CN112149329B - 核电厂关键设备的状态预演方法、系统、设备及存储介质 - Google Patents
核电厂关键设备的状态预演方法、系统、设备及存储介质 Download PDFInfo
- Publication number
- CN112149329B CN112149329B CN202011007520.7A CN202011007520A CN112149329B CN 112149329 B CN112149329 B CN 112149329B CN 202011007520 A CN202011007520 A CN 202011007520A CN 112149329 B CN112149329 B CN 112149329B
- Authority
- CN
- China
- Prior art keywords
- equipment
- key equipment
- key
- state
- identifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 59
- 238000003860 storage Methods 0.000 title claims abstract description 17
- 230000007246 mechanism Effects 0.000 claims abstract description 67
- 238000004364 calculation method Methods 0.000 claims abstract description 40
- 230000000007 visual effect Effects 0.000 claims abstract description 35
- 238000012800 visualization Methods 0.000 claims abstract description 29
- 238000013507 mapping Methods 0.000 claims abstract description 25
- 230000008859 change Effects 0.000 claims abstract description 15
- 238000001514 detection method Methods 0.000 claims description 20
- 238000010276 construction Methods 0.000 claims description 14
- 238000012544 monitoring process Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 8
- 238000007781 pre-processing Methods 0.000 claims description 7
- 238000012423 maintenance Methods 0.000 abstract description 8
- 230000009286 beneficial effect Effects 0.000 abstract description 4
- 230000008569 process Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000013178 mathematical model Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/10—Pre-processing; Data cleansing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0221—Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0224—Process history based detection method, e.g. whereby history implies the availability of large amounts of data
- G05B23/0227—Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
- G05B23/0232—Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on qualitative trend analysis, e.g. system evolution
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D3/00—Control of nuclear power plant
- G21D3/001—Computer implemented control
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D3/00—Control of nuclear power plant
- G21D3/04—Safety arrangements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- High Energy & Nuclear Physics (AREA)
- Geometry (AREA)
- Automation & Control Theory (AREA)
- Plasma & Fusion (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Emergency Management (AREA)
- Business, Economics & Management (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Biology (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
本申请实施例属于核电技术领域,涉及一种核电厂关键设备的状态预演方法、装置、计算机设备及存储介质,所述方法包括:获取每个关键设备标识的历史运行数据,基于历史运行数据,构建关键设备标识的状态趋势预测模型,通过有限元网格建模方法,建立关键设备标识的三维可视化模型,根据预设的设备机理模型库,采用状态趋势预测模型进行关键设备的状态预测计算,并将计算结果映射到三维可视化模型中进行演示,实现直观便捷看到关键设备的变化趋势和可能出现故障的时间点,有利于提高设备维护的效率和及时性。
Description
技术领域
本申请属于核电技术领域,尤其涉及一种核电厂关键设备的状态预演方法、系统、设备及存储介质。
背景技术
核电站设备种类繁多、结构复杂、运行环境条件严苛。一旦设备发生故障,不仅会使设备受损,还可能引发系统级故障,导致机组跳机、跳堆,造成巨大的经济损失,其中,安全级关键设备的故障,甚至会导致核安全事故发生,如何实现及时对役机组关键设备的安全进行检测诊断,是亟需解决和研究的问题。
发明人在实现本发明的过程中,发现现有技术至少存在如下问题:现有的设备状态预测和维护管理,主要依靠个人主观认识和经验,虽然三维可视化技术比较成熟,但由于核电站设备种类繁多、结构复杂,三维可视化技术很难直接运用到核电站关键设备的状态预测可视化之中,如何快速直观获取核电厂每个关键设备状态变化趋势,成了一个亟待解决的难题。
发明内容
本申请实施例的目的在于:提出一种核电厂关键设备的状态预演方法、装置、计算机设备及存储介质,以提高核电站关键设备状态预演的直观性。
为了解决上述技术问题,本申请实施例提供一种核电厂关键设备的状态预演方法,包括:
获取每个关键设备标识的历史运行数据;
基于所述历史运行数据,构建所述关键设备标识的状态趋势预测模型;
通过有限元网格建模方法,建立所述关键设备标识的三维可视化模型;
根据预设的设备机理模型库,采用状态趋势预测模型进行关键设备的状态预测计算,并将计算结果映射到所述三维可视化模型中进行演示。
可选地,所述获取每个关键设备标识的历史运行数据包括:
获取预设的关键设备标识清单,其中,所述预设的关键设备标识清单包括关键设备标识;
针对每个关键设备标识,获取所述关键设备标识对应的全寿命周期,并在全寿命周期,定时对所述关键设备进行数据采集,得到所述关键设备标识的初始运行数据,其中,所述初始运行数据包括关键设备标识、设备参数和设备参数值,所述设备参数用于对所述关键设备标识对应的设备的运行状态进行表征;
对所述初始运行数据进行数据预处理,得到历史参考数据,并将所述历史参考数据存储到历史运行数据库中;
根据获取到的关键设备标识,从所述历史运行数据库中获取所述关键设备标识对应的历史参考数据,作为所述历史运行数据。
可选地,所述在全寿命周期,定时对所述关键设备进行数据采集,得到所述关键设备标识的初始运行数据包括:
构建关键设备检测系统;
接收关键设备状态参数表,其中,所述关键设备状态参数表包括至少一项设备参数和至少一项关键设备标识;
将所述关键设备状态参数表中包含的设备参数作为目标参数,将所述关键设备状态参数表中包含的关键设备标识作为目标标识;
通过所述关键设备检测系统,对所述目标标识中的目标参数进行检测,得到所述目标参数对应的参数值,将所述目标标识、目标参数和目标参数对应的参数值,作为所述初始运行数据。
可选地,所述根据预设的设备机理模型库,采用状态趋势预测模型进行关键设备的状态预测计算,并将计算结果映射到所述三维可视化模型中进行演示包括:
将接收到的关键设备标识作为目标设备标识,并基于所述目标设备标识,构建所述状态趋势预测模型、所述预设的设备机理模型库和所述三维可视化模型的映射关系;
基于所述预设的设备机理模型库,获取所述目标设备标识对应的各部位状态;
基于所述映射关系,将所述目标设备标识对应的各部位状态输入到所述状态趋势预测模型中进行预测计算,得到预测结果;
采用所述三维可视化模型对所述预测结果进行演示。
可选地,在所述根据预设的设备机理模型库,采用状态趋势预测模型进行关键设备的状态预测计算,并将计算结果映射到所述三维可视化模型中进行演示之前,所述核电厂关键设备的状态预演方法还包括:
获取每个所述关键设备标识对应的设备特性数据;
基于所述设备特性数据,构建机理模型;
将所述机理模型、关键设备标识和关键设备标识对应的设备参数进行关联,得到所述预设的设备机理模型库。
可选地,在所述根据预设的设备机理模型库,采用状态趋势预测模型进行关键设备的状态预测计算,并将计算结果映射到所述三维可视化模型中进行演示之后,所述核电厂关键设备的状态预演方法还包括:
获取演示中显示的在预设时间区间内出现故障的关键设备标识,作为待维护设备标识,并获取所述待维护设备标识的演示状态的变化信息,作为参考趋势信息;
将所述待维护设备标识和所述参考趋势信息发送给监控端。
为了解决上述技术问题,本申请实施例还提供一种核电厂关键设备的状态预演装置,包括:
历史数据获取模块,用于获取每个关键设备标识的历史运行数据;
预测模型构建模块,用于基于所述历史运行数据,构建所述关键设备标识的状态趋势预测模型;
可视化模型构建模块,用于通过有限元网格建模方法,建立所述关键设备标识的三维可视化模型;
三维可视化演示模块,用于根据预设的设备机理模型库,采用状态趋势预测模型进行关键设备的状态预测计算,并将计算结果映射到所述三维可视化模型中进行演示。
可选地,所述历史数据获取模块包括:
清单获取单元,用于获取预设的关键设备标识清单,其中,所述预设的关键设备标识清单包括关键设备标识;
数据采集单元,用于针对每个关键设备标识,获取所述关键设备标识对应的全寿命周期,并在全寿命周期,定时对所述关键设备进行数据采集,得到所述关键设备标识的初始运行数据,其中,所述初始运行数据包括关键设备标识、设备参数和设备参数值,所述设备参数用于对所述关键设备标识对应的设备的运行状态进行表征;
数据处理单元,用于对所述初始运行数据进行数据预处理,得到历史参考数据,并将所述历史参考数据存储到历史运行数据库中;
数据生成单元,用于根据获取到的关键设备标识,从所述历史运行数据库中获取所述关键设备标识对应的历史参考数据,作为所述历史运行数据。
可选地,所述数据采集单元包括:
检测系统构建子单元,用于构建关键设备检测系统;
参数表接收子单元,用于接收关键设备状态参数表,其中,所述关键设备状态参数表包括至少一项设备参数和至少一项关键设备标识;
数据确认子单元,用于将所述关键设备状态参数表中包含的设备参数作为目标参数,将所述关键设备状态参数表中包含的关键设备标识作为目标标识;
数据检测子单元,用于通过所述关键设备检测系统,对所述目标标识中的目标参数进行检测,得到所述目标参数对应的参数值,将所述目标标识、目标参数和目标参数对应的参数值,作为所述初始运行数据。
可选地,所述三维可视化演示模块包括:
映射关系构建单元,用于将接收到的关键设备标识作为目标设备标识,并基于所述目标设备标识,构建所述状态趋势预测模型、所述预设的设备机理模型库和所述三维可视化模型的映射关系;
状态获取单元,用于基于所述预设的设备机理模型库,获取所述目标设备标识对应的各部位状态;
结果预测单元,用于基于所述映射关系,将所述目标设备标识对应的各部位状态输入到所述状态趋势预测模型中进行预测计算,得到预测结果;
三维演示单元,用于采用所述三维可视化模型对所述预测结果进行演示。
可选地,所述核电厂关键设备的状态预演装置还包括:
特性数据获取模块,用于获取每个所述关键设备标识对应的设备特性数据;
机构模型构建模块,用于基于所述设备特性数据,构建机理模型;
机理模型库生成模块,用于将所述机理模型、关键设备标识和关键设备标识对应的设备参数进行关联,得到所述预设的设备机理模型库。
可选地,所述核电厂关键设备的状态预演装置还包括:
信息获取模块,用于获取演示中显示的在预设时间区间内出现故障的关键设备标识,作为待维护设备标识,并获取所述待维护设备标识的演示状态的变化信息,作为参考趋势信息;
维护提醒模块,用于将所述待维护设备标识和所述参考趋势信息发送给监控端。
为了解决上述技术问题,本申请实施例还提供一种计算机设备,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序时实现上述核电厂关键设备的状态预演方法的步骤。
为了解决上述技术问题,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述的界面显示的方法的步骤。
与现有技术相比,本申请实施例主要有以下有益效果:
获取每个关键设备标识的历史运行数据,基于历史运行数据,构建关键设备标识的状态趋势预测模型,通过有限元网格建模方法,建立关键设备标识的三维可视化模型,根据预设的设备机理模型库,采用状态趋势预测模型进行关键设备的状态预测计算,并将计算结果映射到三维可视化模型中进行演示,实现直观便捷看到关键设备的变化趋势和可能出现故障的时间点,有利于提高设备维护的效率和及时性。
附图说明
为了更清楚地说明本申请中的方案,下面将对本申请实施例描述中所需要使用的附图作一个简单介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请可以应用于其中的示例性系统架构图;
图2是本申请的核电厂关键设备的状态预演方法的一个实施例的流程图;
图3是根据本申请的核电厂关键设备的状态预演装置的一个实施例的结构示意图;
图4是根据本申请的计算机设备的一个实施例的结构示意图。
具体实施方式
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
为了使本技术领域的人员更好地理解本申请方案,下面将结合附图,对本申请实施例中的技术方案进行清楚、完整地描述。
如图1所示,系统架构100可以包括终端设备101、102、103,网络104和服务器105。网络104用以在终端设备101、102、103和服务器105之间提供通信链路的介质。网络104可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。
用户可以使用终端设备101、102、103通过网络104与服务器105交互,以接收或发送消息等。
终端设备101、102、103可以是具有显示屏并且支持网页浏览的各种电子设备,包括但不限于智能手机、平板电脑、电子书阅读器、MP3播放器(Moving Picture E界面显示perts Group Audio Layer III,动态影像专家压缩标准音频层面3)、MP4(Moving PictureE界面显示perts Group Audio Layer IV,动态影像专家压缩标准音频层面4)播放器、膝上型便携计算机和台式计算机等等。
服务器105可以是提供各种服务的服务器,例如对终端设备101、102、103上显示的页面提供支持的后台服务器。
需要说明的是,本申请实施例所提供的核电厂关键设备的状态预演方法由服务器执行,相应地,核电厂关键设备的状态预演装置设置于服务器中。
应该理解,图1中的终端设备、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器,本申请实施例中的终端设备101、102、103具体可以对应的是实际生产中的应用系统。
请继续参考图2,示出了根据本申请的界面显示的方法的一个实施例的流程图。该核电厂关键设备的状态预演方法,包括以下步骤:
S201:获取每个关键设备标识的历史运行数据。
具体地,获取每个关键设备标识的历史运行数据。
其中,关键设备标识是指用于对关键设备进行唯一标识的字符串,其具体可以为汉字、字母和符号等中的一种或多种组合。
其中,历史运行数据是指关键设备标识对应的设备,在运行过程中被记录下的各项状态数据。
需要说明的是,历史运行数据包括时间属性,也即,同一关键设备标识,在不同时间点,对应的历史运行数据可能相同,也可能不相同。
S202:基于历史运行数据,构建关键设备标识的状态趋势预测模型。
具体地,通过历史运行数据,构建针对关键设备标识的状态趋势预测模型。
在本实施例中,状态趋势预测模型为根据大量的历史运行数据之间的内部关联训练得到,状态趋势预测模型具体包括但不限于:时间序列预测模型、回归预测模型、卡尔曼滤波预测模型和BP神经网络(Back-ProPagation Network)预测模型等,具体选用的模型,可根据实际情况进行灵活选取,此处不做限定。
容易理解地,状态趋势预测模型用于根据关键设备标识的状态变化,来推算其在未来一段时间内状态演变趋势。
S203:通过有限元网格建模方法,建立关键设备标识的三维可视化模型。
具体地,鉴于核电厂设备种类繁多、结构复杂的特性,本实施例采用有限元网格建模的方法,将每个关键设备标识作为一个有限元,通过有限元网格建模的方式,构建关键设备标识的三维可视化模型。
其中,有限元(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术,有限元建模(Finite Element Modeling)是建立有限元模型的过程,建模的中心任务是离散,但围绕离散还需要完成很多与之相关的工作,如单结构形式处理、几何模型建立、单元类型和数量选择、单元特性定义、单元质量检查、编号顺序优化以及模型边界条件的定义等。
本实施例中的,通过对每个关键设备标识对应的设备,进行有限元建模,得到每个关键设备标识对应的单元,进而按照实际需要,对这些单元进行网格划分,得到有限元网格,并采用三维可视化的方式,将这些有限元网格投放到三维模型中,得到关键设备标识的三维可视化模型。
其中,三维可视化模型是一种能将关键设备标识对应的设备状态变化进行三维可视的模型,三维可视是数据体的一种表征形式,它能够利用大量数据,检查资料的连续性,辨认资料真伪,发现和提出有用异常,为分析、理解及重复数据提供了有用工具,从而有利于实现对关键设备的各种状态进行快速直观的演示。
S204:根据预设的设备机理模型库,采用状态趋势预测模型进行关键设备的状态预测计算,并将计算结果映射到三维可视化模型中进行演示。
具体地,根据预设的设备机理模型库,采用状态趋势预测模型进行关键设备的状态预测计算,并将计算结果映射到三维可视化模型中进行演示,具体三维可视化演示过程可参考后续实施例的描述,为避免重复,此处不再赘述。
其中,预设的设备机理模型库是指预先配置好的包含关键设备机理模型的资料库,机理模型,亦称白箱模型。根据对象、生产过程的内部机制或者物质流的传递机理建立起来的精确数学模型。预设的设备机理模型库的具体生成方式,可参考后续实施例的描述,为避免重复,此处不再赘述。
在本实施例中,通过获取每个关键设备标识的历史运行数据,基于历史运行数据,构建关键设备标识的状态趋势预测模型,通过有限元网格建模方法,建立关键设备标识的三维可视化模型,根据预设的设备机理模型库,采用状态趋势预测模型进行关键设备的状态预测计算,并将计算结果映射到三维可视化模型中进行演示,实现直观便捷看到关键设备的变化趋势和可能出现故障的时间点,有利于提高设备维护的效率和及时性。
在本实施例的一些可选的实现方式中,步骤S201中,获取每个关键设备标识的历史运行数据包括:
获取预设的关键设备标识清单,其中,预设的关键设备标识清单包括关键设备标识;
针对每个关键设备标识,获取关键设备标识对应的全寿命周期,并在全寿命周期,定时对关键设备进行数据采集,得到关键设备标识的初始运行数据,其中,初始运行数据包括关键设备标识、设备参数和设备参数值,设备参数用于对关键设备标识对应的设备的运行状态进行表征;
对初始运行数据进行数据预处理,得到历史参考数据,并将历史参考数据存储到历史运行数据库中;
根据获取到的关键设备标识,从历史运行数据库中获取关键设备标识对应的历史参考数据,作为历史运行数据。
其中,初始运行数据是指关键设备检测系统采集到的数据。
其中,全寿命周期是设备寿命历程的所有环节。
其中,数据预处理主要是针对初始运行数据进行数据的规范化处理和密集数据筛选,规范化处理是指对数据格式、范围等进行统一,密集数据筛选是指按照预设数据密度选取条件,对过于密集的数据进行筛选,减少过于密集的数据量,有利于提高后续模型预测的效率。
应理解,设备参数值是指设备参数对应的具体量化值。
本实施例中,通过对关键设备进行数据采集,并对采集到的数据进行数据与数据,得到历史参考数据,获取到的数据为根据真实运行状态得到,更为真实客观,有利于提高后续通过历史参考数据构建的状态趋势预测模型的预测准确率。
在本实施例的一些可选的实现方式中,在全寿命周期,定时对关键设备进行数据采集,得到关键设备标识的初始运行数据包括:
构建关键设备检测系统;
接收关键设备状态参数表,其中,关键设备状态参数表包括至少一项设备参数和至少一项关键设备标识;
将关键设备状态参数表中包含的设备参数作为目标参数,将关键设备状态参数表中包含的关键设备标识作为目标标识;
通过关键设备检测系统,对目标标识中的目标参数进行检测,得到目标参数对应的参数值,将目标标识、目标参数和目标参数对应的参数值,作为初始运行数据。
具体地,通过构建关键设备检测系统,在接收到关键设备状态参数表后,针对该对表中的关键设备标识和设备参数进行检测,得到初始运行数据。
其中,关键设备状态参数表,是指用于标识检测目标的参数表,包括至少一项设备参数和至少一项关键设备标识,包含的关键设备标识为需要进行数据采集的关键设备标识,包含的设备参数为需要进行采集的数据项。
其中,关键设备检测系统是指用于对待检测设备和待检测数据项进行检测的数据采集系统。
本实施例中,通过构建关键设备检测系统,在全寿命周期,定时对关键设备进行数据采集,得到关键设备标识的初始运行数据,使得获取到的数据真实客观,使用该数据构建状态趋势预测模型,有利于提高状态趋势预测模型的预测准确率。
在本实施例的一些可选的实现方式中,步骤S204中,根据预设的设备机理模型库,采用状态趋势预测模型进行关键设备的状态预测计算,并将计算结果映射到三维可视化模型中进行演示包括:
将接收到的关键设备标识作为目标设备标识,并基于目标设备标识,构建状态趋势预测模型、预设的设备机理模型库和三维可视化模型的映射关系;
基于预设的设备机理模型库,获取目标设备标识对应的各部位状态;
基于映射关系,将目标设备标识对应的各部位状态输入到状态趋势预测模型中进行预测计算,得到预测结果;
采用三维可视化模型对预测结果进行演示。
具体地,在接收到至少一个关键设备标识时,将接收到的关键设备标识作为目标设备标识,并从状态趋势预测模型、预设的设备机理模型库和三维可视化模型中获取目标设备标识,通过目标设备标识,构建状态趋势预测模型、预设的设备机理模型库和三维可视化模型中获取目标设备标识之间的映射关系,进而将关键设备标识输入到预设的设备机理模型库,获取目标设备标识对应的各部位状态,并将目标设备标识对应的各部位状态输入到状态趋势预测模型中,通过模拟状态的变化,进行预测计算,得到预测结果,最后采用三维可视化模型对预测结果进行三维演示。
在本实施例中,通过采用目标设备标识,构建状态趋势预测模型、预设的设备机理模型库和三维可视化模型的映射关系,实现采用三维可视化模型对状态趋势预测模型的预测结果进行实时演示,有利于直观显示关键设备在预转过程中可能出现的问题,有利于提高关键设备维护的效率。
在本实施例的一些可选的实现方式中,在步骤S204之前,该核电厂关键设备的状态预演方法还包括:
获取每个关键设备标识对应的设备特性数据;
基于设备特性数据,构建机理模型;
将机理模型、关键设备标识和关键设备标识对应的设备参数进行关联,得到预设的设备机理模型库。
具体地,根据关键设备标识,通过网络传输协议,从这些设备对应的厂商获取关键设备标识对应的设备特性数据,并通过设备特性数据建立关键设备标识对应的机理模型,再将机理模型、关键设备标识和关键设备标识对应的设备参数进行关联,得到预设的设备机理模型库。
其中,网络传输协议包括但不限于:互联网控制报文协议(Internet ControlMessage Protocol,ICMP)、地址解析协议(ARP Address Resolution Protocol,ARP)和文件传输协议(File Transfer Protocol,FTP)等。
其中,机理模型,亦称白箱模,根据对象、生产过程的内部机制或者物质流的传递机理建立起来的精确数学模型,它是基于质量平衡方程、能量平衡方程、动量平衡方程、相平衡方程以及某些物性方程、化学反应定律、电路基本定律等而获得对象或过程的数学模型。机理模型的优点是参数具有非常明确的物理意义,在本实施例中,是通过对大量设备特性数据进行模拟,从而获取设备特性数据与状态之间的机理模型。
其中,设备特性数据是指设备性能状态相关的参数,例如:可管理性、安全能力、支持发射功率可调整和支持MIMO功能等。
在本实施例中,通过从设备特性数据构建机理模型,进而得到预设的设备机理模型库,有利于后续通过该预设的设备机理模型库进行趋势预测,提高预测的效率和准确率。
在本实施例的一些可选的实现方式中,在步骤S204之后,该核电厂关键设备的状态预演方法还包括:
获取演示中显示的在预设时间区间内出现故障的关键设备标识,作为待维护设备标识,并获取待维护设备标识的演示状态的变化信息,作为参考趋势信息;
将待维护设备标识和参考趋势信息发送给监控端。
具体地,在三维可视化演示的过程中,存在时间的变化,预先设置一个时间区间,将在演示过程中,预设时间区间内出现故障的关键设备标识,作为待维护设备标识,并获取待维护设备标识的演示状态的变化信息,作为参考趋势信息,并将待维护设备标识和参考趋势信息发送给监控端,以使监控端的管理人员根据待维护设备标识找到对应的设备,并根据参考趋势信息,确定维护的设备部位。
其中,预设时间区间可以根据实际需要进行设定,此处不做限定。
需要说明的是,本实施例还可以根据实际需要,设置故障的等级和每个等级的故障具体对应的内容。
在本实施例中,通过对演示过程中故障状态的监控,获取对应的待维护设备标识和参考趋势信息并发送给监控端,有利于及时对后续可能发送的故障进行提前维护,提高关键设备维护的及时性和效率。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,该计算机程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,前述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)等非易失性存储介质,或随机存储记忆体(Random Access Memory,RAM)等。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
进一步参考图3,作为对上述图2所示方法的实现,本申请提供了一种核电厂关键设备的状态预演装置的一个实施例,该装置实施例与图2所示的方法实施例相对应,该装置具体可以应用于各种电子设备中。
如图3所示,本实施例所述的核电厂关键设备的状态预演装置包括:历史数据获取模块31、预测模型构建模块32、可视化模型构建模块33以及三维可视化演示模块34。其中:
历史数据获取模块31,用于获取每个关键设备标识的历史运行数据;
预测模型构建模块32,用于基于历史运行数据,构建关键设备标识的状态趋势预测模型;
可视化模型构建模块33,用于通过有限元网格建模方法,建立关键设备标识的三维可视化模型;
三维可视化演示模块34,用于根据预设的设备机理模型库,采用状态趋势预测模型进行关键设备的状态预测计算,并将计算结果映射到三维可视化模型中进行演示。
可选地,历史数据获取模块31包括:
清单获取单元,用于获取预设的关键设备标识清单,其中,预设的关键设备标识清单包括关键设备标识;
数据采集单元,用于针对每个关键设备标识,获取关键设备标识对应的全寿命周期,并在全寿命周期,定时对关键设备进行数据采集,得到关键设备标识的初始运行数据,其中,初始运行数据包括关键设备标识、设备参数和设备参数值,设备参数用于对关键设备标识对应的设备的运行状态进行表征;
数据处理单元,用于对初始运行数据进行数据预处理,得到历史参考数据,并将历史参考数据存储到历史运行数据库中;
数据生成单元,用于根据获取到的关键设备标识,从历史运行数据库中获取关键设备标识对应的历史参考数据,作为历史运行数据。
可选地,数据采集单元包括:
检测系统构建子单元,用于构建关键设备检测系统;
参数表接收子单元,用于接收关键设备状态参数表,其中,关键设备状态参数表包括至少一项设备参数和至少一项关键设备标识;
数据确认子单元,用于将关键设备状态参数表中包含的设备参数作为目标参数,将关键设备状态参数表中包含的关键设备标识作为目标标识;
数据检测子单元,用于通过关键设备检测系统,对目标标识中的目标参数进行检测,得到目标参数对应的参数值,将目标标识、目标参数和目标参数对应的参数值,作为初始运行数据。
可选地,三维可视化演示模块34包括:
映射关系构建单元,用于将接收到的关键设备标识作为目标设备标识,并基于目标设备标识,构建状态趋势预测模型、预设的设备机理模型库和三维可视化模型的映射关系;
状态获取单元,用于基于预设的设备机理模型库,获取目标设备标识对应的各部位状态;
结果预测单元,用于基于映射关系,将目标设备标识对应的各部位状态输入到状态趋势预测模型中进行预测计算,得到预测结果;
三维演示单元,用于采用三维可视化模型对预测结果进行演示。
可选地,核电厂关键设备的状态预演装置还包括:
特性数据获取模块,用于获取每个关键设备标识对应的设备特性数据;
机构模型构建模块,用于基于设备特性数据,构建机理模型;
机理模型库生成模块,用于将机理模型、关键设备标识和关键设备标识对应的设备参数进行关联,得到预设的设备机理模型库。
可选地,核电厂关键设备的状态预演装置还包括:
信息获取模块,用于获取演示中显示的在预设时间区间内出现故障的关键设备标识,作为待维护设备标识,并获取待维护设备标识的演示状态的变化信息,作为参考趋势信息;
维护提醒模块,用于将待维护设备标识和参考趋势信息发送给监控端。
关于上述实施例中核电厂关键设备的状态预演装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
为解决上述技术问题,本申请实施例还提供计算机设备。具体请参阅图4,图4为本实施例计算机设备基本结构框图。
所述计算机设备4包括通过系统总线相互通信连接存储器41、处理器42、网络接口43。需要指出的是,图中仅示出了具有组件连接存储器41、处理器42、网络接口43的计算机设备4,但是应理解的是,并不要求实施所有示出的组件,可以替代的实施更多或者更少的组件。其中,本技术领域技术人员可以理解,这里的计算机设备是一种能够按照事先设定或存储的指令,自动进行数值计算和/或信息处理的设备,其硬件包括但不限于微处理器、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程门阵列(Field-Programmable Gate Array,FPGA)、数字处理器(Digital Signal Processor,DSP)、嵌入式设备等。
