CN112099932A - Optimal pricing method and system for soft-hard deadline task offloading in edge computing - Google Patents
Optimal pricing method and system for soft-hard deadline task offloading in edge computing Download PDFInfo
- Publication number
- CN112099932A CN112099932A CN202010975628.9A CN202010975628A CN112099932A CN 112099932 A CN112099932 A CN 112099932A CN 202010975628 A CN202010975628 A CN 202010975628A CN 112099932 A CN112099932 A CN 112099932A
- Authority
- CN
- China
- Prior art keywords
- tasks
- deadline
- edge
- soft
- server
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000004044 response Effects 0.000 claims abstract description 14
- 238000012545 processing Methods 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 5
- 238000011156 evaluation Methods 0.000 claims description 3
- 102100036790 Tubulin beta-3 chain Human genes 0.000 claims 2
- 102100036788 Tubulin beta-4A chain Human genes 0.000 claims 2
- 239000002131 composite material Substances 0.000 claims 1
- 238000000638 solvent extraction Methods 0.000 claims 1
- 230000008901 benefit Effects 0.000 abstract description 13
- 238000010586 diagram Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 238000004590 computer program Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000001934 delay Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000013468 resource allocation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Program initiating; Program switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
- G06F9/4881—Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Program initiating; Program switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
- G06F9/485—Task life-cycle, e.g. stopping, restarting, resuming execution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
- G06F9/5072—Grid computing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0283—Price estimation or determination
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- General Engineering & Computer Science (AREA)
- Development Economics (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- Strategic Management (AREA)
- Entrepreneurship & Innovation (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Mathematical Physics (AREA)
- Economics (AREA)
- Game Theory and Decision Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了边缘计算中软‑硬截止期任务卸载的最佳定价方法及系统,该方法包括如下步骤:设计边缘‑云计算系统模型,并将系统中的任务划分为高优先级和低优先级任务;建立队列模型,分别对边缘服务器和云服务器建立队列模型;其中对边缘服务器建立队列模型为M|M|1队列,对云服务器建立队列模型为M|M|∞队列;并计算硬截止期任务和软截止期任务在边缘服务器和云服务器中的响应时间;分别计算边缘服务器和云服务器的成本;分别计算边缘服务器和云服务器的收益;采用Wardrop来对系统的成本建模;采用纳什平衡对系统收益建模;评估定价策略的效率。本发明能找到一种均衡成本最小化和收益最大化的定价策略。
The invention discloses an optimal pricing method and system for task offloading with soft-hard deadlines in edge computing. The method includes the following steps: designing an edge-cloud computing system model, and dividing tasks in the system into high priority and low priority Task; establish a queue model, and establish a queue model for edge servers and cloud servers respectively; the queue model for edge servers is established as M|M|1 queue, and the queue model for cloud servers is established as M|M|∞ queue; and calculate the hard cutoff Response time of deadline tasks and soft deadline tasks in edge server and cloud server; calculate the cost of edge server and cloud server respectively; calculate the benefit of edge server and cloud server separately; use Wardrop to model the cost of the system; use Nash Equilibrium models system returns; assesses the efficiency of pricing strategies. The present invention can find a pricing strategy that balances cost minimization and benefit maximization.
Description
技术领域technical field
本发明涉及一种边缘计算中软-硬截止期任务卸载的最佳定价方法及系统,属于边缘计算技术领域。The invention relates to an optimal pricing method and system for unloading soft-hard deadline tasks in edge computing, and belongs to the technical field of edge computing.
背景技术Background technique
边缘计算起源于传媒领域,指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。通过将计算和存储资源扩展到资源受限的最终用户,边缘计算极大地消除了最终用户与远程云数据中心之间的传输延迟瓶颈。然而与资源丰富的云服务器相比,边缘服务器在计算和资源存储方面受到极大的限制。因此,在边缘计算系统中,任务处理和资源的计算分配一直是具有挑战性的问题。Edge computing originated in the field of media, and refers to the use of an open platform that integrates network, computing, storage, and application core capabilities on the side close to the source of objects or data to provide the most recent services nearby. By extending computing and storage resources to resource-constrained end users, edge computing greatly eliminates the transmission latency bottleneck between end users and remote cloud data centers. However, compared with resource-rich cloud servers, edge servers are greatly limited in terms of computing and resource storage. Therefore, task processing and computing allocation of resources have always been challenging problems in edge computing systems.
在边缘计算中,根据时效性约束,对延迟敏感任务可以分为:硬截止期任务和软截止期任务。在通用计算环境中,许多调度程序相继被提出。这些调度程序是在各种时间和资源限制的情况下,根据错失截止日期的任务数量来发展的。通过采取任务的相似性及时特征,在有限的计算资源中如何调度这些任务是边缘计算中很有趣的研究主题。In edge computing, according to the timeliness constraints, delay-sensitive tasks can be divided into hard deadline tasks and soft deadline tasks. In general-purpose computing environments, many schedulers have been proposed one after another. These schedulers evolve based on the number of tasks that miss their deadlines under various time and resource constraints. By taking the similarity and timely characteristics of tasks, how to schedule these tasks in limited computing resources is an interesting research topic in edge computing.
参考文献1中设计一个调度策略,即通过选择最适合硬截止期和软截止期任务的位置。但是他们的硬截止期任务需要非常严格的截止日期才能在嵌入式系统中执行。边节点剩余的计算资源用来执行软截止期任务,从而导致了这些任务忍受超出其期限的最大延迟。虽然参考文献1为基于截止日期的任务卸载奠定了坚实的基础,但是边缘和云之间的交互却很少。此外,他们没有考虑计算成本。A scheduling strategy is designed in Reference 1, that is, by choosing the locations that are most suitable for tasks with hard and soft deadlines. But their hard deadline tasks require very tight deadlines to execute in embedded systems. The remaining computing resources of edge nodes are used to perform tasks with soft deadlines, causing these tasks to suffer maximum delays beyond their deadlines. While Reference 1 lays a solid foundation for deadline-based task offloading, there is little interaction between edge and cloud. Furthermore, they do not consider computational cost.
参考文献2根据任务的要求和网络的计算模型,讨论了任务的分散资源分配,他们的主要目的是为了减少系统的开销。参考文献3从微观经济学理论的定价模型和资源分配角度来研究,旨在有限的预算内优化边缘计算中终端设备任务的有限资源。Reference 2 discusses the decentralized resource allocation of tasks according to the requirements of tasks and the computational model of the network, and their main purpose is to reduce the overhead of the system. Reference 3 studies from the perspective of pricing models and resource allocation in microeconomic theory, aiming to optimize the limited resources of terminal device tasks in edge computing within a limited budget.
为了最大化网络的社会福利,参考文献4建议在基于共享经济的商业模型中使用一个平台,可以用来实时管理网络资源。该平台能最大限度地提高利润,而无需依赖任何用户关于在何处放置和处理任务的决定。To maximize the social welfare of the network, Reference 4 proposes a platform in a sharing economy based business model that can be used to manage network resources in real time. The platform maximizes profits without relying on any user decisions about where to place and process tasks.
综上所述,目前文献中主要设计定价模型,在针对特定的网络场景设计最优定价机制。这些定价模型没有明确考虑截止日期,尤其是边缘计算中硬截止期和软截止期任务。因此有必要解决现有技术存在的如下技术需求:如何为不同的截止日期任务设定价格,通过利用其自身的计算和传输能力来最大化边缘云收入。To sum up, the current literature mainly designs pricing models, and designs optimal pricing mechanisms for specific network scenarios. These pricing models do not explicitly consider deadlines, especially hard deadline and soft deadline tasks in edge computing. Therefore, it is necessary to solve the following technical needs of the existing technology: how to set prices for different deadline tasks, and maximize edge cloud revenue by utilizing its own computing and transmission capabilities.
参考文献如下:References are as follows:
[1]N.Auluck,A.Azim,and K.Fizza,“Improving the schedulability of real-time tasks using fog computing,”IEEE Transactions on ServicesComputing,pp.1–14,Sept.2019.[1] N. Auluck, A. Azim, and K. Fizza, “Improving the schedulability of real-time tasks using fog computing,” IEEE Transactions on ServicesComputing, pp. 1–14, Sept. 2019.
[2]Q.He,G.Cui,X.Zhang,F.Chen,S.Deng,H.Jin,Y.Li,and Y.Yang,“A game-theoretical approach for user allocation in edge computing environment,”IEEETrans.Parallel Distrib.Syst.,vol.31,no.3,pp.515–529,Mar.2020.[2] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, and Y. Yang, “A game-theoretical approach for user allocation in edge computing environment, ”IEEETrans.Parallel Distrib.Syst.,vol.31,no.3,pp.515–529,Mar.2020.
[3]J.Liu,S.Guo,K.Liu,and L.Feng,“Resource provision and allocationbased on microeconomic theory in mobile edge computing,”IEEETrans.Serv.Comput.,pp.1–14,June 2020,[3] J. Liu, S. Guo, K. Liu, and L. Feng, “Resource provision and allocation based on microeconomic theory in mobile edge computing,” IEEE Trans. Serv. Comput., pp. 1–14, June 2020,
[4]M.Siew,D.W.H.Cai,L.Li,and T.Q.S.Quek,“Dynamic pricing forresource-quota sharing in multi-access edge computing,”IEEETrans.Netw.Sci.Eng.,pp.1–13,June 2020。[4] M.Siew, D.W.H.Cai, L.Li, and T.Q.S.Quek, “Dynamic pricing for resource-quota sharing in multi-access edge computing,” IEEETrans.Netw.Sci.Eng., pp.1–13, June 2020 .
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是克服现有技术的缺陷,提供一种边缘计算中软-硬截止期任务卸载的最佳定价方法及系统,使得边缘-云计算系统能够找到一种均衡成本最小化和收益最大化的定价策略。The technical problem to be solved by the present invention is to overcome the defects of the prior art, and to provide an optimal pricing method and system for offloading soft-hard deadline tasks in edge computing, so that the edge-cloud computing system can find an equilibrium cost minimization and Profit-maximizing pricing strategies.
本发明具体采用如下技术方案:边缘计算中软-硬截止期任务卸载的最佳定价方法,包括如下步骤:The present invention specifically adopts the following technical solutions: an optimal pricing method for task offloading with soft-hard deadlines in edge computing, comprising the following steps:
步骤SS1:设计边缘-云计算系统模型,并将系统中的任务划分为高优先级和低优先级任务;Step SS1: Design an edge-cloud computing system model, and divide tasks in the system into high-priority and low-priority tasks;
步骤SS2:建立队列模型,分别对边缘服务器和云服务器建立队列模型;其中对边缘服务器建立队列模型为M|M|1队列,对云服务器建立队列模型为M|M|∞队列;并计算硬截止期任务和软截止期任务在边缘服务器和云服务器中的响应时间;Step SS2: Establish a queue model, and establish a queue model for the edge server and the cloud server respectively; the queue model established for the edge server is M|M|1 queue, and the queue model for the cloud server is established as the M|M|∞ queue; The response time of deadline tasks and soft deadline tasks in edge servers and cloud servers;
步骤SS3:分别计算边缘服务器和云服务器的成本;Step SS3: Calculate the cost of the edge server and the cloud server respectively;
步骤SS4:分别计算边缘服务器和云服务器的收益;Step SS4: Calculate the revenue of the edge server and the cloud server respectively;
步骤SS5:采用Wardrop来对系统的成本建模;Step SS5: Use Wardrop to model the cost of the system;
步骤SS6:采用纳什平衡对系统收益建模;Step SS6: Use Nash equilibrium to model system revenue;
步骤SS7:评估定价策略的效率。Step SS7: Evaluate the efficiency of the pricing strategy.
作为一种较佳的实施例,所述步骤SS1中的系统中的任务的划分依据是任务的时间期限;高优先级任务通常需要硬截止期,而低优先级任务需要软截止期,因此任务也分成硬截止期任务和软截止期任务;假设λ为到达的任务量:As a preferred embodiment, the division of tasks in the system in step SS1 is based on the time limit of the task; high priority tasks usually require hard deadlines, while low priority tasks require soft deadlines, so the task It is also divided into hard deadline tasks and soft deadline tasks; assuming λ is the amount of tasks arriving:
λ=λH+λS λ= λH + λS
其中,λH为硬截止期任务的数量,λS为软截止期任务的数量。Among them, λ H is the number of hard deadline tasks, and λ S is the number of soft deadline tasks.
作为一种较佳的实施例,所述步骤SS2具体包括:As a preferred embodiment, the step SS2 specifically includes:
硬截止期任务的数量包含边缘服务器中硬截止期任务的数量和云服务器中硬截止期任务的数量同理,软截止期任务的数量包含边缘服务器中软截止期任务的数量和云服务器中软截止期任务的数量则有:The number of hard deadline tasks contains the number of hard deadline tasks in the edge server and the number of hard deadline tasks in the cloud server Similarly, the number of soft deadline tasks includes the number of soft deadline tasks in the edge server and the number of soft deadline tasks in the cloud server Then there are:
硬截止期任务在边缘服务器和云服务器上的响应时间分别为:The response times of the hard deadline tasks on the edge server and the cloud server are:
软截止期任务在边缘服务器和云服务器上的响应时间分别为:The response times of the soft deadline tasks on the edge server and the cloud server are:
其中,μE和μC分别为服务速率,即单位时间内服务器完成的任务数。Among them, μ E and μ C are respectively the service rate, that is, the number of tasks completed by the server in unit time.
作为一种较佳的实施例,所述步骤SS3具体包括:As a preferred embodiment, the step SS3 specifically includes:
边缘服务器中硬截止期任务的成本为:The cost of hard deadline tasks in edge servers is:
边缘服务器中软截止期任务成本为:The soft deadline task cost in the edge server is:
其中α为参数,用来权衡延迟和成本之间的关系,即任务处理时间越长,总花费的成本就越高;PE为边缘服务器上每一个任务的成本;where α is a parameter, which is used to balance the relationship between delay and cost, that is, the longer the task processing time, the higher the total cost; PE is the cost of each task on the edge server;
云服务器中硬截止期任务和软截止期任务的成本如下:The costs of hard deadline tasks and soft deadline tasks in the cloud server are as follows:
其中dt为将单个任务从边缘服务器转移到云服务器的平均传输延迟,PC为云服务器上每一个任务的成本。where d t is the average transmission delay of transferring a single task from the edge server to the cloud server, and PC is the cost of each task on the cloud server .
作为一种较佳的实施例,所述步骤SS4具体包括:As a preferred embodiment, the step SS4 specifically includes:
边缘服务器的收益为:The benefits of edge servers are:
云服务器的收益为:The benefits of cloud servers are:
为边缘服务器中硬截止期任务的数量,为云服务器中硬截止期任务的数量;为边缘服务器中软截止期任务的数量,为云服务器中软截止期任务的数量。 is the number of hard deadline tasks in the edge server, is the number of hard deadline tasks in the cloud server; is the number of soft deadline tasks in the edge server, is the number of soft deadline tasks in the cloud server.
作为一种较佳的实施例,所述步骤SS5具体包括:As a preferred embodiment, the step SS5 specifically includes:
平衡中软硬截止期任务的总成本是相等的,即:The total cost of tasks with soft and hard deadlines in equilibrium is equal, namely:
软截止期任务在总任务的比例在云服务器和边缘服务器计算总成本中扮演很重要的角色,因此写成如下:The proportion of soft deadline tasks to total tasks plays an important role in the total computing cost of cloud servers and edge servers, so it is written as follows:
其中φ为截止日期的偏移。where φ is the offset of the deadline.
作为一种较佳的实施例,所述步骤SS6具体包括:As a preferred embodiment, the step SS6 specifically includes:
定义和分别为边缘服务器和云服务器的纳什价格,其中定义如下:definition and are the Nash prices of edge servers and cloud servers, respectively, where Defined as follows:
同理,定义如下:Similarly, Defined as follows:
其中γ=2(λ-2μE)2, in γ=2(λ-2μ E ) 2 ,
作为一种较佳的实施例,所述步骤SS7具体包括:As a preferred embodiment, the step SS7 specifically includes:
为评估定价策略的效率,引进price-of-anarcy策略POA;定义社会福利函数S,In order to evaluate the efficiency of the pricing strategy, the price-of-anarcy strategy POA is introduced; the social welfare function S is defined,
其中x和y分别为硬截止期和权截止期任务;where x and y are hard deadline and weight deadline tasks, respectively;
使得社会福利函数S最小化,对上述公式进行改写成如下:To minimize the social welfare function S, the above formula can be rewritten as follows:
其中,T*为平衡状态下网络中经历的总延迟。where T * is the total delay experienced in the network in the equilibrium state.
作为一种较佳的实施例,所述步骤SS7具体还包括:POA根据T*和Smin计算:POA=T8/Smin。As a preferred embodiment, the step SS7 further includes: POA is calculated according to T * and S min : POA=T 8 /S min .
本发明还提出边缘计算中软-硬截止期任务卸载的最佳定价系统,包括:The present invention also proposes an optimal pricing system for task offloading with soft-hard deadlines in edge computing, including:
任务划分模块,用于执行:设计边缘-云计算系统模型,并将系统中的任务划分为高优先级和低优先级任务;The task division module is used to perform: design the edge-cloud computing system model, and divide the tasks in the system into high-priority and low-priority tasks;
队列模型生成模块,用于执行:建立队列模型,分别对边缘服务器和云服务器建立队列模型;其中对边缘服务器建立队列模型为M|M|1队列,对云服务器建立队列模型为M|M|∞队列;并计算硬截止期任务和软截止期任务在边缘服务器和云服务器中的响应时间;The queue model generation module is used to execute: establish a queue model, and establish a queue model for the edge server and cloud server respectively; the queue model established for the edge server is M|M|1 queue, and the queue model established for the cloud server is M|M| ∞ queue; and calculate the response time of hard deadline tasks and soft deadline tasks in edge servers and cloud servers;
服务器成本计算模块,用于执行:分别计算边缘服务器和云服务器的成本;The server cost calculation module is used to perform: calculate the cost of the edge server and the cloud server separately;
服务器收益计算模块,用于执行:分别计算边缘服务器和云服务器的收益;The server revenue calculation module is used to perform: separately calculate the revenue of the edge server and the cloud server;
系统成本建模模块,用于执行:采用Wardrop来对系统的成本建模;System cost modeling module to perform: use Wardrop to model the cost of the system;
系统收益建模模块,用于执行:采用纳什平衡对系统收益建模;System benefit modeling module to perform: Modeling system benefits using Nash equilibrium;
效率评估模块,用于执行:评估定价策略的效率。Efficiency Evaluation Module for Execution: Evaluate the efficiency of pricing strategies.
本发明所达到的有益效果:本发明提出一种边缘计算中软-硬截止期任务卸载的最佳定价方法。通过设计一个定价模型来确定边缘服务器和云服务器的均衡价格,首先构建边缘-云服务器系统,划分软硬截止期任务,然后建立边缘服务器和云服务器队列模型来确定软硬截止期的响应时间,紧接着设计边缘服务器和云服务器成本和收益函数,最后采用纳什平衡和Wardrop平衡对系统的成本和收益建模,使得系统能够找到一种均衡成本最小化和收益最大化的定价策略。Beneficial effects achieved by the present invention: The present invention proposes an optimal pricing method for task offloading with soft-hard deadlines in edge computing. Determine the equilibrium price of edge servers and cloud servers by designing a pricing model, first build an edge-cloud server system, divide tasks with soft and hard deadlines, and then build edge server and cloud server queue models to determine the response time of soft and hard deadlines, Next, the cost and benefit functions of edge servers and cloud servers are designed. Finally, the Nash equilibrium and Wardrop equilibrium are used to model the cost and benefit of the system, so that the system can find a pricing strategy that balances cost minimization and revenue maximization.
附图说明Description of drawings
图1是本发明的边缘-云计算系统模型示意图;1 is a schematic diagram of an edge-cloud computing system model of the present invention;
图2是本发明的硬截止期任务和软截止期任务示意图;2 is a schematic diagram of a hard deadline task and a soft deadline task of the present invention;
图3是本发明的软硬截止期任务在边缘服务器中本地处理或卸载到云服务器中处理的示意图。FIG. 3 is a schematic diagram of the soft and hard deadline tasks of the present invention being processed locally in the edge server or offloaded to the cloud server for processing.
具体实施方式Detailed ways
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。The present invention will be further described below in conjunction with the accompanying drawings. The following examples are only used to illustrate the technical solutions of the present invention more clearly, and cannot be used to limit the protection scope of the present invention.
实施例1:如图1、图2和图3所示,本发明的一种边缘计算硬-软截止期任务卸载的最佳定价方法,包括以下七个步骤。Embodiment 1: As shown in FIG. 1 , FIG. 2 and FIG. 3 , an optimal pricing method for task offloading with hard-soft deadlines of edge computing of the present invention includes the following seven steps.
1)设计边缘-云计算系统模型,如图1所示,并将系统中的任务划分为高优先级和低优先级任务。1) Design the edge-cloud computing system model, as shown in Figure 1, and divide the tasks in the system into high-priority and low-priority tasks.
假设本发明的边缘-云服务器系统是时隙系统,可以根据任务优先级,分为高优先级任务和低优先级任务。又可以根据任务对时间要求不同,分为硬截止期任务和软截止期任务。其中高优先级任务对应硬截止期任务,用于保证系统的正确运行。相比于硬截止期任务,软截止期任务可以忍受更长的延迟。如附图2所示,软截止期任务比硬截止期任务在延迟上多了一个偏置。假设λ为系统到达的任务量,其由硬截止期任务量和软截止期任务量组成:Assuming that the edge-cloud server system of the present invention is a time slot system, it can be divided into high-priority tasks and low-priority tasks according to task priorities. It can also be divided into hard deadline tasks and soft deadline tasks according to different time requirements of tasks. Among them, high-priority tasks correspond to hard deadline tasks, which are used to ensure the correct operation of the system. Soft deadline tasks can tolerate longer delays than hard deadline tasks. As shown in Figure 2, the soft deadline task has an extra bias in latency than the hard deadline task. Suppose λ is the amount of tasks reached by the system, which consists of the amount of hard deadline tasks and the amount of soft deadline tasks:
λ=λH+λS λ= λH + λS
其中,λH为硬截止期任务的数量,λS为软截止期任务的数量。Among them, λ H is the number of hard deadline tasks, and λ S is the number of soft deadline tasks.
2)建立队列模型,分别对边缘服务器和云服务器建立队列模型,并计算硬软截止期任务分别在边缘服务器和云服务器中的响应时间。2) Establish a queue model, respectively establish a queue model for the edge server and the cloud server, and calculate the response time of the hard and soft deadline tasks in the edge server and the cloud server respectively.
为了不失一般性,本发明对边缘服务器建模为M|M|1队列,对云服务器建立队列模型为M|M|∞队列。定义μE和μC分别为服务速率,即单位时间内服务器完成的任务数。硬截止期任务的数量由边缘服务器中硬截止期任务的数量和云服务器中硬截止期任务的数量组成同理,软截止期任务的数量由边缘服务器中软截止期任务的数量和云服务器中软截止期任务的数量组成 Without loss of generality, the present invention models edge servers as M|M|1 queues, and establishes queue models for cloud servers as M|M|∞ queues. Define μ E and μ C as the service rate, that is, the number of tasks completed by the server per unit time. The number of hard deadline tasks is determined by the number of hard deadline tasks in the edge server and the number of hard deadline tasks in the cloud server Similarly, the number of soft deadline tasks is determined by the number of soft deadline tasks in the edge server. and the number of soft deadline tasks in the cloud server
硬截止期任务在边缘服务器和云服务器上的响应时间分别为和 The response times of the hard deadline tasks on the edge server and the cloud server are respectively and
软截止期任务在边缘服务器和云服务器上的响应时间分别为和 The response times of soft deadline tasks on edge server and cloud server are respectively and
3)分别计算边缘服务器和云服务器的成本:3) Calculate the cost of edge server and cloud server separately:
3.1边缘服务器中软硬截止期任务成本3.1 Soft and Hard Deadline Task Costs in Edge Servers
为了更好来权衡延迟和成本之间的关系,本发明引入了参数α,即任务处理时间越长,总花费的成本就越高。In order to better balance the relationship between delay and cost, the present invention introduces a parameter α, that is, the longer the task processing time, the higher the total cost.
硬截止期任务的总成本计算如下:The total cost of a hard deadline task is calculated as follows:
其中PE为边缘服务器处理一个任务所需的成本。where PE is the cost required by the edge server to process a task.
软截止期任务的总成本计算如下:The total cost of a soft deadline task is calculated as follows:
3.2云服务器中软硬截止期任务成本3.2 Task costs of soft and hard deadlines in cloud servers
硬截止期任务的总成本计算如下:The total cost of a hard deadline task is calculated as follows:
软截止期任务的总成本计算如下:The total cost of a soft deadline task is calculated as follows:
其中dt为将单个任务从边缘服务器转移到云服务器的平均传输延迟,PC为云服务器上每一个任务的成本。where d t is the average transmission delay of transferring a single task from the edge server to the cloud server, and PC is the cost of each task on the cloud server .
4)边缘服务器和云服务器的收益:4) Benefits of edge servers and cloud servers:
边缘服务器收益UE定义如下:The edge server revenue UE is defined as follows:
云服务器收益UC定义如下:Cloud server revenue U C is defined as follows:
5)采Wardrop平衡来对系统的总成本建模:5) Use Wardrop balance to model the total cost of the system:
Wardrop平衡中软硬截止期任务的总成本是相等的即The total cost of tasks with soft and hard deadlines in the Wardrop equilibrium is equal i.e.
软截止期任务在总任务的比例在云服务器和边缘服务器计算总成本中扮演很重要的角色,因此可以写成如下:The proportion of soft deadline tasks to total tasks plays an important role in the total computing cost of cloud servers and edge servers, so it can be written as follows:
其中φ为截止日期的偏移。where φ is the offset of the deadline.
6)采用纳什平衡来对系统的综总收益建模:6) Use Nash Equilibrium to model the overall return of the system:
纳什平衡来建模系统的总收益,力求系统能够得到最大的收益。我们定义和分别为边缘服务器和云服务器的纳什价格,其中定义如下Nash equilibrium is used to model the total benefit of the system, and strive to get the maximum benefit for the system. we define and are the Nash prices of edge servers and cloud servers, respectively, where Defined as follows
其中γ=2(λ-2μE)2, 和同理,定义如下:in γ=2(λ-2μ E ) 2 , and Similarly, Defined as follows:
7)评估定价策略的效率:7) Evaluate the efficiency of the pricing strategy:
为了更好的评估定价策略的效率,本发明引进了price-of-anarcy(POA)策略。定义了社会福利函数S,In order to better evaluate the efficiency of the pricing strategy, the present invention introduces the price-of-anarcy (POA) strategy. The social welfare function S is defined,
其中x和y分别为硬截止期和软截止期任务。where x and y are hard deadline and soft deadline tasks, respectively.
为了使得社会福利函数S最小化,对上述公式进行改写成如下:In order to minimize the social welfare function S, the above formula is rewritten as follows:
进一步的,定义平衡状态下网络中经历的总延迟如下:Further, the total delay experienced in the network in the equilibrium state is defined as follows:
最后,POA策略可以根据T*和Smin计算:POA=T*/Smin。Finally, the POA policy can be calculated from T * and Smin : POA=T * / Smin .
实施例2:本发明还提出边缘计算中软-硬截止期任务卸载的最佳定价系统,包括:Embodiment 2: The present invention also proposes an optimal pricing system for task offloading with soft-hard deadlines in edge computing, including:
任务划分模块,用于执行:设计边缘-云计算系统模型,并将系统中的任务划分为高优先级和低优先级任务;The task division module is used to perform: design the edge-cloud computing system model, and divide the tasks in the system into high-priority and low-priority tasks;
队列模型生成模块,用于执行:建立队列模型,分别对边缘服务器和云服务器建立队列模型;其中对边缘服务器建立队列模型为M|M|1队列,对云服务器建立队列模型为M|M|∞队列;并计算硬截止期任务和软截止期任务在边缘服务器和云服务器中的响应时间;The queue model generation module is used to execute: establish a queue model, and establish a queue model for the edge server and cloud server respectively; the queue model established for the edge server is M|M|1 queue, and the queue model established for the cloud server is M|M| ∞ queue; and calculate the response time of hard deadline tasks and soft deadline tasks in edge servers and cloud servers;
服务器成本计算模块,用于执行:分别计算边缘服务器和云服务器的成本;The server cost calculation module is used to perform: calculate the cost of the edge server and the cloud server separately;
服务器收益计算模块,用于执行:分别计算边缘服务器和云服务器的收益;The server revenue calculation module is used to perform: separately calculate the revenue of the edge server and the cloud server;
系统成本建模模块,用于执行:采用Wardrop来对系统的成本建模;System cost modeling module to perform: use Wardrop to model the cost of the system;
系统收益建模模块,用于执行:采用纳什平衡对系统收益建模;System benefit modeling module to perform: Modeling system benefits using Nash equilibrium;
效率评估模块,用于执行:评估定价策略的效率。Efficiency Evaluation Module for Execution: Evaluate the efficiency of pricing strategies.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram. These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams. These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the above embodiments, those of ordinary skill in the art should understand that: the present invention can still be Modifications or equivalent replacements are made to the specific embodiments of the present invention, and any modifications or equivalent replacements that do not depart from the spirit and scope of the present invention shall be included within the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010975628.9A CN112099932A (en) | 2020-09-16 | 2020-09-16 | Optimal pricing method and system for soft-hard deadline task offloading in edge computing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010975628.9A CN112099932A (en) | 2020-09-16 | 2020-09-16 | Optimal pricing method and system for soft-hard deadline task offloading in edge computing |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112099932A true CN112099932A (en) | 2020-12-18 |
Family
ID=73759287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010975628.9A Pending CN112099932A (en) | 2020-09-16 | 2020-09-16 | Optimal pricing method and system for soft-hard deadline task offloading in edge computing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112099932A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113238839A (en) * | 2021-04-26 | 2021-08-10 | 深圳微品致远信息科技有限公司 | Cloud computing based data management method and device |
CN113791878A (en) * | 2021-07-21 | 2021-12-14 | 南京大学 | Deadline-aware distributed task offloading in edge computing |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107122249A (en) * | 2017-05-10 | 2017-09-01 | 重庆邮电大学 | A kind of task unloading decision-making technique based on edge cloud pricing mechanism |
CN110351760A (en) * | 2019-07-19 | 2019-10-18 | 重庆邮电大学 | A kind of mobile edge calculations system dynamic task unloading and resource allocation methods |
CN110888687A (en) * | 2019-09-27 | 2020-03-17 | 华北水利水电大学 | Optimal contract design method for mobile edge computing task offloading based on contract design |
CN110996393A (en) * | 2019-12-12 | 2020-04-10 | 大连理工大学 | Single-edge computing server and multi-user cooperative computing unloading and resource allocation method |
CN111163521A (en) * | 2020-01-16 | 2020-05-15 | 重庆邮电大学 | Resource allocation method in distributed heterogeneous environment in mobile edge computing |
CN111400001A (en) * | 2020-03-09 | 2020-07-10 | 清华大学 | Online computing task unloading scheduling method facing edge computing environment |
-
2020
- 2020-09-16 CN CN202010975628.9A patent/CN112099932A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107122249A (en) * | 2017-05-10 | 2017-09-01 | 重庆邮电大学 | A kind of task unloading decision-making technique based on edge cloud pricing mechanism |
CN110351760A (en) * | 2019-07-19 | 2019-10-18 | 重庆邮电大学 | A kind of mobile edge calculations system dynamic task unloading and resource allocation methods |
CN110888687A (en) * | 2019-09-27 | 2020-03-17 | 华北水利水电大学 | Optimal contract design method for mobile edge computing task offloading based on contract design |
CN110996393A (en) * | 2019-12-12 | 2020-04-10 | 大连理工大学 | Single-edge computing server and multi-user cooperative computing unloading and resource allocation method |
CN111163521A (en) * | 2020-01-16 | 2020-05-15 | 重庆邮电大学 | Resource allocation method in distributed heterogeneous environment in mobile edge computing |
CN111400001A (en) * | 2020-03-09 | 2020-07-10 | 清华大学 | Online computing task unloading scheduling method facing edge computing environment |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113238839A (en) * | 2021-04-26 | 2021-08-10 | 深圳微品致远信息科技有限公司 | Cloud computing based data management method and device |
CN113791878A (en) * | 2021-07-21 | 2021-12-14 | 南京大学 | Deadline-aware distributed task offloading in edge computing |
CN113791878B (en) * | 2021-07-21 | 2023-11-17 | 南京大学 | Distributed task unloading method for perceiving expiration date in edge calculation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111427679B (en) | Computing task scheduling method, system and device for edge computing | |
CN109582448B (en) | Criticality and timeliness oriented edge calculation task scheduling method | |
Xue et al. | An ACO-LB Algorithm for Task Scheduling in the Cloud Environment. | |
CN113138860B (en) | Message queue management method and device | |
CN104657220A (en) | Model and method for scheduling for mixed cloud based on deadline and cost constraints | |
Huang et al. | An optimistic job scheduling strategy based on QoS for cloud computing | |
CN107087019A (en) | A Device-Cloud Collaborative Computing Architecture and Task Scheduling Device and Method | |
CN107168770B (en) | Low-energy-consumption cloud data center workflow scheduling and resource supply method | |
CN108270805B (en) | Resource allocation method and device for data processing | |
CN109697122A (en) | Task processing method, equipment and computer storage medium | |
CN108123998B (en) | Heuristic request scheduling method for latency-sensitive applications in multi-cloud data centers | |
Li et al. | Endpoint-flexible coflow scheduling across geo-distributed datacenters | |
Dubey et al. | A priority based job scheduling algorithm using IBA and EASY algorithm for cloud metaschedular | |
CN112099932A (en) | Optimal pricing method and system for soft-hard deadline task offloading in edge computing | |
CN117407160A (en) | A hybrid deployment method of online tasks and offline tasks in edge computing scenarios | |
Stavrinides et al. | Cost‐aware cloud bursting in a fog‐cloud environment with real‐time workflow applications | |
CN108563495A (en) | The cloud resource queue graded dispatching system and method for data center's total management system | |
CN111309472A (en) | Online virtual resource allocation method based on virtual machine pre-deployment | |
CN106951313A (en) | The sub- time limit acquisition methods of Multi-workflow shared resource cooperative scheduling | |
Mahapatra et al. | Latency-aware Internet of Things scheduling in heterogeneous fog-cloud paradigm | |
CN107797870A (en) | A kind of cloud computing data resource dispatching method | |
CN108958919B (en) | A Fairness Evaluation Method for Multi-DAG Task Scheduling Fees with Deadline Constraints in Cloud Computing | |
Han et al. | An adaptive scheduling algorithm for heterogeneous Hadoop systems | |
CN117376423B (en) | Deep learning reasoning service scheduling method, system, equipment and storage medium | |
Goswami et al. | Deadline stringency based job scheduling in computational grid environment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
AD01 | Patent right deemed abandoned |
Effective date of abandoning: 20240614 |
|
AD01 | Patent right deemed abandoned |