC heterogeneous catalyst for efficient mineralization of methylene blue: The role of oxygen vacancies and acidic sites
Li et al. Green and Efficient Al-Doped LaFe x Al1–x O3 Perovskite Oxide for Enhanced Phosphate Adsorption with Creation of Oxygen Vacancies
CN111097384A (zh) 一种C-Bi2O3-CuO-ZnO吸附材料及其制备方法和应用
CN102068957B (zh) 锆基除砷材料及其制备方法与应用
Li et al. Mineralization and electroreduction-recycling of toxic Pb2+ ions using memory-effect of layered double hydroxide structure with ultrahigh capacity
Amarray et al. Reduction of cadmium content in 29% and 54% P2O5 phosphoric acid by manganese oxide material birnessite-type Na-MnO2
JP2014115135A (ja) 放射性Cs吸着剤及びその製造方法
CN105289576A (zh) 一种ZnAl-LDO@Nb2O5光催化材料的制备方法
Prakash et al. Wastewater Treatment: The Emergence of Cobalt Ferrite and Its Composites in Sulfate Radical-Based Advanced Oxidation Processes
Shi et al. Synthesis of efficient, reusable, biomorphic hierarchical MgAlLa mixed metal oxides for removal of fluoride ions
Hosny et al. Utilization of cross-linked chitosan/ACTF biocomposite for softening hard water: optimization by adsorption modeling
CN102688665B (zh) 一种克劳斯尾气综合治理联产硫酸锰的方法
CN110090649A (zh) 一种掺银非均相臭氧催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant