CN112129229A - Quasi-distributed displacement measurement device and method based on photoelectric oscillator - Google Patents
Quasi-distributed displacement measurement device and method based on photoelectric oscillator Download PDFInfo
- Publication number
- CN112129229A CN112129229A CN202010922810.8A CN202010922810A CN112129229A CN 112129229 A CN112129229 A CN 112129229A CN 202010922810 A CN202010922810 A CN 202010922810A CN 112129229 A CN112129229 A CN 112129229A
- Authority
- CN
- China
- Prior art keywords
- module
- port
- optical
- polarization beam
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 177
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 154
- 238000000034 method Methods 0.000 title abstract description 10
- 230000010287 polarization Effects 0.000 claims abstract description 201
- 239000013307 optical fiber Substances 0.000 claims abstract description 37
- 230000003287 optical effect Effects 0.000 claims description 216
- 230000008878 coupling Effects 0.000 claims description 43
- 238000010168 coupling process Methods 0.000 claims description 43
- 238000005859 coupling reaction Methods 0.000 claims description 43
- 230000005693 optoelectronics Effects 0.000 claims description 31
- 238000001514 detection method Methods 0.000 claims description 29
- 238000001228 spectrum Methods 0.000 claims description 23
- 239000000835 fiber Substances 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 17
- 238000001914 filtration Methods 0.000 claims description 15
- 230000010355 oscillation Effects 0.000 claims description 11
- 238000000691 measurement method Methods 0.000 claims description 8
- 238000005516 engineering process Methods 0.000 abstract description 9
- 230000007613 environmental effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000003321 amplification Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000002366 time-of-flight method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
技术领域technical field
本发明属于多点位移测量领域,具体涉及了一种基于光电振荡器的准分布式位移测量装置和方法。The invention belongs to the field of multi-point displacement measurement, and in particular relates to a quasi-distributed displacement measurement device and method based on a photoelectric oscillator.
背景技术Background technique
近年来随着科学、技术的发展,科学研究、生产建设对大量程、高精度的距离测量提出了越来越迫切的需求,如:大型设备、构件的生产、装配和运行监控;地球重力场研究;我国空间探索、导航等领域的需要等。In recent years, with the development of science and technology, scientific research, production and construction have put forward more and more urgent needs for long-range and high-precision distance measurement, such as: production, assembly and operation monitoring of large-scale equipment and components; the earth's gravitational field Research; the needs of my country's space exploration, navigation and other fields.
传统的距离及其相关参数的光学测量方法包括六种,光强测量法、三角测量法、共焦测量法、多普勒测量法、时间飞行法、光学相干法。光强测量法通常包括一个光源和一个探测器,其结构简单、成本低,但存在多目标反射干涉影响测量精度的问题。三角测量法通常包括一个光源与光电探测器阵列,具有成本低的优势,但是其测量能力受光电探测器阵列的密集程度影响。共焦测量法的测量距离通常只有几毫米,无法满足远距离测量。多普勒测量法无法测量待测目标的距离。时间飞行法通常基于光脉冲实现,可以同时测量目标距离和速度,但是其测量分辨率与测试精度较低。光学相干法是一种精密测量距离的方法,采用光波相位干涉测距。上述六种光学测量距离及其相关参数的方法在实时地、高精度地测量远距离的目标的位移时存在严重挑战,尤其是在多点位移测量领域中,上述测量方案无法提供相应技术支撑。There are six traditional optical measurement methods of distance and related parameters, including light intensity measurement, triangulation, confocal measurement, Doppler measurement, time-of-flight method, and optical coherence method. The light intensity measurement method usually includes a light source and a detector, which is simple in structure and low in cost, but has the problem that multi-target reflection interference affects the measurement accuracy. Triangulation usually includes a light source and photodetector array, which has the advantage of low cost, but its measurement capability is affected by the density of the photodetector array. The measurement distance of the confocal measurement method is usually only a few millimeters, which cannot meet the long-distance measurement. Doppler measurements cannot measure the distance to the target to be measured. The time-of-flight method is usually implemented based on light pulses, which can measure the target distance and speed at the same time, but its measurement resolution and test accuracy are low. Optical coherence method is a precise method of distance measurement, using light wave phase interference distance measurement. The above-mentioned six methods of optically measuring distance and its related parameters have serious challenges in measuring the displacement of long-distance targets in real time and with high precision, especially in the field of multi-point displacement measurement, the above-mentioned measurement solutions cannot provide corresponding technical support.
目前,基于光电振荡器实现了大量程、高精度的距离测量。该方法依据累积放大原理,使用将待测物理量放大后进行测量的思想,使用较低分辨率实现高精度测量。基于光电振荡器的距离测量存在两个技术难点:一是由于待测目标位于反馈环路内,温度等环境因素对反馈环路的影响将会降低系统的测量精度;二是由于累积放大原理,需要提高光电振荡器的频率来提高测量精度,因而光电振荡器的频率通常为数十GHz,实时测量数十GHz微波信号的频率增加了解调难度和成本;三是多目标距离及位移测量实现存在困难。因此,温度等环境因素对距离及其相关参数测量结果的影响和振荡器振荡信号频率高,测量难度大,解调成本高、难度大,测量精度低,实现多目标距离及位移测量是亟待解决的技术难题。At present, large-scale, high-precision distance measurement has been achieved based on photoelectric oscillators. This method is based on the principle of cumulative amplification, uses the idea of amplifying the physical quantity to be measured and then measures, and uses a lower resolution to achieve high-precision measurement. There are two technical difficulties in distance measurement based on photoelectric oscillators: one is that since the target to be measured is located in the feedback loop, the influence of environmental factors such as temperature on the feedback loop will reduce the measurement accuracy of the system; the other is that due to the principle of cumulative amplification, It is necessary to increase the frequency of the photoelectric oscillator to improve the measurement accuracy, so the frequency of the photoelectric oscillator is usually tens of GHz, and the real-time measurement of the frequency of the microwave signal of tens of GHz increases the difficulty and cost of demodulation; the third is the existence of multi-target distance and displacement measurement. difficulty. Therefore, the influence of environmental factors such as temperature on the measurement results of distance and its related parameters and the high frequency of oscillator oscillation signal, the measurement difficulty is high, the demodulation cost is high, the difficulty is high, and the measurement accuracy is low, and the realization of multi-target distance and displacement measurement is an urgent problem to be solved. technical difficulties.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术中难以排除温度等外界因素对测量结果的影响,且解调难度成本高、难度大,测量精度低,多目标距离及位移测量实现存在困难的问题,提供了一种基于光电振荡器的准分布式位移测量装置和方法,有效克服温度等环境因素对距离及其相关参数测量结果的影响,降低测量难度、解调难度和解调成本,实现多目标距离及位移测量,能用于远距离位移测量的各种场合。The purpose of the present invention is to overcome the problems in the prior art that it is difficult to exclude the influence of external factors such as temperature on the measurement results, and the demodulation difficulty is high in cost, high in difficulty, low in measurement accuracy, and difficult to achieve in multi-target distance and displacement measurement. A quasi-distributed displacement measurement device and method based on a photoelectric oscillator can effectively overcome the influence of environmental factors such as temperature on the measurement results of distance and related parameters, reduce measurement difficulty, demodulation difficulty and demodulation cost, and achieve multi-target distance and Displacement measurement can be used in various occasions for long-distance displacement measurement.
为实现上述发明目的,本发明基于光电振荡器的准分布式位移测量装置,包括参考光电振荡器、测量光电振荡器、鉴频模块、频率计数模块、频谱测量模块和信号处理模块,所述参考光电振荡器的输出微波信号为两路,其中一路参考光电振荡器输出的微波信号与测量光电振荡器输出的微波信号同时输入鉴频模块中,另一路参考光电振荡器输出的微波信号输入到频谱测量模块;鉴频模块输出中频信号后,将中频信号输入频率计数模块中,频率计数模块和上述频谱测量模块将信息输出到信号处理模块,其中:In order to achieve the above purpose of the invention, the quasi-distributed displacement measuring device based on the photoelectric oscillator of the present invention includes a reference photoelectric oscillator, a measuring photoelectric oscillator, a frequency discrimination module, a frequency counting module, a spectrum measurement module and a signal processing module. The output microwave signal of the photoelectric oscillator has two channels, one of which is the microwave signal output by the reference photoelectric oscillator and the microwave signal output by the measuring photoelectric oscillator are input into the frequency discrimination module at the same time, and the microwave signal output by the other reference photoelectric oscillator is input into the frequency spectrum. measurement module; after the frequency discrimination module outputs the intermediate frequency signal, the intermediate frequency signal is input into the frequency counting module, and the frequency counting module and the above-mentioned spectrum measurement module output the information to the signal processing module, wherein:
参考光电振荡器,用于消除包括温度在内的外界因素对距离及其相关参数测量结果的影响;Reference photoelectric oscillator, used to eliminate the influence of external factors including temperature on the measurement results of distance and its related parameters;
测量光电振荡器,用于与参考光电振荡器相比较得出待测值;Measuring optoelectronic oscillators for comparing with reference optoelectronic oscillators to obtain values to be measured;
鉴频模块,用于将来自参考光电振荡器的微波信号和来自测量光电振荡器的微波信号进行鉴频;The frequency discrimination module is used to discriminate the microwave signal from the reference photoelectric oscillator and the microwave signal from the measurement photoelectric oscillator;
频率计数模块,用于测量鉴频模块输出的中频信号实时频率;The frequency counting module is used to measure the real-time frequency of the intermediate frequency signal output by the frequency discrimination module;
频谱测量模块,用于获得参考光电振荡器的振荡信号和相邻模式间的频率间隔;The spectrum measurement module is used to obtain the oscillation signal of the reference photoelectric oscillator and the frequency interval between adjacent modes;
信号处理模块,用于将来自频谱测量模块的微波信号的频谱信息、频率计数模块测得的中频信号实时频率,通过公式计算获得距离及其相关参数;The signal processing module is used to calculate the distance and related parameters through formula calculation of the spectrum information of the microwave signal from the spectrum measurement module and the real-time frequency of the intermediate frequency signal measured by the frequency counting module;
本发明使用参考光电振荡器和测量光电振荡器,两个光电振荡器的初始振荡频率相同,且两个光电振荡器的初始环路延时相等,两个光电振荡器的初始频率差为零,温度等环境因素对两个光电振荡器的输出频率的影响相同,使测量结果不受温度等环境因素的影响;本发明解调信号为两个光电振荡器的微波信号频率差,微波信号频率差远远小于振荡器的振荡信号,测量难度小,解调成本低。The invention uses the reference photoelectric oscillator and the measurement photoelectric oscillator, the initial oscillation frequencies of the two photoelectric oscillators are the same, the initial loop delays of the two photoelectric oscillators are equal, and the initial frequency difference of the two photoelectric oscillators is zero, The environmental factors such as temperature have the same influence on the output frequencies of the two photoelectric oscillators, so that the measurement results are not affected by environmental factors such as temperature; the demodulation signal of the present invention is the frequency difference of the microwave signals of the two photoelectric oscillators, and the frequency difference of the microwave signals is Much smaller than the oscillator's oscillating signal, the measurement difficulty is small, and the demodulation cost is low.
进一步的,所述参考光电振荡器包括激光源模块、光耦合模块、电光调制模块1、偏振控制模块1、偏振合束模块01、延迟测量模块、偏振合束模块02、光电探测模块1、微波放大模块1、微波滤波模块1、微波耦合模块1,其中:Further, the reference photoelectric oscillator includes a laser source module, an optical coupling module, an electro-optical modulation module 1, a polarization control module 1, a polarization beam combining module 01, a delay measurement module, a polarization beam combining module 02, a photoelectric detection module 1, a microwave Amplifying module 1, microwave filtering module 1, microwave coupling module 1, wherein:
激光源模块,可调谐,用于产生连续改变输出波长的光信号;A laser source module, tunable, for generating optical signals with continuously changing output wavelengths;
光耦合模块,用于将来自激光源模块的一束光信号分为两束光信号,一束传输到电光调制模块1,另一束传输到电光调制模块2;The optical coupling module is used to divide a beam of optical signals from the laser source module into two beams of optical signals, one beam is transmitted to the electro-optical modulation module 1, and the other beam is transmitted to the electro-
电光调制模块1,用于调制来自光耦合模块输入到电光调制模块1的光信号;The electro-optical modulation module 1 is used to modulate the optical signal input from the optical coupling module to the electro-optical modulation module 1;
偏振控制模块1,用于控制输入偏振合束模块01输入口S端口的光信号的偏振方向与S端口主轴相同;The polarization control module 1 is used to control the polarization direction of the optical signal input to the input port S port of the polarization beam combining module 01 is the same as the main axis of the S port;
偏振合束模块01,用于将输入口S端口输入的光信号和输入口P端口输入的光信号合束,偏振合束模块01有两个输入口S端口和P端口,两个输入口主轴偏振方向互相垂直;The polarization beam combining module 01 is used to combine the optical signal input from the input port S port and the optical signal input from the input port P port. The polarization beam combining module 01 has two input ports S port and P port, and the two input ports are main The polarization directions are perpendicular to each other;
延迟测量模块,用于选定测量位置和使两个光电振荡器延时相同;Delay measurement module, used to select the measurement position and make the two photoelectric oscillators have the same delay;
偏振合束模块02,用于将合成的光信号分束,分成两束偏振方向互相垂直的光信号,一束通过输出口S端口进入光电探测模块1,另一束通过输出口P端口进入测量光电振荡器中的光电探测模块2;The polarization beam combining module 02 is used to split the synthesized optical signal into two optical signals whose polarization directions are perpendicular to each other. One beam enters the photoelectric detection module 1 through the output port S port, and the other beam enters the measurement module through the output port P port.
光电探测模块1,用于将来自偏振合束模块02输出口S端口的光信号转换为微波信号;The photoelectric detection module 1 is used to convert the optical signal from the output port S port of the polarization beam combining module 02 into a microwave signal;
微波放大模块1,用于将来自光电探测模块1的微波信号放大;The microwave amplifying module 1 is used to amplify the microwave signal from the photoelectric detection module 1;
微波滤波模块1,用于将来自微波放大模块1的微波信号进行滤波处理;The microwave filtering module 1 is used for filtering the microwave signal from the microwave amplifying module 1;
微波耦合模块1,用于将来自微波滤波模块1的微波信号分成三束,一束反馈回电光调制模块1,一束输出到鉴频模块,一束输出到频谱测量模块;The microwave coupling module 1 is used to divide the microwave signal from the microwave filter module 1 into three beams, one beam is fed back to the electro-optic modulation module 1, the other beam is output to the frequency discrimination module, and the other beam is output to the spectrum measurement module;
上述激光源模块可调谐,通过调谐光信号的波长选择不同的位移测量位置,来实现多目标距离及位移测量;The above-mentioned laser source module is tunable, and different displacement measurement positions are selected by tuning the wavelength of the optical signal to realize multi-target distance and displacement measurement;
上述光耦合模块尾纤为保偏光纤,保证输入电光调制模块1的光信号的偏振方向与其主轴相同,减小偏振损耗;The above-mentioned optical coupling module pigtail is a polarization-maintaining optical fiber, which ensures that the polarization direction of the optical signal input to the electro-optical modulation module 1 is the same as its main axis, thereby reducing polarization loss;
进一步的,所述测量光电振荡器包括激光源模块、光耦合模块、电光调制模块2、偏振控制模块2、偏振合束模块01、延迟测量模块、偏振合束模块02、光电探测模块2、微波放大模块2、微波滤波模块2、微波耦合模块2,其中:Further, the measurement photoelectric oscillator includes a laser source module, an optical coupling module, an electro-
激光源模块,可调谐,用于产生连续改变输出波长的光信号;A laser source module, tunable, for generating optical signals with continuously changing output wavelengths;
光耦合模块,用于将来自激光源模块的一束光信号分为两束光信号,一束传输到电光调制模块1,另一束传输到电光调制模块2;The optical coupling module is used to divide a beam of optical signals from the laser source module into two beams of optical signals, one beam is transmitted to the electro-optical modulation module 1, and the other beam is transmitted to the electro-
电光调制模块2,用于调制来自光耦合模块输入到电光调制模块2的光信号;The electro-
偏振控制模块2,用于控制输入偏振合束模块01输入口P端口的光信号的偏振方向与P端口主轴相同;The
偏振合束模块01,用于将输入口P端口输入的光信号和输入口S端口输入的光信号合束,偏振合束模块01有两个输入口S端口和P端口、一个输出口C端口,两个输入口主轴偏振方向互相垂直,偏振合束模块01通过输出口C端口输出到光纤延迟模块1;The polarization beam combining module 01 is used to combine the optical signal input from the P port of the input port and the optical signal input from the input port S port. The polarization beam combining module 01 has two input ports S ports and P ports, and one output port C port , the polarization directions of the main axes of the two input ports are perpendicular to each other, and the polarization beam combining module 01 is output to the fiber delay module 1 through the output port C port;
延迟测量模块,用于选定测量位置和使两个光电振荡器延时相同;Delay measurement module, used to select the measurement position and make the two photoelectric oscillators have the same delay;
偏振合束模块02,用于将来自偏振合束模块02的输入口C端口的光信号分束,分成两束偏振方向互相垂直的光信号,一束通过输出口S端口进入参考光电振荡器的光电探测模块1,另一束通过输出口P端口进入光电探测模块2;The polarization beam combining module 02 is used to split the optical signal from the input port C port of the polarization beam combining module 02 into two beams of optical signals whose polarization directions are perpendicular to each other, and one beam enters the reference photoelectric oscillator through the output port S port. Photoelectric detection module 1, another beam enters
光电探测模块2,用于将来自偏振合束模块02输出口P端口的光信号转换为微波信号;The
微波放大模块2,用于将来自光电探测模块2的微波信号放大;The microwave amplifying
微波滤波模块2,用于将来自微波放大模块2的微波信号进行滤波处理;The
微波耦合模块2,用于将来自微波滤波模块2的微波信号分成两束,一束反馈回电光调制模块2,一束输出到鉴频模块;The
上述激光源模块可调谐,通过调谐光信号的波长选择不同的位移测量位置,来实现多目标距离及位移测量;The above-mentioned laser source module is tunable, and different displacement measurement positions are selected by tuning the wavelength of the optical signal to realize multi-target distance and displacement measurement;
上述光耦合模块尾纤为保偏光纤,保证输入电光调制模块2的光的偏振方向与其主轴相同,减小偏振损耗;The above-mentioned optical coupling module pigtail is a polarization-maintaining fiber, which ensures that the polarization direction of the light input to the electro-
进一步的,所述延迟测量模块包括光纤延迟模块、位移测量位置,光纤延迟模块有n+1个、位移测量位置有n个,n为自然数,上述n+1个光纤延迟模块与n个位移测量位置交替连接,第n+1个光纤延迟模块将光信号传入偏振合束模块02的输入口C端口,其中:Further, the delay measurement module includes an optical fiber delay module and a displacement measurement position. There are n+1 optical fiber delay modules and n displacement measurement positions, and n is a natural number. The above-mentioned n+1 optical fiber delay modules and n displacement measurement positions. The positions are alternately connected, and the n+1th fiber delay module transmits the optical signal to the input port C port of the polarization beam combining module 02, where:
光纤延迟模块,用于给参考光电振荡器和测量光电振荡器提供能量储存介质;Optical fiber delay module, used to provide energy storage medium for reference optoelectronic oscillator and measurement optoelectronic oscillator;
当光纤延迟模块1传出光信号的波长与位移测量位置中波分复用模块的工作波长一致时,选用该位移测量位置。When the wavelength of the optical signal output from the optical fiber delay module 1 is consistent with the working wavelength of the wavelength division multiplexing module in the displacement measurement position, the displacement measurement position is selected.
被选用的位移测量位置,用于提供一个测量位置;The selected displacement measurement position to provide a measurement position;
其余未被选用的位移测量位置,被当作一个光纤延迟模块;The rest of the displacement measurement positions that are not selected are regarded as an optical fiber delay module;
进一步的,以位移测量位置1为例,其余位移测量位置结构与位移测量位置1相同;位移测量位置1包括波分复用模块11、偏振合束模块11、参考光延迟模块1、偏振控制模块11、位移传感模块1、偏振控制模块12、偏振合束模块12、波分复用模块12,其中:Further, taking the displacement measurement position 1 as an example, the structure of the other displacement measurement positions is the same as that of the displacement measurement position 1; the displacement measurement position 1 includes a wavelength
波分复用模块11,用于将来自光纤延迟模块的光信号通过偏振合束模块11输入口C端口输入到偏振合束模块11;The wavelength
偏振合束模块11,用于将来自偏振合束模块11输入口C端口的光信号分为两束,其中一束通过输出口S端口输入到参考光延时模块1,另一束通过输出口P端口输入到位移传感模块1;The polarization
参考光延迟模块1,用于保证两个光电振荡器的初始反馈环路延时相同;Refer to the optical delay module 1, which is used to ensure that the initial feedback loop delays of the two photoelectric oscillators are the same;
偏振控制模块11,用于控制输入偏振合束模块12输入口S端口的光信号的偏振方向与S端口主轴相同;The
位移传感模块1,用于把被测位移和实时距离转换为光电振荡器中光电反馈环路的光延时变化;Displacement sensing module 1, which is used to convert the measured displacement and real-time distance into the optical delay change of the optoelectronic feedback loop in the optoelectronic oscillator;
偏振控制模块12,用于控制输入偏振合束模块12输入口P端口的光信号的偏振方向与P端口主轴相同;The
偏振合束模块12,用于将偏振合束模块12的输入口P端口输入的光信号和偏振合束模块12的输入口S端口输入的光信号合束,偏振合束模块12有两个输入口S端口和P端口、一个输出口C端口,两个输入口主轴偏振方向互相垂直,偏振合束模块12通过输出口C端口将光信号输出到波分复用模块12;The polarization
波分复用模块12,将来自偏振合束模块12输出口C端口的光信号输入下一个光纤延迟模块;The wavelength
其余位移测量位置结构与位移测量位置1相同;The structure of other displacement measurement positions is the same as that of displacement measurement position 1;
上述参考光延迟模块1用于保证两个光电振荡器的初始反馈环路延时相同,消除环路延时对测量结果的影响;The above-mentioned reference optical delay module 1 is used to ensure that the initial feedback loop delay of the two photoelectric oscillators is the same, and to eliminate the influence of the loop delay on the measurement result;
本发明还提供基于光电振荡器的准分布式位移测量方法,包括以下步骤:The present invention also provides a quasi-distributed displacement measurement method based on an optoelectronic oscillator, comprising the following steps:
A.在参考光电振荡器中,激光源模块可调谐,产生连续改变输出波长的光信号并将光信号输入光耦合模块,光耦合模块将光信号分为两束,其中一束光信号输入测量光电振荡器的电光调制模块2,另一束光信号输入电光调制模块1;输入电光调制模块1的光信号在电光调制模块1中被微波信号调制,经微波信号调制后的光信号经偏振控制模块1输入偏振合束模块01的输入口S端口,偏振合束模块01将来自输入口S端口和输入口P端口的光信号合束,合束后的光信号经偏振合束模块01的输出口C端口输出到光纤延迟模块1,光纤延迟模块1将光信号传给位移测量位置,每个位移测量位置的波分复用模块的工作波长不同,当位移测量位置中波分复用模块的波长与传入位移测量位置的光信号的波长相同时,选用该位移测量位置作为测量位置,其余位移测量位置相当于一个光纤延迟模块,光纤延迟模块1输出的光信号通过被选用的位移测量位置中的波分复用模块后,经偏振合束模块的输入口C端口,然后偏振合束模块将光信号分为两束,其中一束光信号通过偏振合束模块的输出口S端口传入参考光延迟模块,另一束光信号通过偏振合束模块的输出口P端口传入位移传感模块;传入参考光延迟模块的光信号通过偏振控制模块后经偏振合束模块的输入口S端口传入偏振合束模块,传入位移传感模块的光信号通过位移传感模块后经偏振合束模块的输入口P端口传入偏振合束模块;偏振合束模块将来自输入口S端口和输入口P端口的光信号合束后经偏振合束模块的输入口C端口传输到波分复用模块,波分复用模块传输的光信号通过光纤延迟模块和未被选用的位移测量位置后,再通过一个光纤延迟模块经偏振合束模块02的输入口C端口,偏振合束模块02将来自输入口C端口的光信号分为两束,其中一束光信号通过偏振合束模块02的输出口P端口传入到测量光电振荡器的光电探测模块2,另一束光信号通过偏振合束模块02的输出口S端口传入到光电探测模块1;光电探测模块1将接收到的光信号转换为微波信号后经微波放大模块1放大,并通过微波滤波模块1滤波,被滤波后的微波信号被微波耦合模块1分为两束,其中一束微波信号传输到鉴频模块,另一束微波信号传输到电光调制模块1形成参考光电振荡器的光电反馈回路;A. In the reference photoelectric oscillator, the laser source module is tunable to generate an optical signal that continuously changes the output wavelength and input the optical signal into the optical coupling module. The optical coupling module divides the optical signal into two beams, one of which is input to the measurement The electro-
B.在测量光电振荡器中,激光源模块可调谐,产生在一定范围内连续改变输出波长的光信号并将光信号输入光耦合模块,光耦合模块将光信号分为两束,其中一束光信号输入参考光电振荡器的电光调制模块1,另一束光信号输入电光调制模块2;输入电光调制模块2的光信号在电光调制模块2中被微波信号调制,经微波信号调制后的光信号经偏振控制模块2输入偏振合束模块01的输入口P端口,偏振合束模块01将来自输入口S端口和输入口P端口的光信号合束,合束后的光信号经偏振合束模块01的输出口C端口输出到光纤延迟模块1,光纤延迟模块1将光信号传给位移测量位置,每个位移测量位置的波分复用模块的工作波长不同,当位移测量位置中波分复用模块的波长与传入位移测量位置的光信号的波长相同时,选用该位移测量位置作为测量位置,其余位移测量位置相当于一个光纤延迟模块,光纤延迟模块1输出的光信号通过被选用的位移测量位置中的波分复用模块后,经偏振合束模块的输入口C端口,然后偏振合束模块将光信号分为两束,其中一束光信号通过偏振合束模块的输出口S端口传入参考光延迟模块,另一束光信号通过偏振合束模块的输出口P端口传入位移传感模块;传入参考光延迟模块的光信号通过偏振控制模块后经偏振合束模块的输入口S端口传入偏振合束模块,传入位移传感模块的光信号通过位移传感模块后经偏振合束模块的输入口P端口传入偏振合束模块;偏振合束模块将来自输入口S端口和输入口P端口的光信号合束后经偏振合束模块的输入口C端口传输到波分复用模块,波分复用模块传输的光信号通过光纤延迟模块和未被选用的位移测量位置后,再通过一个光纤延迟模块n+1后经偏振合束模块02的输入口C端口,偏振合束模块02将来自输入口C端口的光信号分为两束,其中一束光信号通过偏振合束模块02的输出口S端口传入到参考光电振荡器的光电探测模块1,另一束光信号通过偏振合束模块02的输出口P端口传入到光电探测模块2;光电探测模块2将接收到的光信号转换为微波信号后经微波放大模块2放大,并通过微波滤波模块2滤波,被滤波后的微波信号被微波耦合模块2分为两束,其中一束微波信号传输到鉴频模块,另一束微波信号传输到电光调制模块2形成测量光电振荡器的光电反馈回路;B. In the measurement of photoelectric oscillator, the laser source module can be tuned to generate an optical signal that continuously changes the output wavelength within a certain range and input the optical signal into the optical coupling module. The optical coupling module divides the optical signal into two beams, one of which is The optical signal is input to the electro-optical modulation module 1 of the reference photoelectric oscillator, and another beam of optical signal is input to the electro-
步骤A和步骤B中光耦合模块调节激光源模块产生的光信号的偏振方向分别与电光调制模块1、电光调制模块2的主轴相同,使偏振损耗降到最低;同时,该结构可以避免电光调制模块1和电光调制模块2输出的光信号发生相干现象;In step A and step B, the optical coupling module adjusts the polarization direction of the optical signal generated by the laser source module to be the same as the main axis of the electro-optic modulation module 1 and the electro-
C.将上述步骤A中传输到鉴频模块的一束微波信号与上述步骤B中传输到鉴频模块的一束微波信号在鉴频模块中进行鉴频,鉴频模块鉴频后得到中频信号,鉴频模块将中频信号输入频率计数模块中,频率计数模块获得中频信号的实时频率并将所述中频信号的实时频率fIF输出到信号处理模块;频谱测量模块通过上述步骤A中传输到频谱测量模块的一路微波信号获得参考光电振荡器的振荡频率f1和参考光电振荡器的相邻模式间的频率间隔fFSR后传入信号处理模块,信号处理模块根据上述所得的中频信号的实时频率fIF、参考光电振荡器的振荡频率f1、参考光电振荡器的相邻模式间的频率间隔fFSR进行计算,求得位移测量模块中的待测目标的初始距离、位移、实时距离。C. a bundle of microwave signals transmitted to the frequency discrimination module in the above-mentioned steps A and a bundle of microwave signals transmitted to the frequency discrimination module in the above-mentioned steps B are subjected to frequency discrimination in the frequency discrimination module, and the frequency discrimination module obtains the intermediate frequency signal after frequency discrimination , the frequency discrimination module inputs the intermediate frequency signal into the frequency counting module, and the frequency counting module obtains the real-time frequency of the intermediate frequency signal and outputs the real-time frequency f IF of the intermediate frequency signal to the signal processing module; One microwave signal of the measurement module obtains the oscillation frequency f 1 of the reference photoelectric oscillator and the frequency interval f FSR between the adjacent modes of the reference photoelectric oscillator and then transmits it to the signal processing module. The signal processing module is based on the real-time frequency of the intermediate frequency signal obtained above. Calculate f IF , the oscillation frequency f 1 of the reference photoelectric oscillator, and the frequency interval f FSR between adjacent modes of the reference photoelectric oscillator to obtain the initial distance, displacement, and real-time distance of the target to be measured in the displacement measurement module.
鉴频模块输出的中频信号只受位移传感模块1中位移的影响,且信号处理模块使用电子技术解调,提高了解调速度;The intermediate frequency signal output by the frequency discrimination module is only affected by the displacement in the displacement sensing module 1, and the signal processing module uses electronic technology to demodulate to improve the demodulation speed;
参考光电振荡器与测量光电振荡器的结构相同。其中,两个光电振荡器的反馈环路长度相同,且数百米至数公里长的光纤延迟模块和位移测量位置由两个光电振荡器共用;参考光延时模块1用于保证两个光电振荡器的初始反馈环路延时相同;微波滤波模块1与微波滤波模块2均为带通微波滤波器,且其中心频率、3dB带宽等关键指标相同。由于两个光电振荡器的结构相同,两个光电振荡器的初始振荡频率相同,微波滤波模块1与微波滤波模块2中心频率、带宽等关键指标相同;因此,温度等环境因素对两个光电振荡器振荡频率的影响相同,从而消除了温度等环境因素对测量结果的影响。The reference photoelectric oscillator has the same structure as the measurement photoelectric oscillator. Among them, the feedback loops of the two optoelectronic oscillators have the same length, and the fiber delay module and the displacement measurement position ranging from hundreds of meters to several kilometers are shared by the two optoelectronic oscillators; the reference optical delay module 1 is used to ensure that the two optoelectronic The initial feedback loop delay of the oscillator is the same; the microwave filter module 1 and the
进一步的,步骤C包括,频谱测量模块测量参考光电振荡器中微波耦合模块1传输的微波信号的频谱,并将频谱信息传入信号处理模块,获得参考光电振荡器的环路延时τ0、初始环路长度L0,及位移测量位置中位移传感模块的待测目标的初始距离L′;环路延时τ0=1/fFSR,环路长度L0=(cτ0)/n,位移测量模块中待测目标的初始距离L′=L0;其中,c表示光在真空中的传播速度,n表示折射率;Further, step C includes that the spectrum measurement module measures the spectrum of the microwave signal transmitted by the microwave coupling module 1 in the reference photoelectric oscillator, and transmits the spectrum information to the signal processing module to obtain the loop delay τ 0 of the reference photoelectric oscillator, The initial loop length L 0 , and the initial distance L' of the target to be measured in the displacement sensing module in the displacement measurement position; the loop delay τ 0 =1/f FSR , the loop length L 0 =(cτ 0 )/n , the initial distance L′=L 0 of the target to be measured in the displacement measurement module; wherein, c represents the propagation speed of light in vacuum, and n represents the refractive index;
进一步的,步骤C包括,信号处理模块通过频率计数模块测得的中频信号的实时频率来确定位移测量模块中待测目标的位移ΔL、位移测量模块中待测目标的位移ΔL与鉴频模块输出中频信号频率的关系;则位移测量模块中待测目标的位移ΔL=L0fIF/f1,位移测量模块中待测目标的位移与鉴频模块输出中频信号频率的关系为其中,c表示光在真空中的传播速度,n表示折射率;Further, step C includes, the signal processing module determines the displacement ΔL of the target to be measured in the displacement measurement module, the displacement ΔL of the target to be measured in the displacement measurement module and the output of the frequency discrimination module by the real-time frequency of the intermediate frequency signal measured by the frequency counting module. The relationship between the frequency of the intermediate frequency signal; then the displacement of the target to be measured in the displacement measurement module ΔL=L 0 f IF /f 1 , the relationship between the displacement of the target to be measured in the displacement measurement module and the frequency of the intermediate frequency signal output by the frequency discrimination module is: Among them, c represents the propagation speed of light in vacuum, and n represents the refractive index;
本发明基于波分复用技术实现了准分布式位移测量;利用偏振复用技术使两个光电振荡器共用长光电传输链路,实现互参考结构消除了温度等外界因素对位移测量结果的影响。采用光电振荡器产生的低相噪高频微波信号实现高精度位移测量。通过两个光电振荡器的微波信号频率差作为位移解调量,提高了测量速度,降低了解调成本。最终实现了基于光电振荡器的、温度不敏感的、准分布式的、测量速度快、测量精度高的位移测量。The invention realizes quasi-distributed displacement measurement based on wavelength division multiplexing technology; uses polarization multiplexing technology to make two photoelectric oscillators share a long photoelectric transmission link, realizes mutual reference structure, and eliminates the influence of external factors such as temperature on the displacement measurement results . The high-precision displacement measurement is realized by using the low-phase-noise high-frequency microwave signal generated by the photoelectric oscillator. The frequency difference of the microwave signals of the two photoelectric oscillators is used as the displacement demodulation quantity, which improves the measurement speed and reduces the demodulation cost. Finally, the displacement measurement based on photoelectric oscillator, which is temperature-insensitive, quasi-distributed, fast in measurement speed and high in measurement accuracy is realized.
附图说明Description of drawings
图1是基于光电振荡器的准分布式位移测量装置的原理图;Fig. 1 is the principle diagram of the quasi-distributed displacement measuring device based on photoelectric oscillator;
图2是位移测量位置1的示意图;Fig. 2 is the schematic diagram of displacement measurement position 1;
图3是位移测量位置2的示意图;Fig. 3 is the schematic diagram of
图4是位移测量位置n的示意图;Fig. 4 is the schematic diagram of displacement measurement position n;
具体实施方式Detailed ways
下面结合附图对本发明的具体实施方式进行描述,以便本领域的技术人员更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。The specific embodiments of the present invention are described below with reference to the accompanying drawings, so that those skilled in the art can better understand the present invention. It should be noted that, in the following description, when the detailed description of known functions and designs may dilute the main content of the present invention, these descriptions will be omitted here.
图1是本发明基于光电振荡器的准分布式位移测量装置的原理图。如图1所示,本发明包括参考光电振荡器、测量光电振荡器、鉴频模块、频率计数模块、频谱测量模块和信号处理模块;所述参考光电振荡器包括激光源模块、光耦合模块、电光调制模块1、偏振控制模块1、偏振合束模块01、光纤延迟模块1、n+1个光纤延迟模块、n个位移测量位置、偏振合束模块02、光电探测模块1、微波放大模块1、微波滤波模块1、微波耦合模块1;所述测量光电振荡器包括激光源模块、光耦合模块、电光调制模块2、偏振控制模块2、偏振合束模块01、光纤延迟模块1、n+1个光纤延迟模块、n个位移测量位置、偏振合束模块02、光电探测模块2、微波放大模块2、微波滤波模块2、微波耦合模块2。FIG. 1 is a schematic diagram of a quasi-distributed displacement measuring device based on a photoelectric oscillator of the present invention. As shown in Figure 1, the present invention includes a reference photoelectric oscillator, a measurement photoelectric oscillator, a frequency discrimination module, a frequency counting module, a spectrum measurement module and a signal processing module; the reference photoelectric oscillator includes a laser source module, an optical coupling module, Electro-optic modulation module 1, polarization control module 1, polarization beam combining module 01, fiber delay module 1, n+1 fiber delay modules, n displacement measurement positions, polarization beam combining module 02, photoelectric detection module 1, microwave amplification module 1 , microwave filter module 1, microwave coupling module 1; the measuring photoelectric oscillator includes a laser source module, an optical coupling module, an electro-
本实施例中,激光器产生光信号,光信号经3dB光耦合器输入两个电光调制器,电光调制器调制后的光信号通过偏振控制器并输入偏振合束器;偏振合束器将合束的光信号继续传输过数公里长的普通单模光纤,然后通过位移测量位置中的波分复用器,经波分复用器传输到偏振合束器中,偏振合束器将光信号分束,分束后的光一束传入光延迟线,另一束传入位移传感器;传入光延迟线的光信号继续传入一个偏振控制器,传入位移传感器继续传入另一个偏振控制器,偏振合束器将两个偏振控制器传入的光信号合束,合束后的光信号经波分复用器传入单模光纤,经单模光纤传输的光信号通过偏振合束器,偏振合束器将传入的光信号分束后传入光电探测器,光电探测器将光信号转换为微波信号;微波信号经射频/微波宽带低噪声放大器放大,微波带通滤波器滤波,并通过微波/射频耦合器,微波/射频耦合器将微波信号分为两路,一路输出到宽带双平衡混频器,另一路反馈回电光调制器,最终形成两个电振荡器的光电反馈环路;参考光电振荡器的微波/射频耦合器将微波信号分为三路,一路输出到电光调制器,一路输出到宽带双平衡混频器,一路输出到频谱测量器;上述宽带双平衡混频器将中频信号输入频率计数器,频率计数器将实时中频信号频率传输到DSP数字信号处理器、频谱测量器将频谱信息传输到DSP数字信号处理器。In this embodiment, the laser generates an optical signal, and the optical signal is input into two electro-optical modulators through a 3dB optical coupler. The optical signal modulated by the electro-optical modulator passes through the polarization controller and is input into the polarization beam combiner; the polarization beam combiner combines the beams. The optical signal continues to transmit through the ordinary single-mode fiber several kilometers long, and then passes through the wavelength division multiplexer in the displacement measurement position, and then is transmitted to the polarization beam combiner through the wavelength division multiplexer, and the polarization beam combiner divides the optical signal into One beam of split light is passed into the optical delay line, and the other beam is passed into the displacement sensor; the optical signal passed into the optical delay line continues to pass into one polarization controller, and the incoming displacement sensor continues to pass into another polarization controller , the polarization beam combiner combines the optical signals from the two polarization controllers, the combined optical signal is transmitted to the single-mode fiber through the wavelength division multiplexer, and the optical signal transmitted through the single-mode fiber passes through the polarization beam combiner , the polarization beam combiner splits the incoming optical signal into a photodetector, and the photodetector converts the optical signal into a microwave signal; the microwave signal is amplified by a radio frequency/microwave broadband low-noise amplifier, filtered by a microwave bandpass filter, And through the microwave/RF coupler, the microwave/RF coupler divides the microwave signal into two channels, one is output to the broadband double-balanced mixer, the other is fed back to the electro-optical modulator, and finally forms an optoelectronic feedback loop of two electrical oscillators The microwave/RF coupler of the reference photoelectric oscillator divides the microwave signal into three channels, one is output to the electro-optical modulator, the other is output to the broadband double-balanced mixer, and the other is output to the spectrum measurer; the above-mentioned broadband double-balanced mixer The frequency counter transmits the frequency of the real-time intermediate frequency signal to the DSP digital signal processor, and the spectrum measurer transmits the spectrum information to the DSP digital signal processor.
假设频谱测量器测量参考光电振荡器中的微波/射频耦合器耦合出微波信号的频谱显示,振荡频率为f1,相邻模式间的频率间隔为fFSR,则环路延时为τ0=1/fFSR,环路长度为L0=(cτ0)/n,待测目标的初始距离为L′=L0;其中,c表示光在真空中的传播速度,n表示折射率。Assuming that the spectrum measuring instrument measures the spectrum of the microwave signal coupled out by the microwave/RF coupler in the reference photoelectric oscillator, the oscillation frequency is f 1 , and the frequency interval between adjacent modes is f FSR , then the loop delay is τ 0 = 1/f FSR , the loop length is L 0 =(cτ 0 )/n, and the initial distance of the target to be measured is L′=L 0 ; where c represents the propagation speed of light in vacuum, and n represents the refractive index.
假设频率计数器测得宽带双平衡混频器中输出的中频信号的实时频率为fIF,则位移测量模块中待测目标位移为ΔL=L0fIF/f1,位移测量模块中待测目标位移与鉴频模块输出中频信号频率的关系为其中,L0表示环路长度,f1表示参考光电振荡器的频谱显示的振荡频率,c表示光在真空中的传播速度,n表示折射率。Assuming that the real-time frequency of the intermediate frequency signal output from the broadband double-balanced mixer measured by the frequency counter is f IF , the displacement of the target to be measured in the displacement measurement module is ΔL=L 0 f IF /f 1 , and the target to be measured in the displacement measurement module is ΔL=L 0 f IF /f 1 . The relationship between the displacement and the frequency of the IF signal output by the frequency discrimination module is: Among them, L 0 represents the loop length, f 1 represents the oscillation frequency displayed by the spectrum of the reference optoelectronic oscillator, c represents the propagation speed of light in vacuum, and n represents the refractive index.
DSP数字信号处理器根据上述所得的待测目标的初始距离和待测目标的位移,求出待测目标的实时距离为L=L′+ΔL。The DSP digital signal processor obtains the real-time distance of the target to be measured as L=L′+ΔL according to the above-obtained initial distance of the target to be measured and the displacement of the target to be measured.
图2~图4是本发明位移测量位置的示意图。如图2~图4所示,位移测量位置包含波分复用模块、偏振合束模块、参考光延迟模块、偏振控制模块、位移传感模块、偏振控制模块、偏振合束模块、波分复用模块。2 to 4 are schematic diagrams of displacement measurement positions of the present invention. As shown in Figures 2 to 4, the displacement measurement position includes a wavelength division multiplexing module, a polarization beam combining module, a reference optical delay module, a polarization control module, a displacement sensing module, a polarization control module, a polarization beam combining module, and a wavelength division multiplexing module. Use modules.
本实施例中,单模光纤将光信号传入波分复用器,每个位移测量位置的波分复用器工作波长不同,当传入的光信号波长与波分复用器工作波长一致时,波分复用器将光信号传入偏振合束器的输入口C端口,偏振合束器将光信号分为两束,其中一束光信号通过偏振合束器的输出口S端口传入光延迟线、光延迟线经偏振控制器传入偏振合束器的输入口S端口;另一束光信号通过偏振合束器的输出口P端口传入位移传感器、位移传感器经偏振控制器传入偏振合束器的输入口P端口;偏振合束器将输入口S端口的光信号和输入口P端口的光信号合成一束通过偏振合束器的输出口C端口传输到波分复用器;当传入的光信号波长与波分复用器工作波长不一致时,单模光纤将光信号传入波分复用器,波分复用器将光信号传入下一个波分复用器;波分复用器再将光信号传输到单模光纤。In this embodiment, the single-mode fiber transmits the optical signal into the wavelength division multiplexer, and the wavelength division multiplexer at each displacement measurement position has different working wavelengths. When the wavelength of the incoming optical signal is consistent with the working wavelength of the wavelength division multiplexer When the wavelength division multiplexer transmits the optical signal into the input port C port of the polarization beam combiner, the polarization beam combiner divides the optical signal into two beams, one of which is transmitted through the output port S port of the polarization beam combiner. The incident light delay line and the optical delay line are transmitted to the input port S port of the polarization beam combiner through the polarization controller; another optical signal is transmitted to the displacement sensor through the output port P port of the polarization beam combiner, and the displacement sensor is passed through the polarization controller. The input port P port of the polarization beam combiner; the polarization beam combiner combines the optical signal of the input port S port with the optical signal of the input port P port into a beam and transmits it to the wavelength division complex through the output port C of the polarization beam combiner. When the wavelength of the incoming optical signal is inconsistent with the working wavelength of the wavelength division multiplexer, the single-mode fiber transmits the optical signal to the wavelength division multiplexer, and the wavelength division multiplexer transmits the optical signal to the next wavelength division multiplexer. The wavelength division multiplexer then transmits the optical signal to the single-mode fiber.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010922810.8A CN112129229B (en) | 2020-09-04 | 2020-09-04 | Quasi-distributed displacement measuring device and method based on photoelectric oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010922810.8A CN112129229B (en) | 2020-09-04 | 2020-09-04 | Quasi-distributed displacement measuring device and method based on photoelectric oscillator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112129229A true CN112129229A (en) | 2020-12-25 |
CN112129229B CN112129229B (en) | 2022-02-08 |
Family
ID=73847304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010922810.8A Active CN112129229B (en) | 2020-09-04 | 2020-09-04 | Quasi-distributed displacement measuring device and method based on photoelectric oscillator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112129229B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116045817A (en) * | 2023-01-09 | 2023-05-02 | 天津大学 | Micro-displacement measuring device and method based on photoelectric oscillator |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102353963A (en) * | 2011-07-15 | 2012-02-15 | 于晋龙 | Distance measuring system for optical domain based dual-loop optoelectronic oscillators |
CN104266593A (en) * | 2014-10-22 | 2015-01-07 | 中国航空工业集团公司北京长城计量测试技术研究所 | Micro displacement measuring system with double light-source-adjustable Fabry-Perot interferometers |
CN104914444A (en) * | 2015-07-06 | 2015-09-16 | 江苏安智光电科技有限公司 | Long-distance laser heterodyne interference range-finding structure |
CN106643522A (en) * | 2016-12-28 | 2017-05-10 | 西南交通大学 | Optical-fiber low-coherence interference displacement demodulation device and method based on photoelectric oscillator |
JP6308183B2 (en) * | 2015-08-24 | 2018-04-11 | 沖電気工業株式会社 | Optical fiber strain measuring device and optical fiber strain measuring method |
CN108709506A (en) * | 2018-08-01 | 2018-10-26 | 天津博科光电科技有限公司 | A kind of method using in optic fiber displacement sensor probe and optic fiber displacement sensor system |
-
2020
- 2020-09-04 CN CN202010922810.8A patent/CN112129229B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102353963A (en) * | 2011-07-15 | 2012-02-15 | 于晋龙 | Distance measuring system for optical domain based dual-loop optoelectronic oscillators |
CN104266593A (en) * | 2014-10-22 | 2015-01-07 | 中国航空工业集团公司北京长城计量测试技术研究所 | Micro displacement measuring system with double light-source-adjustable Fabry-Perot interferometers |
CN104914444A (en) * | 2015-07-06 | 2015-09-16 | 江苏安智光电科技有限公司 | Long-distance laser heterodyne interference range-finding structure |
JP6308183B2 (en) * | 2015-08-24 | 2018-04-11 | 沖電気工業株式会社 | Optical fiber strain measuring device and optical fiber strain measuring method |
CN106643522A (en) * | 2016-12-28 | 2017-05-10 | 西南交通大学 | Optical-fiber low-coherence interference displacement demodulation device and method based on photoelectric oscillator |
CN108709506A (en) * | 2018-08-01 | 2018-10-26 | 天津博科光电科技有限公司 | A kind of method using in optic fiber displacement sensor probe and optic fiber displacement sensor system |
Non-Patent Citations (1)
Title |
---|
ZHIQIANG FAN 等: "Real-Time and Long-Distance Measurement of Displacement Based on Optoelectronic Oscillator", 《IEEE ACCESS》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116045817A (en) * | 2023-01-09 | 2023-05-02 | 天津大学 | Micro-displacement measuring device and method based on photoelectric oscillator |
CN116045817B (en) * | 2023-01-09 | 2023-08-01 | 天津大学 | Micro-displacement measuring device and method based on photoelectric oscillator |
Also Published As
Publication number | Publication date |
---|---|
CN112129229B (en) | 2022-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109991582B (en) | Silicon-based hybrid integrated lidar chip system | |
CN204719233U (en) | A kind of target detection unit based on double-frequency laser | |
CN102680981B (en) | Distance measurement method and device based on orthogonal locking of microwave photon signals | |
CN106643522A (en) | Optical-fiber low-coherence interference displacement demodulation device and method based on photoelectric oscillator | |
CN102607720A (en) | Method and system for measuring optical distance | |
WO2021227265A1 (en) | Device and method for measuring absolute distance by variable synthetic wavelength locked to dynamic sideband | |
CN102032905B (en) | Optical fiber gyroscope with enhanced slow light effect | |
CN108120378A (en) | Sinusoidal phase modulation interference Models of Absolute Distance Measurement Based apparatus and method based on femtosecond optical frequency comb | |
CN104950311A (en) | OEO (optoelectronic oscillator) based wide-range and high-precision absolute distance measurement system with self-calibration function | |
CN108873007A (en) | A kind of FM-CW laser ranging device inhibiting dither effect | |
CN111307054A (en) | High-precision dynamic strain monitoring device and method based on time-delay chaotic laser | |
CN106707292B (en) | A kind of Doppler range rate measuring system based on optoelectronic oscillation | |
EP3875903B1 (en) | Bidirectional optical-carrying microwave resonance system based on circulator structure and method for detecting angular velocity by said system | |
CN114754689A (en) | Phase type distance measuring device and method based on double-electro-optical heterodyne modulation | |
CN218120898U (en) | A Phase Distance Measuring Device Based on Dual Electro-optical Heterodyne Modulation | |
CN112129229B (en) | Quasi-distributed displacement measuring device and method based on photoelectric oscillator | |
CN102410809B (en) | Complete common-path type microchip laser feedback interferometer | |
CN110133679A (en) | A Doppler Velocimetry System Based on Monolithic Integrated Dual-frequency Laser | |
CN112147628B (en) | Remote displacement measuring device and method based on photoelectric oscillator | |
CN113406657B (en) | Laser Doppler speed measuring device and measuring method | |
CN114696899A (en) | Distance measurement method based on multi-frequency heterodyne principle and optical carrier microwave interference | |
CN106772415B (en) | A phase distance measuring device and a distance measuring method thereof | |
CN109669189A (en) | Wide range, the high-precision absolute distance meter device being switched fast based on OEO | |
CN115685231B (en) | Frequency modulation laser radar system and method for improving coherent detection distance | |
WO2024045550A1 (en) | Laser radar transmitting module, transceiver device and laser radar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |