CN112146555A - Displacement detection method and flow detection method - Google Patents
Displacement detection method and flow detection method Download PDFInfo
- Publication number
- CN112146555A CN112146555A CN201910988728.2A CN201910988728A CN112146555A CN 112146555 A CN112146555 A CN 112146555A CN 201910988728 A CN201910988728 A CN 201910988728A CN 112146555 A CN112146555 A CN 112146555A
- Authority
- CN
- China
- Prior art keywords
- solenoid valve
- displacement
- unit time
- detection method
- time period
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 104
- 238000001514 detection method Methods 0.000 title claims abstract description 67
- 230000008859 change Effects 0.000 claims abstract description 32
- 238000005070 sampling Methods 0.000 claims abstract description 4
- 239000012530 fluid Substances 0.000 claims description 40
- 230000035699 permeability Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000009499 grossing Methods 0.000 description 7
- 239000002826 coolant Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000012952 Resampling Methods 0.000 description 1
- 241000435809 Sarea Species 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012946 outsourcing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004092 self-diagnosis Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/02—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/56—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Magnetically Actuated Valves (AREA)
Abstract
本公开涉及一种位移检测方法和流量检测方法。其中,该位移检测方法用于检测热管理所使用的电磁阀的位移,包括:对流过所述电磁阀的电流进行采样;计算在单位时间段内流过所述电磁阀的电流的变化率;计算在所述单位时间段内向所述电磁阀施加的电压的平均值;确定在所述单位时间段内所述电磁阀的电感;以及得到在所述单位时间段内所述电磁阀的位移。根据本公开提出的位移检测方法无需另外设置传感器就能够检测出电磁阀的位移,从而能够使得利用电磁阀实现热管理的热管理系统的硬件结构进一步简化,并节省成本。另外,根据本公开提出的流量检测方法能够提高利用电磁阀实现热管理的热管理系统的热管理效率和精度,并节省成本。
The present disclosure relates to a displacement detection method and a flow detection method. Wherein, the displacement detection method is used to detect the displacement of the solenoid valve used for thermal management, and includes: sampling the current flowing through the solenoid valve; calculating the rate of change of the current flowing through the solenoid valve in a unit time period; calculating the average value of the voltage applied to the solenoid valve in the unit time period; determining the inductance of the solenoid valve in the unit time period; and obtaining the displacement of the solenoid valve in the unit time period. The displacement detection method proposed according to the present disclosure can detect the displacement of the solenoid valve without additional sensors, thereby further simplifying the hardware structure of the thermal management system using the solenoid valve to realize thermal management, and saving costs. In addition, the flow detection method proposed according to the present disclosure can improve the thermal management efficiency and accuracy of the thermal management system using the solenoid valve to achieve thermal management, and save costs.
Description
技术领域technical field
本公开涉及热管理技术领域,尤其涉及一种位移检测方法和流量检测方法。The present disclosure relates to the technical field of thermal management, and in particular, to a displacement detection method and a flow rate detection method.
背景技术Background technique
根据市场研究,在不久的将来需要更高效的混合动力发动机系统或纯电动发动机系统。因此,热管理系统在传统的混合动力发动机系统或纯电动发动机系统中将变得越来越重要。目前,存在一种利用电磁阀来对管路中流动的流体进行流量分配,从而实现热管理的热管理系统。由于该热管理系统的成本较低并且结构简单,因此可应用于各种发动机传送系统。According to market research, more efficient hybrid engine systems or pure electric engine systems are required in the near future. Therefore, thermal management systems will become increasingly important in conventional hybrid or pure electric engine systems. At present, there is a thermal management system that utilizes a solenoid valve to distribute the flow of the fluid flowing in the pipeline, thereby realizing thermal management. Due to the low cost and simple structure of the thermal management system, it can be applied to various engine transmission systems.
为了更有效地进行热管理,需要实时掌握电磁阀的实际状态,例如电磁阀的位移。并且,目前通常使用具有初级线圈和次级线圈的位置传感器或者位移传感器来检测电磁阀的位移。然而,这种检测电磁阀的位移的方法具有如下缺点:For more effective thermal management, the actual state of the solenoid valve, such as the displacement of the solenoid valve, needs to be grasped in real time. Also, currently, a position sensor or a displacement sensor having a primary coil and a secondary coil is generally used to detect the displacement of the solenoid valve. However, this method of detecting the displacement of the solenoid valve has the following disadvantages:
1-1、设置传感器将增加额外的费用;1-1. Setting the sensor will add extra cost;
1-2、需要额外的空间对传感器进行配置和安装,导致车辆的体积变大;1-2. Additional space is required to configure and install the sensor, resulting in a larger volume of the vehicle;
1-3、需要额外的线束来连接传感器,增加了车辆的功能风险,并导致接线重量增加;1-3. An additional wiring harness is required to connect the sensor, which increases the functional risk of the vehicle and leads to an increase in the wiring weight;
1-4、有必要考虑传感器本身的传感器结构强度、可靠性和故障模式,增加了设计难度和复杂度;1-4. It is necessary to consider the sensor structure strength, reliability and failure mode of the sensor itself, which increases the difficulty and complexity of the design;
1-5、限制利用电磁阀驱动的低成本热管理系统的应用范围。1-5. Limit the application scope of low-cost thermal management systems driven by solenoid valves.
另外,为了更有效地进行热管理,有时还需要实时掌握在利用电磁阀控制的管路中实际流动的流体的流量。目前的热管理系统虽然能够做到精确地进行流量分配,但却不能估算出实际流动的流量。也就是说,现有的利用电磁阀驱动的低成本热管理系统具有如下缺点:In addition, in order to perform thermal management more efficiently, it is sometimes necessary to grasp the flow rate of the fluid actually flowing in the pipeline controlled by the solenoid valve in real time. Although current thermal management systems are capable of accurate flow distribution, they cannot estimate the actual flow. That is to say, the existing low-cost thermal management systems driven by solenoid valves have the following disadvantages:
2-1、无法估算在电磁阀的某一开度下管路中实际流动的流体的流量,或者说是管路中的实际流量分布;2-1. It is impossible to estimate the actual flow rate of the fluid flowing in the pipeline under a certain opening of the solenoid valve, or the actual flow distribution in the pipeline;
2-2、现有的采用了电磁阀概念的产品的流量可控性不是线性的,存在急剧的流量偏差;2-2. The flow controllability of the existing products using the solenoid valve concept is not linear, and there is a sharp flow deviation;
2-3、来自外包的执行器占BOM成本的50%~60%,并且它也只向ECU提供角度信号并被动控制;2-3. The outsourced actuator accounts for 50% to 60% of the BOM cost, and it also only provides angle signals to the ECU and passively controls it;
2-4、现有的开关型电磁阀只有当所获取到的温度过热时,才调节电磁阀进行流量的开关控制。这种开关作用只能通过大量的人工标定来校准电磁阀的流量导向。2-4. In the existing on-off solenoid valve, only when the obtained temperature is overheated, the solenoid valve can be adjusted to perform on-off control of the flow. This switching action can only be calibrated by extensive manual calibration to calibrate the flow steering of the solenoid valve.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本公开提出了一种能够使得上述缺点1-1至1-5至少之一最小化甚至完全消除的位移检测方法、以及能够使得上述缺点2-1至2-4至少之一最小化甚至完全消除的流量检测方法。In view of this, the present disclosure proposes a displacement detection method that can minimize or even completely eliminate at least one of the above disadvantages 1-1 to 1-5, and can minimize at least one of the above disadvantages 2-1 to 2-4 Traffic detection methods that can be simplified or even eliminated entirely.
为了使得上述缺点1-1至1-5至少之一最小化甚至完全消除,根据本公开的一个方面,提供了一种位移检测方法,用于检测热管理所使用的电磁阀的位移,其中,所述电磁阀包括线圈和磁芯,并且通过向所述线圈施加具有特定占空比的电压,能够使得所述磁芯发生位移,以对在设置了所述电磁阀的管路中流动的流体进行控制,从而实现所述热管理,其特征在于,所述位移检测方法包括:对流过所述线圈的电流进行采样;计算在第一时刻T0与从该第一时刻T0起经过了单位时间Δt之后的第二时刻T1之间的单位时间段内,流过所述线圈的电流的变化率di/dt;计算在所述单位时间段内向所述线圈施加的电压的平均值Uave;根据所述电流的变化率di/dt和所述电压的平均值Uave,确定在所述单位时间段内所述线圈的电感L;以及根据所述线圈的电感L得到在所述单位时间段内所述磁芯相对于基准位置的位移D,并作为在所述单位时间段内所述电磁阀的位移D。In order to minimize or even completely eliminate at least one of the above disadvantages 1-1 to 1-5, according to an aspect of the present disclosure, a displacement detection method is provided for detecting the displacement of a solenoid valve used for thermal management, wherein, The solenoid valve includes a coil and a magnetic core, and by applying a voltage with a specific duty cycle to the coil, the magnetic core can be displaced to counteract the fluid flowing in the pipeline where the solenoid valve is provided control, so as to realize the thermal management, characterized in that, the displacement detection method includes: sampling the current flowing through the coil ; In the unit time period between the second time T1 after the time Δt, the rate of change of the current flowing through the coil di/dt; calculate the average value U ave of the voltage applied to the coil in the unit time period ; According to the rate of change of the current di/dt and the average value U ave of the voltage, determine the inductance L of the coil in the unit time period; and obtain the inductance L of the coil in the unit time according to the inductance L of the coil The displacement D of the magnetic core relative to the reference position in the segment is taken as the displacement D of the solenoid valve in the unit time period.
对于上述位移检测方法,在一种可能的实现方式中,对流过所述线圈的电流进行实时采样,并对采样后的电流进行平滑处理,利用平滑处理后的电流计算每所述单位时间段内所述电流的变化率di/dt,从而得到每所述单位时间段内所述电磁阀的位移D。For the above displacement detection method, in a possible implementation manner, the current flowing through the coil is sampled in real time, the sampled current is smoothed, and the smoothed current is used to calculate the unit time period. The rate of change of the current di/dt, so as to obtain the displacement D of the solenoid valve per the unit time period.
对于上述位移检测方法,在一种可能的实现方式中,还包括:将所得到的每所述单位时间段内所述电磁阀的位移D实时发送至用于进行所述热管理的控制装置。For the above displacement detection method, in a possible implementation manner, the method further includes: sending the obtained displacement D of the solenoid valve in each unit time period to the control device for performing the thermal management in real time.
对于上述位移检测方法,在一种可能的实现方式中,利用公式(1)来确定在所述单位时间段内所述线圈的电感L:For the above displacement detection method, in a possible implementation, formula (1) is used to determine the inductance L of the coil in the unit time period:
L=(Uave-i0R)(di/dt)-1 (1)L=(U ave -i 0 R)(di/dt) -1 (1)
其中,i0表示所述第一时刻T0流过所述线圈的电流,R表示所述线圈的电阻。Wherein, i 0 represents the current flowing through the coil at the first moment T 0 , and R represents the resistance of the coil.
对于上述位移检测方法,在一种可能的实现方式中,利用公式(2)来得到在所述单位时间段内所述磁芯相对于基准位置的位移D:For the above displacement detection method, in a possible implementation, formula (2) is used to obtain the displacement D of the magnetic core relative to the reference position in the unit time period:
其中,μ表示所述磁芯的相对磁导率,N表示所述线圈的匝数,S表示所述电磁阀的有效截面积。Wherein, μ represents the relative permeability of the magnetic core, N represents the number of turns of the coil, and S represents the effective cross-sectional area of the solenoid valve.
为了使得上述缺点2-1至2-4至少之一最小化甚至完全消除,根据本公开的另一方面,提供了一种流量检测方法,用于检测在利用电磁阀控制的管路中流动的流体的流量,其特征在于,包括:利用如权利要求1至5中任一项所述的位移检测方法检测出在单位时间段内所述电磁阀的位移D;根据所述电磁阀的位移D,确定在所述单位时间段内所述管路的开度Sslot;以及根据所述管路的开度Sslot和在所述单位时间段内流向所述管路的流体的速度v,确定在所述单位时间段内在所述管路中流动的流体的流量Q。In order to minimize or even completely eliminate at least one of the above-mentioned disadvantages 2-1 to 2-4, according to another aspect of the present disclosure, a flow detection method is provided for detecting the flow rate in a pipeline controlled by a solenoid valve. The flow rate of the fluid is characterized in that it includes: using the displacement detection method according to any one of
对于上述流量检测方法,在一种可能的实现方式中,还包括:预先建立所述电磁阀的位移D与所述管路的开度Sslot之间的如公式(3)示出的关联关系:For the above flow detection method, in a possible implementation manner, the method further includes: pre-establishing an association relationship between the displacement D of the solenoid valve and the opening degree S slot of the pipeline, as shown in formula (3). :
Sslot=F(D) (3)S slot = F(D) (3)
其中,利用公式(3)来确定在所述单位时间段内所述管路的开度Sslot。Wherein, formula (3) is used to determine the opening degree S slot of the pipeline in the unit time period.
对于上述流量检测方法,在一种可能的实现方式中,还包括:利用公式(4)来计算流向所述管路的流体的速度v:For the above flow detection method, in a possible implementation manner, the method further includes: using formula (4) to calculate the velocity v of the fluid flowing to the pipeline:
其中,P′表示所述电磁阀的磁芯的等效截面面积上的压强,P表示所述等效截面面积附近的压强,ρ表示所述流体的密度。Wherein, P' represents the pressure on the equivalent cross-sectional area of the magnetic core of the solenoid valve, P represents the pressure near the equivalent cross-sectional area, and ρ represents the density of the fluid.
对于上述流量检测方法,在一种可能的实现方式中,还包括:确定每所述单位时间段内在所述管路中流动的流体的流量Q,并将所确定的每所述单位时间段内在所述管路中流动的流体的流量Q实时发送至用于进行所述热管理的控制装置。For the above flow detection method, in a possible implementation manner, the method further includes: determining the flow rate Q of the fluid flowing in the pipeline in each unit time period, and determining the flow rate Q of the fluid flowing in the pipeline in each unit time period, and using the determined amount in each unit time period The flow rate Q of the fluid flowing in the pipeline is sent to the control device for the thermal management in real time.
通过根据某一时间段内流过线圈的电流的变化率来检测在该时间段内磁芯相对于基准位置的位移,因此,根据本公开提出的位移检测方法无需另外设置传感器就能够检测出电磁阀的位移,从而能够使得利用电磁阀实现热管理的热管理系统的硬件结构进一步简化,并节省成本。By detecting the displacement of the magnetic core relative to the reference position in a certain period of time according to the rate of change of the current flowing through the coil in the period, the displacement detection method proposed according to the present disclosure can detect electromagnetic The displacement of the valve can further simplify the hardware structure of the thermal management system using the electromagnetic valve to realize thermal management, and save the cost.
另一方面,根据本公开提出的流量检测方法能够根据所检测出的某一时间段内磁芯相对于基准位置的位移,检测出在利用电磁阀控制的管路中流动的流体的流量,因此,能够提高利用电磁阀实现热管理的热管理系统的热管理效率和精度,并节省成本。On the other hand, the flow detection method proposed according to the present disclosure can detect the flow rate of the fluid flowing in the pipeline controlled by the solenoid valve according to the detected displacement of the magnetic core relative to the reference position within a certain period of time, so , which can improve the thermal management efficiency and accuracy of the thermal management system using the electromagnetic valve to achieve thermal management, and save costs.
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。Other features and aspects of the present disclosure will become apparent from the following detailed description of exemplary embodiments with reference to the accompanying drawings.
附图说明Description of drawings
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本公开的示例性实施例、特征和方面,并且用于解释本公开的原理。The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate exemplary embodiments, features, and aspects of the disclosure, and together with the description, serve to explain the principles of the disclosure.
图1示出热管理所使用的电磁阀的结构示意图;Figure 1 shows a schematic structural diagram of a solenoid valve used for thermal management;
图2示出根据本公开一实施例的位移检测方法的流程图;FIG. 2 shows a flowchart of a displacement detection method according to an embodiment of the present disclosure;
图3示出根据本公开一实施例的对采样后的电流进行平滑处理的波形示意图;FIG. 3 shows a schematic waveform diagram of smoothing a sampled current according to an embodiment of the present disclosure;
图4示出根据本公开一实施例的位移检测方法的一种可能的实现方式的原理示意图;FIG. 4 shows a schematic schematic diagram of a possible implementation manner of the displacement detection method according to an embodiment of the present disclosure;
图5示出根据本公开一实施例的位移检测方法的一个实验结果的示意图;5 shows a schematic diagram of an experimental result of a displacement detection method according to an embodiment of the present disclosure;
图6示出根据本公开一实施例的位移检测方法的一个实验结果的另一示意图;6 shows another schematic diagram of an experimental result of a displacement detection method according to an embodiment of the present disclosure;
图7示出根据本公开一实施例的位移检测方法的另一实验结果的示意图;7 is a schematic diagram showing another experimental result of the displacement detection method according to an embodiment of the present disclosure;
图8示出根据本公开一实施例的流量检测方法的原理示意图;FIG. 8 shows a schematic diagram of the principle of a traffic detection method according to an embodiment of the present disclosure;
图9示出根据本公开一实施例的流量检测方法的流程图;FIG. 9 shows a flowchart of a flow detection method according to an embodiment of the present disclosure;
图10示出根据本公开一实施例的流量检测方法的一种可能的实现方式的原理示意图;FIG. 10 shows a schematic schematic diagram of a possible implementation manner of a traffic detection method according to an embodiment of the present disclosure;
图11示出根据本公开一实施例的流量检测方法的一种可能的应用的原理示意图。FIG. 11 shows a schematic schematic diagram of a possible application of the traffic detection method according to an embodiment of the present disclosure.
具体实施方式Detailed ways
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。Various exemplary embodiments, features and aspects of the present disclosure will be described in detail below with reference to the accompanying drawings. The same reference numbers in the figures denote elements that have the same or similar functions. While various aspects of the embodiments are shown in the drawings, the drawings are not necessarily drawn to scale unless otherwise indicated.
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。The word "exemplary" is used exclusively herein to mean "serving as an example, embodiment, or illustration." Any embodiment described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments.
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。In addition, in order to better illustrate the present disclosure, numerous specific details are given in the following detailed description. It will be understood by those skilled in the art that the present disclosure may be practiced without certain specific details. In some instances, methods, means, components and circuits well known to those skilled in the art have not been described in detail so as not to obscure the subject matter of the present disclosure.
实施例1Example 1
根据本公开一实施例的位移检测方法用于检测热管理所使用的电磁阀的位移。其中,如图1所示,所述的电磁阀主要包括线圈10和磁芯20,并且通过经由该电磁阀的连接引脚30向线圈10施加具有特定占空比的电压,能够使得磁芯20发生位移,以对在设置了该电磁阀的管路中流动的流体进行控制,从而实现所述热管理。A displacement detection method according to an embodiment of the present disclosure is used to detect the displacement of a solenoid valve used for thermal management. Wherein, as shown in FIG. 1 , the solenoid valve mainly includes a
如图2所示,该位移检测方法主要包括步骤S100至步骤S500。其中,在步骤S100中,对流过线圈10的电流进行采样。并且,在一种可能的实现方式中,可以对流过线圈10的电流进行实时采样,并通过适当的系数对采样后的电流进行平滑处理,直到平滑后的电流的斜率非常接近原始电流的总梯度。As shown in FIG. 2 , the displacement detection method mainly includes steps S100 to S500. Wherein, in step S100, the current flowing through the
举例而言,如图3所示,整个平滑电流的斜率与平滑电流的最佳斜率区完全不同。可以通过如下原理思路来区分平滑电流的最佳斜率区,从而确保后续用到的平滑电流的斜率在最佳斜率区中。其中,平滑电流的最佳斜率区的起始点为转折点2,通过如带通滤波器这样的实时算法对该转折点2进行处理。平滑电流的最佳斜率区的结束点为转折点3,通过平滑电流曲线的导数极点对该转折点3不断进行计算。一旦确定了最佳斜率区,就可以计算出最佳斜率区中的平滑电流的斜率。For example, as shown in FIG. 3 , the slope of the entire smoothing current is completely different from the optimum slope region of the smoothing current. The optimal slope area of the smoothing current can be distinguished by the following principle ideas, so as to ensure that the slope of the smoothing current used subsequently is in the optimal slope area. The starting point of the optimal slope region of the smoothed current is the
在步骤S200中,计算在第一时刻T0与从该第一时刻T0起经过了单位时间Δt之后的第二时刻T1之间的单位时间段内,流过线圈10的电流的变化率di/dt。在对采样后的电压进行了平滑处理的情况下,可以利用平滑处理后的电流计算每所述单位时间段内所述电流的变化率di/dt。举例而言,可以对平滑后的电流进行重采样。如图4所示,假设平滑电流的重采样点为第一时刻T0和第二时刻T1,并且在第一时刻T0流过线圈10的电流为i0,在第二时刻T1流过线圈10的电流为i1,则可以认为在该第一时刻T0与第二时刻T1之间的单位时间段内,流过线圈10的电流的变化率di/dt=(i1-i0)/Δt。In step S200, the rate of change of the current flowing through the
在步骤S300中,计算在所述单位时间段内向线圈10施加的电压的平均值Uave。在一种可能的实现方式中,对向线圈10施加的电压进行实时采样,并与对平滑后的电流进行的重采样同步。如图4所示,假设在第一时刻T0向线圈10施加的电压为u0,在第二时刻T1向线圈10施加的电压为u1,则可以认为在该第一时刻T0与第二时刻T1之间的单位时间段内,向线圈10施加的电压的平均值Uave=(u1+u0)/2。In step S300, the average value U ave of the voltage applied to the
在步骤S400中,根据所述电流的变化率di/dt和所述电压的平均值Uave,确定在所述单位时间段内线圈10的电感L。在一种可能的实现方式中,可以利用公式(1)来确定在所述单位时间段内线圈10的电感L:In step S400, the inductance L of the
L=(Uave-i0R)(di/dt)-1 (1)L=(U ave -i 0 R)(di/dt) -1 (1)
其中,如上所述,i0表示第一时刻T0流过线圈10的电流,R表示线圈10的电阻。Among them, as described above, i 0 represents the current flowing through the
在步骤S500中,根据线圈10的电感L得到在所述单位时间段内磁芯20相对于基准位置的位移D,并作为在单位时间段内电磁阀的位移D。在一种可能的实现方式中,可以利用公式(2)来得到在所述单位时间段内磁芯20相对于基准位置的位移D:In step S500, the displacement D of the
其中,μ表示磁芯20的相对磁导率,N表示线圈10的匝数,S表示电磁阀的有效截面积。Among them, μ represents the relative permeability of the
在一种可能的实现方式中,本公开一实施例的位移检测方法还可以包括:将所得到的每所述单位时间段内所述电磁阀的位移D实时发送至用于进行所述热管理的控制装置例如ECU。这样,ECU能够实时掌握电磁阀的实际状态,从而能够更有效地进行热管理。另外,ECU也可以将该数据实时显示在车辆的主屏幕上,以方便驾驶员在驾驶过程中了解车辆的当前状态。In a possible implementation manner, the displacement detection method according to an embodiment of the present disclosure may further include: sending the obtained displacement D of the solenoid valve in each unit time period in real time to a computer for performing the thermal management control device such as ECU. In this way, the ECU can grasp the actual state of the solenoid valve in real time, thereby enabling more effective thermal management. In addition, the ECU can also display the data on the main screen of the vehicle in real time, so that the driver can understand the current state of the vehicle during driving.
当然,根据本公开的位移检测方法的重点在于提出了一种不用专门设置传感器就能够检测出电磁阀的位移的技术构思。因此,对于具体如何使用所获得的电磁阀的位移,本领域技术人员完全可以根据实际应用场景来决定。本公开对此不作过多的说明,也不进行任何限定。Of course, the key point of the displacement detection method according to the present disclosure is to propose a technical concept that can detect the displacement of the solenoid valve without specially disposing a sensor. Therefore, those skilled in the art can completely decide how to use the obtained displacement of the solenoid valve according to the actual application scenario. The present disclosure does not make too much description and does not make any limitation.
另外需要说明的是,尽管以上以具体的计算公式对实现步骤S200至步骤S500的一种可能方式进行了示例性说明,但是本公开并不限于此。本领域技术人员在本公开给出的可以基于在单位时间段内流过线圈的电流的变化率di/dt和在该单位时间段内向该线圈施加的电压的平均值Uave直接计算出电磁阀的位移而无需另外设置传感器的构思的启示下,根据所掌握的基础知识,应当能够利用其它的方式来实现上述步骤S200至步骤S500。换言之,能够实现步骤S200至步骤S500的方式有很多,本公开无法一一穷举。但是,只要利用步骤S200至步骤S500来检测电磁阀的位移,都属于本公开的保护范围。In addition, it should be noted that, although a possible way of implementing steps S200 to S500 is exemplarily described above with specific calculation formulas, the present disclosure is not limited thereto. Those skilled in the art can directly calculate the solenoid valve based on the change rate di/dt of the current flowing through the coil in the unit time period and the average value U ave of the voltage applied to the coil in the unit time period given in the present disclosure Inspired by the concept of the displacement of , without the need for additional sensors, according to the basic knowledge mastered, it should be possible to use other methods to implement the above steps S200 to S500. In other words, there are many ways in which steps S200 to S500 can be implemented, and the present disclosure cannot be exhaustive. However, as long as steps S200 to S500 are used to detect the displacement of the solenoid valve, it falls within the protection scope of the present disclosure.
下面利用几组实验数据来验证本公开的位移检测方法的可行性。The following uses several sets of experimental data to verify the feasibility of the displacement detection method of the present disclosure.
假设在室温下向电磁阀的线圈10施加频率为130Hz、占空比为50%的脉宽调制电压,则将产生平均值为0.75A的恒定电流。电磁阀的磁芯在所产生的电磁力与管路中的流体力的作用下,可能保持在初始位置,也可能被移动至距该初始位置最远的终点位置,或者在初始位置和终点位置之间的某个中间位置。其中,在电磁阀的磁芯位于终点位置的情况下,可以认为该电磁阀使得管路的开度为最小,此时电磁阀的位移最大。在电磁阀的磁芯位于初始位置的情况下,可以认为该电磁阀使得管路的开度最大,此时电磁阀的位移最小。在电磁阀的磁芯位于中间位置的情况下,可以认为电磁阀使得管路的开度介于最小和最大之间,此时电磁阀的位移也介于最小和最大之间。Assuming that a pulse width modulated voltage with a frequency of 130 Hz and a duty cycle of 50% is applied to the
如图5所示,在电磁阀的磁芯位于这三个位置的情况下,从电磁阀检测到的电流的峰峰值是不同的。具体而言,如图6所示,在电磁阀的磁芯位于终点位置的情况下的电流变化率最小,在电磁阀的磁芯位于中间位置的情况下的电流变化率次之,在电磁阀的磁芯位于初始位置的情况下的电流变化率最大。也就是说,电流变化率随着电磁阀的位移的增加而减小。也就是说,电磁阀的位移与电流变化率呈反比关系。As shown in FIG. 5 , when the magnetic core of the solenoid valve is located at these three positions, the peak-to-peak value of the current detected from the solenoid valve is different. Specifically, as shown in FIG. 6 , the current change rate is the smallest when the magnetic core of the solenoid valve is at the end position, and the current change rate when the magnetic core of the solenoid valve is at the middle position The current rate of change is the largest when the magnetic core is in the initial position. That is, the current rate of change decreases as the displacement of the solenoid valve increases. That is, the displacement of the solenoid valve is inversely proportional to the rate of change of the current.
由此可以看出,电磁阀的磁芯所处的位置能够从电磁阀的电流变化率上体现出来。因此,根据某一时间段内流过线圈的电流的变化率能够得到在该时间段内磁芯相对于基准位置的位移D。It can be seen from this that the position of the magnetic core of the solenoid valve can be reflected from the current change rate of the solenoid valve. Therefore, the displacement D of the magnetic core relative to the reference position within a certain period of time can be obtained according to the rate of change of the current flowing through the coil within the period of time.
以上是在室温下向电磁阀的施加的脉宽调制电压的占空比为50%的情况下对磁芯所处的位置与电流变化率之间的对应关系进行的说明,下面通过改变脉宽调制电压的占空比,来研究在磁芯处于同一位置时电流变化率的情况。如图7所示,在室温下向电磁阀分别施加占空比为50%和57%的脉宽调制电压的情况下,如果磁芯处于同一位置,则电流变化率是不变的。也就是说,电磁阀的位移与所施加的电压的占空比无关,而与电流变化率有关。The above is the description of the correspondence between the position of the magnetic core and the current change rate when the duty ratio of the PWM voltage applied to the solenoid valve is 50% at room temperature. Modulate the duty cycle of the voltage to study the rate of change of current when the core is in the same position. As shown in Fig. 7, when the PWM voltages with duty ratios of 50% and 57% are applied to the solenoid valves at room temperature, if the magnetic core is in the same position, the current change rate is constant. That is, the displacement of the solenoid valve is not related to the duty cycle of the applied voltage, but to the rate of change of the current.
这样,根据本公开上述实施例的位移检测方法通过根据某一时间段内流过线圈的电流的变化率来检测在该时间段内磁芯相对于基准位置的位移,而无需另外设置传感器就能够检测出电磁阀的位移。因此,根据本公开上述实施例的位移检测方法能够使得利用电磁阀实现热管理的热管理系统的硬件结构进一步简化,并节省成本。In this way, the displacement detection method according to the above-mentioned embodiments of the present disclosure can detect the displacement of the magnetic core relative to the reference position in a certain period of time according to the rate of change of the current flowing through the coil in the period without additionally providing a sensor. The displacement of the solenoid valve is detected. Therefore, the displacement detection method according to the above-mentioned embodiments of the present disclosure can further simplify the hardware structure of the thermal management system using the solenoid valve to realize thermal management, and save the cost.
本公开提出了一种位移检测方法,能够使得背景技术部分中提及的现有技术存在的上述缺点1-1至1-5至少之一最小化甚至完全消除。本公开提出的位移检测方法相比现有技术而言的特征在于:The present disclosure proposes a displacement detection method, which can minimize or even completely eliminate at least one of the above-mentioned disadvantages 1-1 to 1-5 of the prior art mentioned in the background art section. Compared with the prior art, the displacement detection method proposed by the present disclosure is characterized in that:
·考虑到了电磁阀的位移变化引起电磁阀的自感变化,进而引起电磁阀的电流峰峰值变化,从而能够根据电流变化率来获取电磁阀的位移信息;Considering that the displacement change of the solenoid valve causes the self-inductance change of the solenoid valve, which in turn causes the current peak-to-peak change of the solenoid valve, the displacement information of the solenoid valve can be obtained according to the current change rate;
·使用本公开提出的这种位移检测概念,无需额外装配任何传感器;· Using this displacement detection concept proposed in this disclosure, no additional sensors are required;
·不使用传感器进行的位移检测技术,可靠性高,而且使用寿命长;The displacement detection technology without the use of sensors has high reliability and long service life;
·能够从同时用于向电磁阀供电的端子上获得该电磁阀的位移信息;· The displacement information of the solenoid valve can be obtained from the terminals that are also used to supply power to the solenoid valve;
·提出了基于电力线载波进行无传感器地位移信息解码方法。·Propose a method for sensorless displacement information decoding based on power line carrier.
通过具备上述特征,根据本公开各个方面的位移检测方法能够具有如下有益的技术效果:By having the above-mentioned features, the displacement detection method according to various aspects of the present disclosure can have the following beneficial technical effects:
·能够直接测量出电磁阀开度;·It can directly measure the opening of the solenoid valve;
·无需额外的费用就能够进行位移检测;·Displacement detection can be carried out without additional cost;
·无需配置和安装传感器的额外空间;No additional space for configuration and installation of sensors;
·无需增加车辆的功能风险和接线重量的额外线束;No additional wiring harnesses that increase the functional risk and wiring weight of the vehicle;
·无需考虑额外设置的传感器本身的结构强度、可靠性和故障模式等,从而降低了设计难度;There is no need to consider the structural strength, reliability and failure mode of the additional sensor itself, thus reducing the design difficulty;
·能够增加利用电磁阀驱动的低成本热管理系统的应用范围;Ability to increase the scope of application of low-cost thermal management systems actuated by solenoid valves;
·带电力线载波的电磁阀不仅适用于热管理系统的应用领域,也适用于HVAC系统和氢燃料电池发动机系统的自动控制应用领域;The solenoid valve with power line carrier is not only suitable for the application field of thermal management system, but also for the automatic control application field of HVAC system and hydrogen fuel cell engine system;
·由于没有外包EE部件,使得成本降低的效率明显提高。·Due to no outsourcing of EE components, the efficiency of cost reduction is significantly improved.
实施例2Example 2
根据本公开一实施例的流量检测方法用于检测在利用电磁阀控制的管路中流动的流体的流量。其中,在实施例1中参考图1对电磁阀的结构进行了说明。因此,本实施例中不再赘述。如图8所示,在利用电磁阀控制的管路中流动的流体的流量分布直接与电磁阀的磁芯的位移有关。因此,可以通过检测电磁阀的磁芯的位移来估计动态流量分布。因此,在根据本公开实施例的流量检测方法中,在比例电磁阀工作过程中实时检测可动磁芯的位移,并通过CFD分析建立电磁阀的位移与实时流量之间的关系。这里,假设利用电磁阀控制的管路为端口B所在的管路。由此,根据电磁阀的位移D,能够检测出在端口B所在的管路中流动的流体的流量。A flow detection method according to an embodiment of the present disclosure is used to detect the flow of fluid flowing in a pipeline controlled by a solenoid valve. Here, in
如图9所示,根据本公开一实施例的流量检测方法主要包括步骤S600至步骤S800。其中,在步骤S600中,可以利用如实施例1所述的位移检测方法检测出所述单位时间段内所述电磁阀的位移D。然后,在步骤S700中,根据所述电磁阀的位移D,确定在所述单位时间段内所述管路的开度Sslot。如图8所示,管路B的开度Sslot必然是电磁阀的磁芯位移D的函数。因此,在一种可能的实现方式中,可以通过结构特征预先建立所述电磁阀的位移D与所述管路的开度Sslot之间的如公式(3)示出的关联关系:As shown in FIG. 9 , the flow detection method according to an embodiment of the present disclosure mainly includes steps S600 to S800. Wherein, in step S600, the displacement D of the solenoid valve in the unit time period may be detected by using the displacement detection method as described in
Sslot=F(D) (3)S slot = F(D) (3)
因此,在步骤S700中就可以利用公式(3)来确定在所述单位时间段内所述管路的开度Sslot。Therefore, in step S700, the formula (3) can be used to determine the opening degree S slot of the pipeline in the unit time period.
在步骤S800中,根据所述管路的开度Sslot和在所述单位时间段内流向所述管路的流体的速度v,确定在所述单位时间段内在所述管路中流动的流体的流量Q。在一种可能的实现方式中,结合伯努利原理,可以利用公式(4)来计算流向所述管路的流体的速度v:In step S800, the fluid flowing in the pipeline in the unit time period is determined according to the opening degree S slot of the pipeline and the velocity v of the fluid flowing to the pipeline in the unit time period flow Q. In a possible implementation, combined with Bernoulli's principle, the velocity v of the fluid flowing to the pipeline can be calculated by formula (4):
其中,如图8所示,P′表示所述电磁阀的磁芯的等效截面面积Sarea上的压强,P表示所述等效截面面积附近(例如点X处)的压强,ρ表示所述流体的密度。当然,等效截面面积附近的压强并不限于点X处的压强,本领域技术人员能够知晓采用哪个位置作为等效截面面积附近的位置,并且根据该位置处的压强能够计算出流向所述管路的流体的速度v。Wherein, as shown in FIG. 8 , P′ represents the pressure on the equivalent cross-sectional area Sarea of the magnetic core of the solenoid valve, P represents the pressure near the equivalent cross-sectional area (for example, at point X), and ρ represents the density of the fluid. Of course, the pressure near the equivalent cross-sectional area is not limited to the pressure at point X. Those skilled in the art can know which position to use as the position near the equivalent cross-sectional area, and can calculate the flow direction to the pipe according to the pressure at this position. The velocity v of the fluid in the road.
结合上述公式(3)和(4),在一种可能的实现方式中,可以利用公式(5)来计算出在所述管路中流动的流体的流量Q:Combining the above formulas (3) and (4), in a possible implementation, formula (5) can be used to calculate the flow rate Q of the fluid flowing in the pipeline:
在一种可能的实现方式中,可以首先通过车辆的总线信号获得水泵速度WP_Speed,然后通过CFD模拟或测量的方法得到水泵速度WP-Speed不同的某个位置X处的压强。也就是说,可以利用公式(6)来计算所述的压强P:In a possible implementation manner, the water pump speed WP_Speed can be obtained first through the bus signal of the vehicle, and then the pressure at a certain position X where the water pump speed WP-Speed is different can be obtained by means of CFD simulation or measurement. That is to say, the pressure P can be calculated using formula (6):
P=F(WP_Speed) (6)P=F(WP_Speed) (6)
另外,由于在管路中流动的流体所产生的流体力FLiquid和电磁阀由于通电而产生的电磁力Fmag的平衡,因此可以通过电磁力Fmag来计算等效横截面积Sarea上的压强P′。也就是说,在一种可能的实现方式中,可以利用公式(7)和(8)来计算所述的压强P′:In addition, due to the balance between the fluid force F Liquid generated by the fluid flowing in the pipeline and the electromagnetic force F mag generated by the solenoid valve due to energization, the equivalent cross-sectional area S area can be calculated by the electromagnetic force F mag pressure P'. That is to say, in a possible implementation, the pressure P' can be calculated by using formulas (7) and (8):
FLiquid=Fmag (7)F Liquid = F mag (7)
其中,可以通过例如图10所示的电磁阀特性来确定电磁力Fmag。图10中示出的是使得施加到电磁阀的电流从0A到12A逐渐增加然后从12A到0A逐渐减少而得到的电磁阀的电磁力Fmag的变化曲线,由于电流的迟滞特性,使得电流逐渐增加时的电磁力(上侧的曲线)与电流逐渐减少时的电磁力(下侧的曲线)不同。The electromagnetic force F mag can be determined by, for example, the characteristics of the solenoid valve shown in FIG. 10 . Shown in FIG. 10 is the change curve of the electromagnetic force F mag of the solenoid valve obtained by gradually increasing the current applied to the solenoid valve from 0A to 12A and then gradually decreasing from 12A to 0A. Due to the hysteresis characteristics of the current, the current gradually increases The electromagnetic force when increasing (the upper curve) is different from the electromagnetic force when the current is gradually decreasing (the lower curve).
这样,根据本公开一实施例的流量检测方法能够检测出在利用电磁阀控制的管路中流动的流体的流量。与实施例1同样地,根据本公开一实施例的流量检测方法还可以包括:将所检测出的在单位时间段内在管路中流动的流体的流量Q实时发送至用于进行所述热管理的控制装置例如ECU。这样,ECU能够实时掌握由电磁阀控制的管路中的流体的实际状态,从而能够更有效地进行热管理。另外,ECU也可以将该数据实时显示在车辆的主屏幕上,以方便驾驶员在驾驶过程中了解车辆的当前状态。In this way, the flow rate detection method according to an embodiment of the present disclosure can detect the flow rate of the fluid flowing in the pipeline controlled by the solenoid valve. Similar to
当然,对于具体如何使用所获得的流量数据,本领域技术人员完全可以根据实际应用场景来决定。本公开对此不作过多的说明,也不进行任何限定。Of course, those skilled in the art can completely decide how to use the obtained traffic data according to the actual application scenario. The present disclosure does not make too much description and does not make any limitation.
另外需要说明的是,尽管以上以具体的计算公式对实现步骤S600至步骤S800的一种可能方式进行了示例性说明,但是本公开并不限于此。本领域技术人员在本公开给出的可以基于电磁阀的位移来估算利用该电磁阀控制的管路中流动的流体的流量的构思的启示下,根据所掌握的基础知识,应当能够利用其它的方式来实现上述步骤S600至步骤S800。换言之,能够实现步骤S600至步骤S800的方式有很多,本公开无法一一穷举。但是,只要利用步骤S600至步骤S800来检测利用该电磁阀控制的管路中流动的流体的流量,都属于本公开的保护范围。In addition, it should be noted that, although a possible way of implementing steps S600 to S800 is exemplarily described above with a specific calculation formula, the present disclosure is not limited thereto. Those skilled in the art should be able to use other other The above steps S600 to S800 are implemented in a manner. In other words, there are many ways in which steps S600 to S800 can be implemented, and the present disclosure cannot be exhaustive. However, as long as steps S600 to S800 are used to detect the flow rate of the fluid flowing in the pipeline controlled by the solenoid valve, it falls within the protection scope of the present disclosure.
如图11所示,根据本公开的流量检测方法已经产生出一个原型。其中,例如,对施加到电磁阀的电流进行如图11那样的线性控制(也即使得该电流依次进行线性增加和线性减少这样的变化),则进口端的流体流量和出口端的流体流量也会相应地发生变化(参见在图11的上侧示出的曲线)。另外,进口端的压力变化也会相应地发生变化,而出口端的压力不会发生明显的变化(参见在图11的下侧示出的曲线)。As shown in FIG. 11, a prototype of the traffic detection method according to the present disclosure has been produced. Among them, for example, if the current applied to the solenoid valve is controlled linearly as shown in Fig. 11 (that is, the current is changed linearly to increase and decrease in sequence), the fluid flow rate at the inlet end and the fluid flow rate at the outlet end will be correspondingly ground changes (see the curve shown on the upper side of FIG. 11 ). In addition, the pressure changes at the inlet end will also change accordingly, while the pressure at the outlet end will not change significantly (see the curve shown on the lower side of Figure 11).
这一概念的一般结果表明,每个端口的流量可以随着动态电流的线性增加和减少而相应地分配。也就是说,可以通过改变施加到电磁阀的电流,来实现对进口端的流量的控制和对出口端的流量的分配。本公开的发明人通过CFD仿真优化之后,确定流量特性与阀的形状和阀座一定有关系。因此,结果验证了流量分布的可重复性和流量与电磁阀位移以及阀型的相关性。The general results of this concept show that the flow of each port can be distributed accordingly with the linear increase and decrease of the dynamic current. That is, the control of the flow at the inlet end and the distribution of the flow at the outlet end can be achieved by changing the current applied to the solenoid valve. After optimization through CFD simulation, the inventors of the present disclosure determined that the flow characteristics must be related to the valve shape and valve seat. Therefore, the results verify the repeatability of flow distribution and the dependence of flow on solenoid valve displacement and valve type.
由此,可以估算出电磁阀在某一开度下的流量。在此基础上,可以进一步实现流量分配。同时,由于电磁阀的比例特性,基于流量估算的流量可控性与电磁阀的位移之间是近似函数关系。因此,可以避免急剧的流量偏差。From this, the flow rate of the solenoid valve at a certain opening degree can be estimated. On this basis, traffic distribution can be further realized. At the same time, due to the proportional characteristic of the solenoid valve, there is an approximate functional relationship between the flow controllability based on the flow estimation and the displacement of the solenoid valve. Therefore, a sharp flow deviation can be avoided.
这样,由于存在实时流量反馈,可以将流量反馈引入冷却剂温度控制的闭环,从而能够热管理系统的热管理效率和精度。其中,温度控制包括但不限于整车热管理中应用流量的地方或热管理涉及对流量环节的先进闭环控制技术或自适应控制等,例如将实时的流量控制信息以及温度信息反馈给通用诊断服务或OBD II。In this way, due to the presence of real-time flow feedback, flow feedback can be introduced into the closed loop of coolant temperature control, enabling thermal management efficiency and accuracy of the thermal management system. Among them, temperature control includes but is not limited to the application of flow in the thermal management of the vehicle or the thermal management involves advanced closed-loop control technology or adaptive control of the flow link, such as feedback of real-time flow control information and temperature information to general diagnostic services or OBD II.
本公开提出了一种流量检测方法,能够使得背景技术部分中提及的现有技术存在的上述缺点2-1至2-4至少之一最小化甚至完全消除。本公开提出的流量检测方法相比现有技术而言的特征在于:The present disclosure proposes a traffic detection method, which can minimize or even completely eliminate at least one of the above-mentioned disadvantages 2-1 to 2-4 of the prior art mentioned in the background art section. Compared with the prior art, the traffic detection method proposed by the present disclosure is characterized in that:
·建立电磁阀的位移和利用该电磁阀控制的管路的流量之间的关系,然后实时估算流量分布特性;Establish the relationship between the displacement of the solenoid valve and the flow rate of the pipeline controlled by the solenoid valve, and then estimate the flow distribution characteristics in real time;
·能够引入流量反馈,使得原冷却剂系统中滞后温度控制可以升级到某一点的可预测温度控制,从而能够提高冷却剂系统的热管理精度;The ability to introduce flow feedback, so that the lag temperature control in the original coolant system can be upgraded to a predictable temperature control at a certain point, which can improve the thermal management accuracy of the coolant system;
·能够为OBDII提供流量监测和流量自诊断功能,以用于检测混合动力汽车和新能源汽车的运行状态和诊断故障。·It can provide flow monitoring and flow self-diagnosis functions for OBDII to detect the running status and diagnose faults of hybrid electric vehicles and new energy vehicles.
通过具备上述特征,根据本公开各个方面的流量检测方法能够具有如下有益的技术效果:By having the above features, the traffic detection method according to various aspects of the present disclosure can have the following beneficial technical effects:
·可以实时估算在电磁阀某一开度下的流量,并且可以将所获取的流量信息提供给通常的应用,例如针对适当温度点的动态流量控制或者OEM的OBD II强制要求;·The flow at a certain opening of the solenoid valve can be estimated in real time, and the obtained flow information can be provided to common applications, such as dynamic flow control for appropriate temperature points or OEM's OBD II mandatory requirements;
·由于电磁阀的比例特性,基于流量估算的流量可控性与电磁阀的位移之间是近似函数关系,因此可以避免急剧的流量偏差;Due to the proportional characteristics of the solenoid valve, the flow controllability based on flow estimation and the displacement of the solenoid valve are approximate functional relationships, so sharp flow deviations can be avoided;
·可以直接通过电源线传输实时流量信息,以便通用,从而降低成本;· Real-time traffic information can be transmitted directly through the power line for universal use, thereby reducing costs;
·流量估算是冷却液温度自校准的基础,只要有匹配点就可以自动进行,而不用纯人工来进行流量和温度匹配,因此具有广泛的适用性。·Flow estimation is the basis for self-calibration of coolant temperature. As long as there is a matching point, it can be performed automatically instead of manual matching of flow and temperature, so it has a wide range of applicability.
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。Various embodiments of the present disclosure have been described above, and the foregoing descriptions are exemplary, not exhaustive, and not limiting of the disclosed embodiments. Numerous modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over the technology in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910560961 | 2019-06-26 | ||
CN2019105609610 | 2019-06-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112146555A true CN112146555A (en) | 2020-12-29 |
CN112146555B CN112146555B (en) | 2024-12-10 |
Family
ID=73891734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910988728.2A Active CN112146555B (en) | 2019-06-26 | 2019-10-17 | A displacement detection method and a flow detection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112146555B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117249786A (en) * | 2023-08-31 | 2023-12-19 | 东风商用车有限公司 | AMT main box push rod position monitoring method |
DE102023111372A1 (en) | 2023-05-03 | 2024-11-07 | Schaeffler Technologies AG & Co. KG | Method for position detection, method for valve control and fluid valve |
US12332089B2 (en) | 2020-05-26 | 2025-06-17 | Analog Devices International Unlimited Company | Magnetic sensor package and magnetic sensing system |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0244210A (en) * | 1988-08-03 | 1990-02-14 | Rinnai Corp | Flow rate measuring apparatus |
JPH0565902A (en) * | 1991-09-06 | 1993-03-19 | Mitsubishi Motors Corp | Fluid pressure actuator device |
JPH0828740A (en) * | 1994-05-10 | 1996-02-02 | Fuji Electric Co Ltd | Control device for electromagnetic flow control valve |
JPH09291906A (en) * | 1996-04-24 | 1997-11-11 | Hitachi Constr Mach Co Ltd | Hydraulic machine sensor |
WO1999000815A1 (en) * | 1997-06-26 | 1999-01-07 | P.D. Co-Op, Inc. | System and method for servo control of nonlinear electromagnetic actuators |
JP2005207523A (en) * | 2004-01-23 | 2005-08-04 | Yamatake Corp | Flow control device |
CN202101673U (en) * | 2011-04-28 | 2012-01-04 | 中国船舶重工集团公司第七○七研究所 | Infinitesimal displacement detector for floater of active magnetically suspended gyroscope |
CN105387796A (en) * | 2015-12-07 | 2016-03-09 | 贵州新安航空机械有限责任公司 | Detection circuit of induction type displacement sensor and detection method of detection circuit |
CN109099062A (en) * | 2018-09-11 | 2018-12-28 | 西安交通大学 | A kind of Self-sensing Electromagnetic bearing based on coil ripple current slop estimation |
JP2019095340A (en) * | 2017-11-24 | 2019-06-20 | 株式会社デンソーウェーブ | Device and method for estimating flow rate |
-
2019
- 2019-10-17 CN CN201910988728.2A patent/CN112146555B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0244210A (en) * | 1988-08-03 | 1990-02-14 | Rinnai Corp | Flow rate measuring apparatus |
JPH0565902A (en) * | 1991-09-06 | 1993-03-19 | Mitsubishi Motors Corp | Fluid pressure actuator device |
JPH0828740A (en) * | 1994-05-10 | 1996-02-02 | Fuji Electric Co Ltd | Control device for electromagnetic flow control valve |
JPH09291906A (en) * | 1996-04-24 | 1997-11-11 | Hitachi Constr Mach Co Ltd | Hydraulic machine sensor |
WO1999000815A1 (en) * | 1997-06-26 | 1999-01-07 | P.D. Co-Op, Inc. | System and method for servo control of nonlinear electromagnetic actuators |
JP2005207523A (en) * | 2004-01-23 | 2005-08-04 | Yamatake Corp | Flow control device |
CN202101673U (en) * | 2011-04-28 | 2012-01-04 | 中国船舶重工集团公司第七○七研究所 | Infinitesimal displacement detector for floater of active magnetically suspended gyroscope |
CN105387796A (en) * | 2015-12-07 | 2016-03-09 | 贵州新安航空机械有限责任公司 | Detection circuit of induction type displacement sensor and detection method of detection circuit |
JP2019095340A (en) * | 2017-11-24 | 2019-06-20 | 株式会社デンソーウェーブ | Device and method for estimating flow rate |
CN109099062A (en) * | 2018-09-11 | 2018-12-28 | 西安交通大学 | A kind of Self-sensing Electromagnetic bearing based on coil ripple current slop estimation |
Non-Patent Citations (2)
Title |
---|
任新成: "微小位移的电测法", 延安大学学报(自然科学版), no. 02, 30 June 2003 (2003-06-30) * |
蔡胜年;林春爽;梁禹;: "基于电感模型的高压比例电磁阀无传感器位置检测", 中国测试, no. 03, 31 March 2016 (2016-03-31), pages 0 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12332089B2 (en) | 2020-05-26 | 2025-06-17 | Analog Devices International Unlimited Company | Magnetic sensor package and magnetic sensing system |
DE102023111372A1 (en) | 2023-05-03 | 2024-11-07 | Schaeffler Technologies AG & Co. KG | Method for position detection, method for valve control and fluid valve |
WO2024227474A1 (en) | 2023-05-03 | 2024-11-07 | Schaeffler Technologies AG & Co. KG | Position sensing method, valve control method, and fluid valve |
CN117249786A (en) * | 2023-08-31 | 2023-12-19 | 东风商用车有限公司 | AMT main box push rod position monitoring method |
Also Published As
Publication number | Publication date |
---|---|
CN112146555B (en) | 2024-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112146555A (en) | Displacement detection method and flow detection method | |
CN204440208U (en) | A kind of coolant temperature for engine rig test and volume control device | |
US10777831B2 (en) | Equation based cooling system control strategy/method | |
CN103575339B (en) | Flow-measuring method and flow control methods | |
CN106441520A (en) | Method for calibrating precision of small-caliber ultrasonic water meter and calibration system thereof | |
CN100408400C (en) | Method and apparatus for measuring fluid pressure using an actuator | |
FI103431B (en) | Method and apparatus for controlling a pipeline network | |
CN103649515B (en) | The method for detecting abnormality of exhaust gas recirculation amount and device | |
EP2633580A1 (en) | Fuel supply system | |
CN108776025A (en) | The heat management system test platform of power drive system | |
CN112762054A (en) | Comprehensive hydraulic valve performance test system | |
CN106016637B (en) | Turbine type flow control device | |
CN111795037B (en) | Test system of gearbox hydraulic control device | |
CN106016577A (en) | Turbine-type flow rate controlling device | |
CN109683638A (en) | A kind of control system and control method of ratio adjusting valve | |
JP2006144565A (en) | Control device for internal combustion engine | |
CN114709524A (en) | A kind of power battery temperature control method | |
KR102555190B1 (en) | Flow rate control device | |
CN114060356B (en) | A method and system for measuring flow rate of a four-spool valve port independent control valve | |
CN101403892B (en) | Controlled member parameter recognition method based on DC motor angular displacement control | |
JP2002182704A (en) | Method and device for conrolling electrical load | |
CN113048091B (en) | Auxiliary test device and test system for aviation compressor | |
CN213274859U (en) | Gas metering device of high-power gas engine | |
CN204493866U (en) | Digital hydraulic pressure regulator | |
CN112065561A (en) | An engine cooling fan speed control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |