CN112099201B - 摄像光学镜头 - Google Patents
摄像光学镜头 Download PDFInfo
- Publication number
- CN112099201B CN112099201B CN202011199781.3A CN202011199781A CN112099201B CN 112099201 B CN112099201 B CN 112099201B CN 202011199781 A CN202011199781 A CN 202011199781A CN 112099201 B CN112099201 B CN 112099201B
- Authority
- CN
- China
- Prior art keywords
- lens
- image
- curvature
- focal length
- ttl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 151
- 238000003384 imaging method Methods 0.000 claims abstract description 97
- 230000004075 alteration Effects 0.000 description 26
- 230000014509 gene expression Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 11
- 230000035945 sensitivity Effects 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 4
- 210000001747 pupil Anatomy 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/64—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0025—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本发明涉及光学镜头领域,公开了一种摄像光学镜头,共包含八片透镜,八片透镜自物侧至像侧依序为:具有正屈折力的第一透镜、具有正屈折力的第二透镜、具有正屈折力的第三透镜、具有负屈折力的第四透镜、具有负屈折力的第五透镜、具有正屈折力的第六透镜、具有负屈折力的第七透镜以及具有负屈折力的第八透镜;其中,摄像光学镜头的光学总长为TTL,摄像光学镜头的焦距为f,第二透镜的焦距为f2,第三透镜的物侧面的中心曲率半径为R5,第三透镜的像侧面的中心曲率半径为R6,且满足下列关系式:0.95≤f/TTL;3.00≤f2/f≤4.50;0.20≤(R5+R6)/(R5‑R6)≤0.90。本发明提供的摄像光学镜头具有良好光学性能的同时,满足大光圈、长焦距、超薄化的设计要求。
Description
技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device, CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor, CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、四片式甚至是五片式、六片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,八片式透镜结构逐渐出现在镜头设计当中,常见的八片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、超薄化、长焦距的设计要求。
因此,有必要提供一种具有良好的光学性能且满足大光圈、超薄化、长焦距设计要求的摄像光学镜头。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,满足大光圈、超薄化、长焦距的设计要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,共包含八片透镜,所述八片透镜自物侧至像侧依序为:具有正屈折力的第一透镜、具有正屈折力的第二透镜、具有正屈折力的第三透镜、具有负屈折力的第四透镜、具有负屈折力的第五透镜、具有正屈折力的第六透镜、具有负屈折力的第七透镜以及具有负屈折力的第八透镜;
其中,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第三透镜的物侧面的中心曲率半径为R5,所述第三透镜的像侧面的中心曲率半径为R6,且满足下列关系式:
0.95≤f/TTL;
3.00≤f2/f≤4.50;
0.20≤(R5+R6)/(R5-R6)≤0.90。
优选地,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,所述第三透镜的轴上厚度为d5,且满足下列关系式:
1.90≤d5/d4≤3.00。
优选地,所述第一透镜的焦距为f1,所述第一透镜的物侧面的中心曲率半径为R1,所述第一透镜的像侧面的中心曲率半径为R2,所述第一透镜的轴上厚度为d1,且满足下列关系式:
0.47≤f1/f≤2.00;
-8.45≤(R1+R2)/(R1-R2)≤-1.60;
0.06≤d1/TTL≤0.25。
优选地,所述第二透镜的物侧面的中心曲率半径为R3,所述第二透镜的像侧面的中心曲率半径为R4,所述第二透镜的轴上厚度为d3,且满足下列关系式:
-86.93≤(R3+R4)/(R3-R4)≤-12.39;
0.02≤d3/TTL≤0.06。
优选地,所述第三透镜的焦距为f3,所述第三透镜的轴上厚度为d5,且满足下列关系式:
0.45≤f3/f≤1.98;
0.04≤d5/TTL≤0.19。
优选地,所述第四透镜的焦距为f4,所述第四透镜的物侧面的中心曲率半径为R7,所述第四透镜的像侧面的中心曲率半径为R8,所述第四透镜的轴上厚度为d7,且满足下列关系式:
-2.85≤f4/f≤-0.57;
0.64≤(R7+R8)/(R7-R8)≤3.97;
0.02≤d7/TTL≤0.05。
优选地,所述第五透镜的焦距为f5,所述第五透镜的物侧面的中心曲率半径为R9,所述第五透镜的像侧面的中心曲率半径为R10,所述第五透镜的轴上厚度为d9,且满足下列关系式:
-11.19≤f5/f≤-1.94;
-7.18≤(R9+R10)/(R9-R10)≤-0.31;
0.02≤d9/TTL≤0.06。
优选地,所述第六透镜的焦距为f6,所述第六透镜的物侧面的中心曲率半径为R11,所述第六透镜的像侧面的中心曲率半径为R12,所述第六透镜的轴上厚度为d11,且满足下列关系式:
0.77≤f6/f≤2.78;
1.98≤(R11+R12)/(R11-R12)≤9.59;
0.03≤d11/TTL≤0.10。
优选地,所述第七透镜的焦距为f7,所述第七透镜的物侧面的中心曲率半径为R13,所述第七透镜的像侧面的中心曲率半径为R14,所述第七透镜的轴上厚度为d13,且满足下列关系式:
-3.65≤f7/f≤-0.82;
0.54≤(R13+R14)/(R13-R14)≤1.94;
0.03≤d13/TTL≤0.08。
优选地,所述第八透镜的焦距为f8,所述第八透镜的物侧面的中心曲率半径为R15,所述第八透镜的像侧面的中心曲率半径为R16,所述第八透镜的轴上厚度为d15,且满足下列关系式:
-3.55≤f8/f≤-1.03;
-1.70≤(R15+R16)/(R15-R16)≤1.53;
0.03≤d15/TTL≤0.09。
本发明的有益效果在于:本发明的摄像光学镜头具有优秀的光学特性,且具有大光圈、长焦距、(长焦距系统中)超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
为了更清楚地说明本发明实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10共包括八个透镜。具体的,摄像光学镜头10由物侧至像侧依序为:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8。第八透镜L8和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
在本实施方式中,第一透镜L1具有正屈折力,第二透镜L2具有正屈折力,第三透镜L3具有正屈折力,第四透镜L4具有负屈折力,第五透镜L5具有负屈折力,第六透镜L6具有正屈折力,第七透镜L7具有负屈折力,第八透镜L8具有负屈折力。在本实施方式中,第一透镜L1具有正屈折力,有助于压缩摄像光学镜头10的长度。
在本实施方式中,第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质,第六透镜L6为塑料材质,第七透镜L7为塑料材质,第八透镜L8为塑料材质。在其他实施例中,各透镜也可以是其他材质。
在本实施方式中,定义摄像光学镜头10的光学总长为TTL,摄像光学镜头10的焦距为f,满足下列关系式:0.95≤f/TTL,该关系式规定了摄像光学镜头10的焦距f与摄像光学镜头10的光学总长TTL的比值,在同样长度的情况下,摄像光学镜头10具有更长的焦距。
摄像光学镜头10的焦距为f,定义第二透镜L2的焦距为f2,且满足下列关系式:3.00≤f2/f≤4.50,该关系式规定了第二透镜L2的焦距f2与摄像光学镜头10的焦距f的比值,在条件范围内,有助于校正像差,提高成像质量。
定义第三透镜L3的物侧面的中心曲率半径为R5,第三透镜L3的像侧面的中心曲率半径为R6,且满足下列关系式:0.20≤(R5+R6)/(R5-R6)≤0.90,规定了第三透镜L3的形状,在关系式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。
定义第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离为d4,第三透镜L3的轴上厚度为d5,且满足下列关系式:1.90≤d5/d4≤3.00,该关系式规定了第三透镜L3的轴上厚度d5与第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离d4的比值,在条件范围内,有助于镜片加工和系统组装。
本实施方式中,第一透镜L1的物侧面于近轴处为凸面,其像侧面于近轴处为凹面。
摄像光学镜头10的焦距为f,定义第一透镜L1的焦距为f1,满足下列关系式:0.47≤f1/f≤2.00,该关系式规定了第一透镜L1的焦距f1与摄像光学镜头10的焦距f的比值,在规定的范围内时,第一透镜L1具有适当的正屈折力,有利于减小系统像差,同时有利于镜头向超薄化发展。优选地,满足0.75≤f1/f≤1.60。
定义第一透镜L1的物侧面的中心曲率半径为R1,第一透镜L1的像侧面的中心曲率半径为R2,满足下列关系式:-8.45≤(R1+R2)/(R1-R2)≤-1.60,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。优选地,满足-5.28≤(R1+R2)/(R1-R2)≤-2.00。
摄像光学镜头10的光学总长为TTL,定义第一透镜L1的轴上厚度为d1,满足下列关系式:0.06≤d1/TTL≤0.25,在条件范围内,有利于实现超薄化。优选地,满足0.10≤d1/TTL≤0.20。
本实施方式中,第二透镜L2的物侧面于近轴处为凸面,其像侧面于近轴处为凹面。
定义第二透镜L2物侧面的中心曲率半径为R3,第二透镜L2像侧面的中心曲率半径为R4,满足下列关系式:-86.93≤(R3+R4)/(R3-R4)≤-12.39,规定了第二透镜L2的形状,在范围内时,随着镜头向超薄化发展,有利于补正轴上色像差问题。优选地,满足-54.33≤(R3+R4)/(R3-R4)≤-15.49。
摄像光学镜头10的光学总长为TTL,定义第二透镜L2的轴上厚度为d3,满足下列关系式:0.02≤d3/TTL≤0.06,在条件范围内,有利于实现超薄化。优选地,满足0.03≤d3/TTL≤0.05。
本实施方式中,第三透镜L3的物侧面于近轴处为凸面,其像侧面于近轴处为凸面。
摄像光学镜头10的焦距为f,定义第三透镜L3的焦距为f3,满足下列关系式:0.45≤f3/f≤1.98,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足0.71≤f3/f≤1.58。
摄像光学镜头10的光学总长为TTL,定义第三透镜L3的轴上厚度为d5,满足下列关系式:0.04≤d5/TTL≤0.19,在条件范围内,有利于实现超薄化。优选地,满足0.06≤d5/TTL≤0.15。
本实施方式中,第四透镜L4的物侧面于近轴处为凸面,其像侧面于近轴处为凹面。
摄像光学镜头10的焦距为f,定义第四透镜L4的焦距为f4,满足下列关系式:-2.85≤f4/f≤-0.57,通过负光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-1.78≤f4/f≤-0.72。
定义第四透镜L4物侧面的中心曲率半径为R7,第四透镜L4像侧面的中心曲率半径为R8,满足下列关系式:0.64≤(R7+R8)/(R7-R8)≤3.97,规定的是第四透镜L4的形状,在范围内时,随着超薄化的发展,有利于补正轴外画角的像差等问题。优选地,满足1.02≤(R7+R8)/(R7-R8)≤3.18。
摄像光学镜头10的光学总长为TTL,定义第四透镜L4的轴上厚度为d7,满足下列关系式:0.02≤d7/TTL≤0.05,在条件范围内,有利于实现超薄化。优选地,满足0.03≤d7/TTL≤0.04。
本实施方式中,第五透镜L5的物侧面于近轴处为凹面,其像侧面于近轴处为凸面。
摄像光学镜头10的焦距为f,定义第五透镜L5的焦距为f5,满足下列关系式:-11.19≤f5/f≤-1.94,对第五透镜L5的限定可有效的使得摄像光学镜头10的光线角度平缓,降低公差敏感度。优选地,满足-6.99≤f5/f≤-2.43。
定义第五透镜L5物侧面的中心曲率半径为R9,第五透镜L5像侧面的中心曲率半径为R10,且满足下列关系式:-7.18≤(R9+R10)/(R9-R10)≤-0.31,规定了第五透镜L5的形状,在范围内时,随着超薄化的发展,有利于补正轴外画角的像差等问题。优选地,满足-4.49≤(R9+R10)/(R9-R10)≤-0.39。
摄像光学镜头10的光学总长为TTL,定义第五透镜L5的轴上厚度为d9,满足下列关系式:0.02≤d9/TTL≤0.06,在关系式范围内,有利于实现超薄化。优选地,满足0.03≤d9/TTL≤0.05。
本实施方式中,第六透镜L6的物侧面于近轴处为凹面,其像侧面于近轴处为凸面。
摄像光学镜头10的焦距为f,定义第六透镜L6的焦距为f6,且满足下列关系式:0.77≤f6/f≤2.78,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足1.23≤f6/f≤2.22。
定义第六透镜L6物侧面的中心曲率半径为R11,第六透镜L6像侧面的中心曲率半径为R12,满足下列关系式:1.98≤(R11+R12)/(R11-R12)≤9.59,规定的是第六透镜L6的形状,在条件范围内时,随着超薄化发展,有利于补正轴外画角的像差等问题。优选地,满足3.17≤(R11+R12)/(R11-R12)≤7.67。
摄像光学镜头10的光学总长为TTL,定义第六透镜L6的轴上厚度为d11,满足下列关系式:0.03≤d11/TTL≤0.10,在条件范围内,有利于实现超薄化。优选地,满足0.05≤d11/TTL≤0.08。
本实施方式中,所述第七透镜L7的物侧面于近轴处为凸面,其像侧面于近轴处为凹面。
摄像光学镜头10的焦距为f,定义第七透镜L7的焦距为f7,满足下列关系式:-3.65≤f7/f≤-0.82,在关系式范围内,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-2.28≤f7/f≤-1.02。
定义第七透镜L7物侧面的中心曲率半径为R13,第七透镜L7像侧面的中心曲率半径为R14,且满足下列关系式:0.54≤(R13+R14)/(R13-R14)≤1.94,规定了第七透镜L7的形状,在关系式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足0.87≤(R13+R14)/(R13-R14)≤1.55。
摄像光学镜头10的光学总长为TTL,定义第七透镜L7的轴上厚度为d13,满足下列关系式:0.03≤d13/TTL≤0.08,在关系式范围内,有利于实现超薄化。优选地,满足0.04≤d13/TTL≤0.07。
本实施方式中,第八透镜L8的物侧面于近轴处为凹面,其像侧面于近轴处为凹面。
摄像光学镜头10的焦距为f,定义第八透镜L8的焦距为f8,满足下列关系式:-3.55≤f8/f≤-1.03,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-2.22≤f8/f≤-1.28。
定义第八透镜L8物侧面的中心曲率半径为R15,第八透镜L8像侧面的中心曲率半径为R16,满足下列关系式:-1.70≤(R15+R16)/(R15-R16)≤1.53,规定了第八透镜L8的形状,在条件范围内时,随着超薄化发展,有利于补正轴外画角的像差等问题。优选地,满足-1.06≤(R15+R16)/(R15-R16)≤1.22。
摄像光学镜头10的光学总长为TTL,定义第八透镜L8的轴上厚度为d15,满足下列关系式:0.03≤d15/TTL≤0.09,在关系式范围内,有利于实现超薄化。优选地,满足0.04≤d15/TTL≤0.08。
本实施方式中,摄像光学镜头10的像高为IH,摄像光学镜头10的光学总长为TTL,且满足下列关系式:TTL/IH≤2.30,从而有利于实现超薄化。
本实施方式中,摄像光学镜头10的像高为IH,摄像光学镜头10的焦距为f,且满足下列关系式:f/IH≥2.25,从而有利于实现长焦距,摄像光学镜头10成像性能好。
本实施方式中,摄像光学镜头10的光圈值FNO小于或等于1.92。从而实现大光圈,摄像光学镜头10成像性能好。
本实施方式中,所述摄像光学镜头10的焦距为f,所述第一透镜L1与所述第二透镜L2的组合焦距为f12,满足下列关系式:0.36≤f12/f≤1.53,在条件式范围内,可消除所述摄像光 学镜头10的像差与歪曲,且可压制摄像光学镜头10后焦距,维持影像镜片系统组小型化。 优选的,满足0.58≤f12/f≤1.23。
可以理解的是,在其他实施方式中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7及第八透镜L8的物侧面和像侧面的面型也可设置为其他凹、凸分布情况。
当满足上述关系时,使得摄像光学镜头10具有良好光学性能的同时,能够满足大光圈、长焦距、(长焦距系统中)超薄化的设计要求;根据该摄像光学镜头10的特性,该摄像光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、中心曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到像面Si的轴上距离),单位为mm;
光圈值FNO:是指摄像光学镜头的有效焦距和入瞳直径的比值。
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
其中,各符号的含义如下。
S1:光圈;
R:光学面中心处的曲率半径;
R1:第一透镜L1的物侧面的中心曲率半径;
R2:第一透镜L1的像侧面的中心曲率半径;
R3:第二透镜L2的物侧面的中心曲率半径;
R4:第二透镜L2的像侧面的中心曲率半径;
R5:第三透镜L3的物侧面的中心曲率半径;
R6:第三透镜L3的像侧面的中心曲率半径;
R7:第四透镜L4的物侧面的中心曲率半径;
R8:第四透镜L4的像侧面的中心曲率半径;
R9:第五透镜L5的物侧面的中心曲率半径;
R10 :第五透镜L5的像侧面的中心曲率半径;
R11:第六透镜L6的物侧面的中心曲率半径;
R12:第六透镜L6的像侧面的中心曲率半径;
R13:第七透镜L7的物侧面的中心曲率半径;
R14:第七透镜L7的像侧面的中心曲率半径;
R15:第八透镜L8的物侧面的中心曲率半径;
R16:第八透镜L8的像侧面的中心曲率半径;
R17:光学过滤片GF的物侧面的中心曲率半径;
R18:光学过滤片GF的像侧面的中心曲率半径;
d:透镜的轴上厚度、透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;
d13:第七透镜L7的轴上厚度;
d14:第七透镜L7的像侧面到第八透镜L8的物侧面的轴上距离;
d15:第八透镜L8的轴上厚度;
d16:第八透镜L8的像侧面到光学过滤片GF的物侧面的轴上距离;
d17:光学过滤片GF的轴上厚度;
d18:光学过滤片GF的像侧面到像面Si的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
nd7:第七透镜L7的d线的折射率;
nd8:第八透镜L8的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
v7:第七透镜L7的阿贝数;
v8:第八透镜L8的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
y=(x2/R)/{1+[1-(k+1)(x2/R2)]1/2}+A4x4+A6x6+A8x8+A10x10+A12x12+A14x14+A16x16+A18x18+A20x20 (1)
其中,x是非球面曲线上的点与光轴的垂直距离,y是非球面深度(非球面上距离光轴为x的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面,P7R1、P7R2分别代表第七透镜L7的物侧面和像侧面,P8R1、P8R2分别代表第八透镜L8的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
【表4】
图2、图3分别示出了波长为656nm、587nm、546nm、486nm及436nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了波长为546nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表13示出各实施方式一、二、三中各种数值与关系式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各关系式。
在本实施方式中,所述摄像光学镜头10的入瞳直径ENPD为4.712mm,全视场像高IH为4.000mm,对角线方向的视场角FOV为47.30°,所述摄像光学镜头10满足大光圈、长焦距、(长焦距系统中)超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第二实施方式)
图5所示为本发明第二实施方式的摄像光学镜头20,第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下仅列出不同点。
第五透镜L5的像侧面于近轴处为凹面。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
【表8】
图6、图7分别示出了波长为656nm、587nm、546nm、486nm及436nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了波长为546nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图,图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。
如表13所示,第二实施方式满足各关系式。
在本实施方式中,所述摄像光学镜头20的入瞳直径ENPD为4.712mm,全视场像高IH为4.000mm,对角线方向的视场角FOV为47.30°,所述摄像光学镜头20满足大光圈、长焦距、(长焦距系统中)超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第三实施方式)
图9所示为本发明第三实施方式的摄像光学镜头30,第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下仅列出不同点。
第八透镜L8的物侧面于近轴处为凸面。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
【表12】
图10、图11分别示出了波长为656nm、587nm、546nm、486nm及436nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了波长为546nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图,图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。
以下表13按照上述关系式列出了本实施方式中对应各关系式的数值。显然,本实施方式的摄像光学镜头30满足上述的关系式。
在本实施方式中,所述摄像光学镜头30的入瞳直径ENPD为4.712mm,全视场像高IH为4.000mm,对角线方向的视场角FOV为47.30°,所述摄像光学镜头30满足大光圈、长焦距、(长焦距系统中)超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
【表13】
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。
Claims (10)
1.一种摄像光学镜头,其特征在于,所述摄像光学镜头共包含八片透镜,所述八片透镜自物侧至像侧依序为:具有正屈折力的第一透镜、具有正屈折力的第二透镜、具有正屈折力的第三透镜、具有负屈折力的第四透镜、具有负屈折力的第五透镜、具有正屈折力的第六透镜、具有负屈折力的第七透镜以及具有负屈折力的第八透镜;
所述第一透镜的物侧面于近轴处为凸面,其像侧面于近轴处为凹面;所述第二透镜的物侧面于近轴处为凸面,其像侧面于近轴处为凹面;所述第三透镜的物侧面于近轴处为凸面,其像侧面于近轴处为凸面;所述第四透镜的物侧面于近轴处为凸面,其像侧面于近轴处为凹面;所述第五透镜的物侧面于近轴处为凹面;所述第六透镜的物侧面于近轴处为凹面,其像侧面于近轴处为凸面;所述第七透镜的物侧面于近轴处为凸面,其像侧面于近轴处为凹面;所述第八透镜的像侧面于近轴处为凹面;
其中,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第三透镜的物侧面的中心曲率半径为R5,所述第三透镜的像侧面的中心曲率半径为R6,且满足下列关系式:
0.95≤f/TTL;
3.00≤f2/f≤4.50;
0.20≤(R5+R6)/(R5-R6)≤0.90。
2.根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,所述第三透镜的轴上厚度为d5,且满足下列关系式:
1.90≤d5/d4≤3.00。
3.根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的焦距为f1,所述第一透镜的物侧面的中心曲率半径为R1,所述第一透镜的像侧面的中心曲率半径为R2,所述第一透镜的轴上厚度为d1,且满足下列关系式:
0.47≤f1/f≤2.00;
-8.45≤(R1+R2)/(R1-R2)≤-1.60;
0.06≤d1/TTL≤0.25。
4.根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的物侧面的中心曲率半径为R3,所述第二透镜的像侧面的中心曲率半径为R4,所述第二透镜的轴上厚度为d3,且满足下列关系式:
-86.93≤(R3+R4)/(R3-R4)≤-12.39;
0.02≤d3/TTL≤0.06。
5.根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,所述第三透镜的轴上厚度为d5,且满足下列关系式:
0.45≤f3/f≤1.98;
0.04≤d5/TTL≤0.19。
6.根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的焦距为f4,所述第四透镜的物侧面的中心曲率半径为R7,所述第四透镜的像侧面的中心曲率半径为R8,所述第四透镜的轴上厚度为d7,且满足下列关系式:
-2.85≤f4/f≤-0.57;
0.64≤(R7+R8)/(R7-R8)≤3.97;
0.02≤d7/TTL≤0.05。
7.根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的焦距为f5,所述第五透镜的物侧面的中心曲率半径为R9,所述第五透镜的像侧面的中心曲率半径为R10,所述第五透镜的轴上厚度为d9,且满足下列关系式:
-11.19≤f5/f≤-1.94;
-7.18≤(R9+R10)/(R9-R10)≤-0.31;
0.02≤d9/TTL≤0.06。
8.根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜的焦距为f6,所述第六透镜的物侧面的中心曲率半径为R11,所述第六透镜的像侧面的中心曲率半径为R12,所述第六透镜的轴上厚度为d11,且满足下列关系式:
0.77≤f6/f≤2.78;
1.98≤(R11+R12)/(R11-R12)≤9.59;
0.03≤d11/TTL≤0.10。
9.根据权利要求1所述的摄像光学镜头,其特征在于,所述第七透镜的焦距为f7,所述第七透镜的物侧面的中心曲率半径为R13,所述第七透镜的像侧面的中心曲率半径为R14,所述第七透镜的轴上厚度为d13,且满足下列关系式:
-3.65≤f7/f≤-0.82;
0.54≤(R13+R14)/(R13-R14)≤1.94;
0.03≤d13/TTL≤0.08。
10.根据权利要求1所述的摄像光学镜头,其特征在于,所述第八透镜的焦距为f8,所述第八透镜的物侧面的中心曲率半径为R15,所述第八透镜的像侧面的中心曲率半径为R16,所述第八透镜的轴上厚度为d15,且满足下列关系式:
-3.55≤f8/f≤-1.03;
-1.70≤(R15+R16)/(R15-R16)≤1.53;
0.03≤d15/TTL≤0.09。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011199781.3A CN112099201B (zh) | 2020-11-02 | 2020-11-02 | 摄像光学镜头 |
PCT/CN2020/132151 WO2022088359A1 (zh) | 2020-11-02 | 2020-11-27 | 摄像光学镜头 |
JP2020219911A JP6936552B1 (ja) | 2020-11-02 | 2020-12-30 | 撮像光学レンズ |
US17/137,432 US12000981B2 (en) | 2020-11-02 | 2020-12-30 | Camera optical lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011199781.3A CN112099201B (zh) | 2020-11-02 | 2020-11-02 | 摄像光学镜头 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112099201A CN112099201A (zh) | 2020-12-18 |
CN112099201B true CN112099201B (zh) | 2021-01-26 |
Family
ID=73784453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011199781.3A Expired - Fee Related CN112099201B (zh) | 2020-11-02 | 2020-11-02 | 摄像光学镜头 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12000981B2 (zh) |
JP (1) | JP6936552B1 (zh) |
CN (1) | CN112099201B (zh) |
WO (1) | WO2022088359A1 (zh) |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002318346A (ja) * | 2001-04-24 | 2002-10-31 | Asahi Optical Co Ltd | 可変ソフトフォーカスレンズ系 |
JP5942194B2 (ja) * | 2012-03-15 | 2016-06-29 | パナソニックIpマネジメント株式会社 | レンズ系、交換レンズ装置及びカメラシステム |
TWI586998B (zh) * | 2015-08-11 | 2017-06-11 | 大立光電股份有限公司 | 攝像用光學系統、取像裝置及電子裝置 |
JP6478903B2 (ja) * | 2015-12-21 | 2019-03-06 | カンタツ株式会社 | 撮像レンズ |
WO2019007030A1 (zh) * | 2017-07-05 | 2019-01-10 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN108121056A (zh) * | 2017-12-29 | 2018-06-05 | 玉晶光电(厦门)有限公司 | 光学成像镜头 |
JP2019191273A (ja) * | 2018-04-19 | 2019-10-31 | オリンパス株式会社 | 対物レンズ |
JP6653111B2 (ja) * | 2018-05-07 | 2020-02-26 | カンタツ株式会社 | 撮像レンズ |
CN208521055U (zh) * | 2018-06-26 | 2019-02-19 | 浙江舜宇光学有限公司 | 摄像镜头 |
CN108594407B (zh) * | 2018-06-26 | 2023-06-06 | 浙江舜宇光学有限公司 | 摄像镜头 |
TWI684024B (zh) * | 2018-07-04 | 2020-02-01 | 大立光電股份有限公司 | 攝影光學鏡組、取像裝置及電子裝置 |
JP2020071438A (ja) * | 2018-11-02 | 2020-05-07 | キヤノン株式会社 | 光学系およびそれを有する撮像装置 |
US11226473B2 (en) * | 2018-12-28 | 2022-01-18 | Samsung Electro-Mechanics Co., Ltd. | Optical imaging system including eight lenses of +++−+−+−, −++−+++− or +−+−++−− refractive powers |
CN111025540B (zh) * | 2019-12-20 | 2024-08-13 | 玉晶光电(厦门)有限公司 | 光学成像镜头 |
CN111077654B (zh) * | 2019-12-28 | 2021-09-24 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
-
2020
- 2020-11-02 CN CN202011199781.3A patent/CN112099201B/zh not_active Expired - Fee Related
- 2020-11-27 WO PCT/CN2020/132151 patent/WO2022088359A1/zh active Application Filing
- 2020-12-30 US US17/137,432 patent/US12000981B2/en active Active
- 2020-12-30 JP JP2020219911A patent/JP6936552B1/ja active Active
Also Published As
Publication number | Publication date |
---|---|
US20220137361A1 (en) | 2022-05-05 |
CN112099201A (zh) | 2020-12-18 |
WO2022088359A1 (zh) | 2022-05-05 |
US12000981B2 (en) | 2024-06-04 |
JP6936552B1 (ja) | 2021-09-15 |
JP2022073870A (ja) | 2022-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111929849B (zh) | 摄像光学镜头 | |
CN111812816B (zh) | 摄像光学镜头 | |
CN112014951B (zh) | 摄像光学镜头 | |
CN111929869B (zh) | 摄像光学镜头 | |
CN111965800B (zh) | 摄像光学镜头 | |
CN112014949B (zh) | 摄像光学镜头 | |
CN111929850B (zh) | 摄像光学镜头 | |
CN112180546B (zh) | 摄像光学镜头 | |
CN112180543A (zh) | 摄像光学镜头 | |
CN112099200B (zh) | 摄像光学镜头 | |
CN112014955B (zh) | 摄像光学镜头 | |
CN111929858B (zh) | 摄像光学镜头 | |
CN112014956B (zh) | 摄像光学镜头 | |
CN111812825B (zh) | 摄像光学镜头 | |
CN111929833B (zh) | 摄像光学镜头 | |
CN111812824B (zh) | 摄像光学镜头 | |
CN111929855B (zh) | 摄像光学镜头 | |
CN112230375B (zh) | 摄像光学镜头 | |
CN112014954B (zh) | 摄像光学镜头 | |
CN112014950B (zh) | 摄像光学镜头 | |
CN111929844B (zh) | 摄像光学镜头 | |
CN112099199A (zh) | 摄像光学镜头 | |
CN112099202B (zh) | 摄像光学镜头 | |
CN112230374B (zh) | 摄像光学镜头 | |
CN112099203B (zh) | 摄像光学镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210126 |