所述计算机设备可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述计算机设备可以与用户通过键盘、鼠标、遥控器、触摸板或声控设备等方式进行人机交互。
所述存储器41至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或D界面显示存储器等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等。在一些实施例中,所述存储器41可以是所述计算机设备4的内部存储单元,例如该计算机设备4的硬盘或内存。在另一些实施例中,所述存储器41也可以是所述计算机设备4的外部存储设备,例如该计算机设备4上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。当然,所述存储器41还可以既包括所述计算机设备4的内部存储单元也包括其外部存储设备。本实施例中,所述存储器41通常用于存储安装于所述计算机设备4的操作系统和各类应用软件,例如核电厂关键设备的状态预演方法的程序代码等。此外,所述存储器41还可以用于暂时地存储已经输出或者将要输出的各类数据。
所述处理器42在一些实施例中可以是中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器、或其他数据处理芯片。该处理器42通常用于控制所述计算机设备4的总体操作。本实施例中,所述处理器42用于运行所述存储器41中存储的程序代码或者处理数据,例如运行所述核电厂关键设备的状态预演方法的程序代码。
所述网络接口43可包括无线网络接口或有线网络接口,该网络接口43通常用于在所述计算机设备4与其他电子设备之间建立通信连接。
本申请还提供了另一种实施方式,即提供一种计算机可读存储介质,所述计算机可读存储介质存储有界面显示程序,所述界面显示程序可被至少一个处理器执行,以使所述至少一个处理器执行如上述的核电厂关键设备的状态预演方法的步骤。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
显然,以上所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例,附图中给出了本申请的较佳实施例,但并不限制本申请的专利范围。本申请可以以许多不同的形式来实现,相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。尽管参照前述实施例对本申请进行了详细的说明,对于本领域的技术人员来而言,其依然可以对前述各具体实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等效替换。凡是利用本申请说明书及附图内容所做的等效结构,直接或间接运用在其他相关的技术领域,均同理在本申请专利保护范围之内。
Claims (8)
1.一种核电厂关键设备的状态预演方法,其特征在于,包括:
获取每个关键设备标识的历史运行数据;
基于所述历史运行数据,构建所述关键设备标识的状态趋势预测模型;
通过有限元网格建模方法,建立所述关键设备标识的三维可视化模型;
根据预设的设备机理模型库,采用状态趋势预测模型进行关键设备的状态预测计算,并将计算结果映射到所述三维可视化模型中进行演示,
其中,所述获取每个关键设备标识的历史运行数据包括:
获取预设的关键设备标识清单,其中,所述预设的关键设备标识清单包括关键设备标识;
针对每个关键设备标识,获取所述关键设备标识对应的全寿命周期,并在全寿命周期,定时对所述关键设备进行数据采集,得到所述关键设备标识的初始运行数据,其中,所述初始运行数据包括关键设备标识、设备参数和设备参数值,所述设备参数用于对所述关键设备标识对应的设备的运行状态进行表征;
对所述初始运行数据进行数据预处理,得到历史参考数据,并将所述历史参考数据存储到历史运行数据库中;
根据获取到的关键设备标识,从所述历史运行数据库中获取所述关键设备标识对应的历史参考数据,作为所述历史运行数据。
2.根据权利要求1所述的核电厂关键设备的状态预演方法,其特征在于,所述在全寿命周期,定时对所述关键设备进行数据采集,得到所述关键设备标识的初始运行数据包括:
构建关键设备检测系统;
接收关键设备状态参数表,其中,所述关键设备状态参数表包括至少一项设备参数和至少一项关键设备标识;
将所述关键设备状态参数表中包含的设备参数作为目标参数,将所述关键设备状态参数表中包含的关键设备标识作为目标标识;
通过所述关键设备检测系统,对所述目标标识中的目标参数进行检测,得到所述目标参数对应的参数值,将所述目标标识、目标参数和目标参数对应的参数值,作为所述初始运行数据。
3.根据权利要求1或2所述的核电厂关键设备的状态预演方法,其特征在于,所述根据预设的设备机理模型库,采用状态趋势预测模型进行关键设备的状态预测计算,并将计算结果映射到所述三维可视化模型中进行演示包括:
将接收到的关键设备标识作为目标设备标识,并基于所述目标设备标识,构建所述状态趋势预测模型、所述预设的设备机理模型库和所述三维可视化模型的映射关系;
基于所述预设的设备机理模型库,获取所述目标设备标识对应的各部位状态;
基于所述映射关系,将所述目标设备标识对应的各部位状态输入到所述状态趋势预测模型中进行预测计算,得到预测结果;
采用所述三维可视化模型对所述预测结果进行演示。
4.根据权利要求1所述的核电厂关键设备的状态预演方法,其特征在于,在所述根据预设的设备机理模型库,采用状态趋势预测模型进行关键设备的状态预测计算,并将计算结果映射到所述三维可视化模型中进行演示之前,所述核电厂关键设备的状态预演方法还包括:
获取每个所述关键设备标识对应的设备特性数据;
基于所述设备特性数据,构建机理模型;
将所述机理模型、关键设备标识和关键设备标识对应的设备参数进行关联,得到所述预设的设备机理模型库。
5.根据权利要求1所述的核电厂关键设备的状态预演方法,其特征在于,在所述根据预设的设备机理模型库,采用状态趋势预测模型进行关键设备的状态预测计算,并将计算结果映射到所述三维可视化模型中进行演示之后,所述核电厂关键设备的状态预演方法还包括:
获取演示中显示的在预设时间区间内出现故障的关键设备标识,作为待维护设备标识,并获取所述待维护设备标识的演示状态的变化信息,作为参考趋势信息;
将所述待维护设备标识和所述参考趋势信息发送给监控端。
6.一种核电厂关键设备的状态预演装置,其特征在于,包括:
历史数据获取模块,用于获取每个关键设备标识的历史运行数据;
预测模型构建模块,用于基于所述历史运行数据,构建所述关键设备标识的状态趋势预测模型;
可视化模型构建模块,用于通过有限元网格建模方法,建立所述关键设备标识的三维可视化模型;
三维可视化演示模块,用于根据预设的设备机理模型库,采用状态趋势预测模型进行关键设备的状态预测计算,并将计算结果映射到所述三维可视化模型中进行演示,
其中,所述历史数据获取模块包括:
清单获取单元,用于获取预设的关键设备标识清单,其中,所述预设的关键设备标识清单包括关键设备标识;
数据采集单元,用于针对每个关键设备标识,获取所述关键设备标识对应的全寿命周期,并在全寿命周期,定时对所述关键设备进行数据采集,得到所述关键设备标识的初始运行数据,其中,所述初始运行数据包括关键设备标识、设备参数和设备参数值,所述设备参数用于对所述关键设备标识对应的设备的运行状态进行表征;
数据处理单元,用于对所述初始运行数据进行数据预处理,得到历史参考数据,并将所述历史参考数据存储到历史运行数据库中;
数据生成单元,用于根据获取到的关键设备标识,从所述历史运行数据库中获取所述关键设备标识对应的历史参考数据,作为所述历史运行数据。
7.一种计算机设备,其特征在于,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至5中任一项所述核电厂关键设备的状态预演方法的步骤。
8.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至5中任一项所述的核电厂关键设备的状态预演方法的步骤。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011007520.7A CN112149329B (zh) | 2020-09-23 | 2020-09-23 | 核电厂关键设备的状态预演方法、系统、设备及存储介质 |
PCT/CN2020/134722 WO2021227468A1 (zh) | 2020-09-23 | 2020-12-09 | 核电厂关键设备的状态预演方法、系统、设备及存储介质 |
EP20935501.5A EP4235482A4 (en) | 2020-09-23 | 2020-12-09 | CONDITION PREVIEW METHOD AND SYSTEM FOR KEY EQUIPMENT OF A NUCLEAR POWER PLANT AS WELL AS DEVICE AND STORAGE MEDIUM |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011007520.7A CN112149329B (zh) | 2020-09-23 | 2020-09-23 | 核电厂关键设备的状态预演方法、系统、设备及存储介质 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112149329A CN112149329A (zh) | 2020-12-29 |
CN112149329B true CN112149329B (zh) | 2023-09-08 |
Family
ID=73897791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011007520.7A Active CN112149329B (zh) | 2020-09-23 | 2020-09-23 | 核电厂关键设备的状态预演方法、系统、设备及存储介质 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4235482A4 (zh) |
CN (1) | CN112149329B (zh) |
WO (1) | WO2021227468A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113889287A (zh) * | 2021-10-19 | 2022-01-04 | 成都万维科技有限责任公司 | 数据处理方法、装置、系统及存储介质 |
CN114615344B (zh) * | 2022-02-08 | 2023-07-28 | 广东智有盈能源技术有限公司 | 一种电力仪表智能规约转换方法与装置 |
CN115018143B (zh) * | 2022-05-31 | 2023-04-07 | 深圳信息职业技术学院 | 一种预测核电站停堆时间的方法及系统 |
CN115364992B (zh) * | 2022-08-22 | 2023-12-01 | 国能长源武汉青山热电有限公司 | 一种磨煤机健康监测系统及健康监测方法 |
CN116149282B (zh) * | 2023-04-18 | 2023-09-26 | 张家港广大特材股份有限公司 | 一种基于流程管控钢材冶炼的加工控制方法及系统 |
CN116487084A (zh) * | 2023-04-21 | 2023-07-25 | 中广核研究院有限公司 | 核电厂运行保护方法、装置、计算机设备和存储介质 |
CN117407458A (zh) * | 2023-10-24 | 2024-01-16 | 宁波极望信息科技有限公司 | 对目标区域内的设备进行监控的可视化监控方法及系统 |
CN117972348B (zh) * | 2024-02-01 | 2024-11-08 | 山东云天安全技术有限公司 | 一种基于模型的集群运行状态确定方法、设备及介质 |
CN117932972B (zh) * | 2024-03-15 | 2024-05-28 | 南京凯奥思数据技术有限公司 | 基于web应用于设备状态算法模型的可视化建模平台及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104850750A (zh) * | 2015-05-27 | 2015-08-19 | 东北大学 | 一种核电站反应堆保护系统可靠性分析方法 |
CN108074021A (zh) * | 2016-11-10 | 2018-05-25 | 中国电力科学研究院 | 一种配电网风险辨识系统及方法 |
CN109214595A (zh) * | 2018-10-23 | 2019-01-15 | 中核核电运行管理有限公司 | 基于大数据分析的核电厂主泵三级密封故障预测方法 |
CN109376209A (zh) * | 2018-10-18 | 2019-02-22 | 苏州逸凡特环境修复有限公司 | 污染场地数据库3d模型展示系统 |
CN110175756A (zh) * | 2019-05-07 | 2019-08-27 | 岭澳核电有限公司 | 核电站信息系统运行安全预警方法、装置、设备及介质 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7962440B2 (en) * | 2007-09-27 | 2011-06-14 | Rockwell Automation Technologies, Inc. | Adaptive industrial systems via embedded historian data |
WO2015112984A1 (en) * | 2014-01-27 | 2015-07-30 | Terrapower, Llc | Modeling for fuel element deformation |
RU2019128533A (ru) * | 2017-02-27 | 2021-03-29 | ТерраПауэр, ЭлЭлСи | Система и способ моделирования ядерного реактора |
-
2020
- 2020-09-23 CN CN202011007520.7A patent/CN112149329B/zh active Active
- 2020-12-09 EP EP20935501.5A patent/EP4235482A4/en active Pending
- 2020-12-09 WO PCT/CN2020/134722 patent/WO2021227468A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104850750A (zh) * | 2015-05-27 | 2015-08-19 | 东北大学 | 一种核电站反应堆保护系统可靠性分析方法 |
CN108074021A (zh) * | 2016-11-10 | 2018-05-25 | 中国电力科学研究院 | 一种配电网风险辨识系统及方法 |
CN109376209A (zh) * | 2018-10-18 | 2019-02-22 | 苏州逸凡特环境修复有限公司 | 污染场地数据库3d模型展示系统 |
CN109214595A (zh) * | 2018-10-23 | 2019-01-15 | 中核核电运行管理有限公司 | 基于大数据分析的核电厂主泵三级密封故障预测方法 |
CN110175756A (zh) * | 2019-05-07 | 2019-08-27 | 岭澳核电有限公司 | 核电站信息系统运行安全预警方法、装置、设备及介质 |
Also Published As
Publication number | Publication date |
---|---|
CN112149329A (zh) | 2020-12-29 |
EP4235482A4 (en) | 2024-11-06 |
WO2021227468A1 (zh) | 2021-11-18 |
EP4235482A1 (en) | 2023-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112149329B (zh) | 核电厂关键设备的状态预演方法、系统、设备及存储介质 | |
CN102946616B (zh) | 一种物联网中间件性能测试系统和测试方法 | |
US20210406764A1 (en) | Method, electronic device, and computer program product for monitoring field device | |
CN112993338A (zh) | 一种储能系统的监控方法、装置及设备 | |
CN114662618B (zh) | 一种基于联邦学习的故障诊断方法、装置及相关设备 | |
CN116052300B (zh) | 一种基于数字孪生的电力巡检系统和方法 | |
CN114385869A (zh) | 检测数据异常的方法、装置、存储介质及计算机设备 | |
CN107678852A (zh) | 基于流数据实时计算的方法、系统、设备及存储介质 | |
CN114564374A (zh) | 算子性能评估方法、装置、电子设备及存储介质 | |
CN110347694B (zh) | 一种基于物联网的设备监控方法、装置及系统 | |
CN115237724A (zh) | 基于人工智能的数据监控方法、装置、设备及存储介质 | |
CN115757075A (zh) | 任务异常检测方法、装置、计算机设备及存储介质 | |
CN115712422A (zh) | 表单页面的生成方法、装置、计算机设备及存储介质 | |
CN107886180A (zh) | 航司创单接口监控方法、装置、电子设备、存储介质 | |
CN117709715A (zh) | 一种隧道工程施工风险评估方法、系统、终端及介质 | |
CN117057772A (zh) | 一种设备故障检测维修实时跟踪展示方法及系统 | |
CN116893630A (zh) | 用于资产监控的系统、方法和设备 | |
CN115242684A (zh) | 全链路压测方法、装置、计算机设备及存储介质 | |
CN115860877A (zh) | 一种产品营销方法、装置、设备及介质 | |
CN115309649A (zh) | 测试用例生成方法、装置、计算机设备及存储介质 | |
CN115641549A (zh) | 一种主推进柴油机组健康监测方法和系统 | |
CN114237915B (zh) | 分布式环境下基于机器学习的数据修复方法、装置及设备 | |
CN118276535B (zh) | 基于数字孪生的产线管控系统、方法、计算机设备及介质 | |
CN118645978A (zh) | 一种调控策略组合配置方法、装置、设备及存储介质 | |
CN113783960B (zh) | 智能变电站设备数据处理方法及相关设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |