[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN112001233A - Biological characteristic identification system and identification method - Google Patents

Biological characteristic identification system and identification method Download PDF

Info

Publication number
CN112001233A
CN112001233A CN202010666402.0A CN202010666402A CN112001233A CN 112001233 A CN112001233 A CN 112001233A CN 202010666402 A CN202010666402 A CN 202010666402A CN 112001233 A CN112001233 A CN 112001233A
Authority
CN
China
Prior art keywords
information
identification
distance
extraction unit
feature extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010666402.0A
Other languages
Chinese (zh)
Other versions
CN112001233B (en
Inventor
郑智元
林威汉
翁振庭
赵芳誉
蔡呈新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elan Microelectronics Corp
Original Assignee
Elan Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elan Microelectronics Corp filed Critical Elan Microelectronics Corp
Publication of CN112001233A publication Critical patent/CN112001233A/en
Application granted granted Critical
Publication of CN112001233B publication Critical patent/CN112001233B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/40Spoof detection, e.g. liveness detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/70Multimodal biometrics, e.g. combining information from different biometric modalities

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Collating Specific Patterns (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The invention discloses a biological characteristic identification system and a biological characteristic identification method, wherein the biological characteristic identification system comprises a sensor, a first sensor, a second sensor and a third sensor, wherein the sensor is used for sensing a first biological characteristic to generate an image; a first feature extraction unit, coupled to the sensor, for generating a first information according to the image, the first information describing a uniqueness of the first biological feature; a second feature extraction unit, coupled to the sensor, for generating a second information according to the image, where the second information describes a true or false characteristic of the first biological feature; and an identification unit coupled to the first feature extraction unit and the second feature extraction unit for generating an identification result according to the first information and/or the second information.

Description

生物特征的辨识系统及辨识方法Biometric identification system and identification method

技术领域technical field

本发明是有关一种生物特征的辨识系统及辨识方法。The present invention relates to a biometric identification system and identification method.

背景技术Background technique

越来越多电子装置或系统使用生物特征来识别用户的身份。常见的生物特征辨识包括指纹辨识、人脸辨识、虹膜辨识、声纹辨识及掌纹辨识等。然而,目前的生物特征辨识仍有缺陷,例如指纹辨识无法有效地分辨手指的真伪。因此,生物特征辨识系统仍存在可能被欺骗的疑虑。More and more electronic devices or systems use biometrics to identify users. Common biometric identifications include fingerprint identification, face identification, iris identification, voiceprint identification and palmprint identification. However, the current biometric identification still has shortcomings. For example, fingerprint identification cannot effectively distinguish the authenticity of a finger. Therefore, there are still concerns that biometric identification systems may be deceived.

发明内容SUMMARY OF THE INVENTION

本发明的目的,在于提出一种生物特征辨识系统及其辨识方法,能够避免假的生物特征通过身份识别。The purpose of the present invention is to provide a biometric identification system and identification method thereof, which can avoid false biometric identification through identity identification.

根据本发明,一种生物特征的辨识系统包括一传感器、一第一特征萃取单元、一第二特征萃取单元及一识别单元。该传感器感测一第一生物特征以产生一图像。该第一特征萃取单元耦接该传感器,并根据该图像产生一第一信息,其中该第一信息描述该第一生物特征的真假特性。该第二特征萃取单元耦接该传感器,并且根据该图像产生一第二信息,其中该第二信息描述该第一生物特征的真假特性。该识别单元耦接该第一特征萃取单元及该第二特征萃取单元,并且根据该第二信息或该第一信息与该第二信息,产生一识别结果。According to the present invention, a biological feature identification system includes a sensor, a first feature extraction unit, a second feature extraction unit and an identification unit. The sensor senses a first biometric feature to generate an image. The first feature extraction unit is coupled to the sensor, and generates first information according to the image, wherein the first information describes the true and false characteristics of the first biological feature. The second feature extraction unit is coupled to the sensor, and generates a second information according to the image, wherein the second information describes the true and false characteristics of the first biological feature. The identification unit is coupled to the first feature extraction unit and the second feature extraction unit, and generates an identification result according to the second information or the first information and the second information.

根据本发明,一种生物特征的辨识方法,包括:感测一第一生物特征以产生一图像;根据该图像产生一第一信息,其中该第一信息描述该第一生物特征的独特性;从该图像取得一第二信息,其中该第二信息描述该第一生物特征的真假特性;以及根据该第二信息或该第一信息与该第二信息,产生一识别结果。According to the present invention, a method for identifying a biometric feature includes: sensing a first biometric feature to generate an image; generating a first information according to the image, wherein the first information describes the uniqueness of the first biometric feature; Obtaining a second information from the image, wherein the second information describes the true and false characteristics of the first biological feature; and generating an identification result according to the second information or the first information and the second information.

本发明的辨识系统及方法,可以有效的提升生物特征辨识系统的安全性,防止假的生物特征通过身份认证。The identification system and method of the present invention can effectively improve the security of the biometric identification system and prevent false biometrics from passing identity authentication.

附图说明Description of drawings

图1是本发明生物特征的辨识系统一实施例的方块图。FIG. 1 is a block diagram of an embodiment of a biometric identification system of the present invention.

图2显示本发明生物特征的辨识方法的流程图。FIG. 2 shows a flow chart of the biometric identification method of the present invention.

图3显示CNN与分类器一实施例的方块图。Figure 3 shows a block diagram of an embodiment of a CNN and a classifier.

附图标记说明:10-辨识系统;11-传感器;12-第一特征萃取单元;13-第二特征萃取单元;131-卷积神经网络;1311-特征撷取部分;1312-分类部分;14-内存;15-识别单元;151-分类器。Description of reference numerals: 10-recognition system; 11-sensor; 12-first feature extraction unit; 13-second feature extraction unit; 131-convolutional neural network; 1311-feature extraction part; 1312-classification part; 14 - memory; 15 - recognition unit; 151 - classifier.

具体实施方式Detailed ways

图1显示本发明生物特征的辨识系统的实施例,辨识系统10包括传感器11、第一特征萃取单元12、第二特征萃取单元13、内存14、识别单元15。传感器11可以是一个影像传感器,用以感测第一生物特征产生一图像(image)A。该第一生物特征可以是例如指纹、人脸、掌纹或虹膜。第一特征萃取单元12、第二特征萃取单元13与识别单元15可以是用软件或硬件实现。第一特征萃取单元12耦接传感器11,其根据传感器11所提供的图像A产生一第一信息,该第一信息描述该第一生物特征的独特性。该第一信息包括多组特征向量。在一实施例中,该第一特征萃取单元12可以是使用计算机视觉(computer vision)的方法萃取图像A的特征以产生该第一信息。该计算机视觉的方法可以是例如加速段测试特征(Features FromAccelerated Segment Test,FAST)、自适应通用加速分割检测(Adaptive and genericcorner detection based on the accelerated segment test,AGAST)、尺度不变特征转换(Scale-invariant feature transform,SIFT)、加速稳健特征(Speeded Up RobustFeatures,SURF)、KAZE或AKAZE等等的算法。在另一实施例中,该第一特征萃取单元12是训练完成的深度学习模型,可以是以例如基于卷积神经网络(Convolutional NeuralNetwork,CNN)131的模型架构来实现。该第一特征萃取单元12使用的方法可以是但不限于局部二值模式(Local Binary Patterns,LBP)、局部相位量化(Local PhaseQuantization,LPQ)或方向梯度直方图(Histogram of Oriented Gradient,HOG)等等的算法。1 shows an embodiment of the biometric identification system of the present invention. The identification system 10 includes a sensor 11 , a first feature extraction unit 12 , a second feature extraction unit 13 , a memory 14 , and an identification unit 15 . The sensor 11 may be an image sensor for sensing the first biometric feature to generate an image A. The first biometric feature may be, for example, a fingerprint, a face, a palm print, or an iris. The first feature extraction unit 12, the second feature extraction unit 13 and the identification unit 15 may be implemented by software or hardware. The first feature extraction unit 12 is coupled to the sensor 11, and generates a first information according to the image A provided by the sensor 11, and the first information describes the uniqueness of the first biological feature. The first information includes sets of feature vectors. In one embodiment, the first feature extraction unit 12 may use a computer vision method to extract features of the image A to generate the first information. The computer vision method can be, for example, Features From Accelerated Segment Test (FAST), Adaptive and generic corner detection based on the accelerated segment test (AGAST), Scale-invariant feature transformation (Scale- Algorithms such as invariant feature transform, SIFT), Speeded Up Robust Features (SURF), KAZE or AKAZE, etc. In another embodiment, the first feature extraction unit 12 is a trained deep learning model, which may be implemented with, for example, a model architecture based on a Convolutional Neural Network (CNN) 131 . The method used by the first feature extraction unit 12 may be, but not limited to, Local Binary Patterns (LBP), Local Phase Quantization (LPQ) or Histogram of Oriented Gradient (HOG), etc. etc. algorithm.

第二特征萃取单元13耦接传感器11,其根据图像A产生一第二信息,该第二信息描述该第一生物特征的真假特性。在一实施例中,该第二特征萃取单元13可以是使用计算机视觉(computer vision)的方法萃取图像A的特征以产生该第二信息。该计算机视觉的方法可以是使用例如加速段测试特征(Features From Accelerated Segment Test,FAST)、自适应通用加速分割检测(Adaptive and generic corner detection based on theaccelerated segment test,AGAST)、尺度不变特征转换(Scale-invariant featuretransform,SIFT)、加速稳健特征(Speeded Up Robust Features,SURF)、KAZE或AKAZE等等的算法。在另一实施例中,该第二特征萃取单元13是预先训练完成的深度学习模型,可以是以例如基于卷积神经网络(Convolutional Neural Network,CNN)131或其改良的模型架构来实现,或者也可以是AlexNet,MobileNet等深度网络模型。该第二特征萃取单元13使用的方法可以是但不限于局部二值模式(Local Binary Patterns,LBP)、局部相位量化(LocalPhase Quantization,LPQ)或方向梯度直方图(Histogram of Oriented Gradient,HOG)等等的算法。在一实施例中,该第二信息包含该图像的嵌入特征(embedding feature),该嵌入特征是CNN 131根据图像A进行数据转换时产生的向量数据,用以描述该第一生物特征的真假特性,其非仅是一个代表真(1)或假(0)的数值。The second feature extraction unit 13 is coupled to the sensor 11, and generates a second information according to the image A, and the second information describes the true and false characteristics of the first biological feature. In one embodiment, the second feature extraction unit 13 may use a computer vision method to extract features of the image A to generate the second information. The computer vision method may be to use, for example, Features From Accelerated Segment Test (FAST), Adaptive and generic corner detection based on the accelerated segment test (AGAST), scale-invariant feature transformation ( Scale-invariant feature transform, SIFT), speeded up robust features (Speeded Up Robust Features, SURF), KAZE or AKAZE and so on. In another embodiment, the second feature extraction unit 13 is a pre-trained deep learning model, which may be implemented, for example, based on a convolutional neural network (Convolutional Neural Network, CNN) 131 or its improved model architecture, or It can also be a deep network model such as AlexNet, MobileNet, etc. The method used by the second feature extraction unit 13 may be, but not limited to, Local Binary Patterns (LBP), Local Phase Quantization (LPQ) or Histogram of Oriented Gradient (HOG), etc. etc. algorithm. In one embodiment, the second information includes an embedding feature of the image, and the embedded feature is vector data generated when the CNN 131 performs data conversion according to the image A, and is used to describe the authenticity of the first biological feature. A property that is not just a number representing true (1) or false (0).

第一特征萃取单元12与第二特征萃取单元13虽然都是用于特征的萃取。但两者的目的并不相同,两者用于萃取特征的系数也不相同。第一特征萃取单元12与第二特征萃取单元13可以被理解为是从不同的角度来看图像A。第一特征萃取单元12是用来描述图像A所示的第一生物特征的独特性,例如一些特定特征点的分布关系。该独特性可以被用来区别不同的个体。而第二特征萃取单元13是用描述图像A所示的第一生物特征的真假特性,通常被用来判断该第一生物特征是否来自活体。Although the first feature extraction unit 12 and the second feature extraction unit 13 are both used for feature extraction. But the purpose of the two is not the same, and the coefficients used to extract the features are not the same. The first feature extraction unit 12 and the second feature extraction unit 13 can be understood as viewing the image A from different angles. The first feature extraction unit 12 is used to describe the uniqueness of the first biological feature shown in the image A, such as the distribution relationship of some specific feature points. This uniqueness can be used to distinguish different individuals. The second feature extraction unit 13 is used to describe the true and false characteristics of the first biological feature shown in the image A, and is usually used to judge whether the first biological feature is from a living body.

内存14分别耦接第一特征萃取单元12、第二特征萃取单元13及识别单元15,用以储存一第一模板信息与一第二模板信息。该第一模板信息与第二模板信息是在用户的注册(enrollment)程序中,分别由第一特征萃取单元12与第二特征萃取单元13所产生。在该注册程序中,传感器11感测一待注册用户的第二生物特征产生一图像B(图中未示出),其中,该第一生物特征与该第二生物特征是同一种类的生物特征。该第一特征萃取单元12根据图像B产生第一模板信息,该第一模板信息描述该第二生物特征的独特性。该第二特征萃取单元13根据该图像B产生该第二模板信息,该第二模板信息描述该第二生物特征的真假特性。The memory 14 is respectively coupled to the first feature extraction unit 12 , the second feature extraction unit 13 and the identification unit 15 for storing a first template information and a second template information. The first template information and the second template information are generated by the first feature extraction unit 12 and the second feature extraction unit 13 respectively in the user's enrollment process. In the registration process, the sensor 11 senses a second biometric feature of a user to be registered to generate an image B (not shown in the figure), wherein the first biometric feature and the second biometric feature are the same type of biometric feature . The first feature extraction unit 12 generates first template information according to the image B, and the first template information describes the uniqueness of the second biological feature. The second feature extraction unit 13 generates the second template information according to the image B, and the second template information describes the true and false characteristics of the second biological feature.

识别单元15耦接第一特征萃取单元12、第二特征萃取单元13与内存14。识别单元15根据该第一信息、该第二信息或者该第一信息与该第二信息,产生一识别结果,该识别结果代表通过(pass)或不通过(fail)身份认证。在一实施例中,该识别单元15包括一分类器151。分类器151基于机器学习(Machine Learning)所训练好的模型,其可以是由支持向量机(Support Vector Machine,SVM)或类神经网络(Neural Network,NN)来实现。分类器151可以是软件或者硬件电路。The identification unit 15 is coupled to the first feature extraction unit 12 , the second feature extraction unit 13 and the memory 14 . The identification unit 15 generates an identification result according to the first information, the second information or the first information and the second information, and the identification result represents pass or fail the identity authentication. In one embodiment, the identification unit 15 includes a classifier 151 . The classifier 151 is based on a model trained by machine learning (Machine Learning), which may be implemented by a support vector machine (Support Vector Machine, SVM) or a neural network (Neural Network, NN). The classifier 151 may be a software or hardware circuit.

以下是以指纹辨识为例来说明本发明辨识系统10的操作,但本发明不局限在指纹辨识,本发明也可以应用在其他的生物特征辨识,例如人脸辨识、虹膜辨识及掌纹辨识等。当辨识系统10进行注册程序时,注册者将其手指放到传感器11上,在此实施例中,传感器11为一指纹传感器,其可以是光学式指纹传感器或是电容式指纹传感器。传感器11感测手指的指纹(相当于前述的第二生物特征)产生一指纹图像Fi1。第一特征萃取单元12根据指纹图像Fi1产生第一模板信息En1,该第一模板信息En1可以理解为是描述指纹图像Fi1的指纹特性。每个人的指纹的纹路都具有其独特性,与其他人不同。该第一模板信息En1即是在描述该指纹的独特性。第二特征萃取单元13根据指纹图像Fil产生第二模板信息En2。该第二模板信息En2描述指纹图像Fi1的真假特性。该第一模板信息En1与第二模板信息En2被储存至内存14之后,注册程序即完成。The following takes fingerprint identification as an example to illustrate the operation of the identification system 10 of the present invention, but the present invention is not limited to fingerprint identification, and the present invention can also be applied to other biometric identifications, such as face identification, iris identification, palmprint identification, etc. . When the identification system 10 performs the registration process, the registrant puts his finger on the sensor 11. In this embodiment, the sensor 11 is a fingerprint sensor, which may be an optical fingerprint sensor or a capacitive fingerprint sensor. The sensor 11 senses the fingerprint of the finger (equivalent to the aforementioned second biometric feature) to generate a fingerprint image Fi1. The first feature extraction unit 12 generates the first template information En1 according to the fingerprint image Fi1, and the first template information En1 can be understood as describing the fingerprint characteristics of the fingerprint image Fi1. The pattern of each person's fingerprint is unique and different from others. The first template information En1 is describing the uniqueness of the fingerprint. The second feature extraction unit 13 generates second template information En2 according to the fingerprint image Fil. The second template information En2 describes the true and false characteristics of the fingerprint image Fi1. After the first template information En1 and the second template information En2 are stored in the memory 14, the registration process is completed.

当辨识系统10进行认证(verification)程序时,待认证者将手指放在传感器11上后,传感器11会感测手指的指纹(相当于前述的第一生物特征)产生一指纹图像Fi2,如图2的步骤S10。第一特征萃取单元12根据指纹图像Fi1产生第一信息Ve1,如图2的步骤S12。第二特征萃取单元13根据指纹图像Fi2产生第二信息Ve2,如图2的步骤S14。第二信息Ve2描述指纹图像Fi2的真假特性。最后,识别单元15再根据第一信息Ve1、第二信息Ve2或第一信息Ve1及第二信息Ve2,产生一识别结果Vre以表示认证成功或失败,如图2的步骤S16。When the identification system 10 performs the verification process, after the verifier puts the finger on the sensor 11, the sensor 11 will sense the fingerprint of the finger (equivalent to the aforementioned first biometric feature) to generate a fingerprint image Fi2, as shown in the figure Step S10 of 2. The first feature extraction unit 12 generates the first information Ve1 according to the fingerprint image Fi1, as shown in step S12 in FIG. 2 . The second feature extraction unit 13 generates the second information Ve2 according to the fingerprint image Fi2, as shown in step S14 in FIG. 2 . The second information Ve2 describes the true and false characteristics of the fingerprint image Fi2. Finally, the identification unit 15 generates an identification result Vre according to the first information Ve1, the second information Ve2 or the first information Ve1 and the second information Ve2 to indicate whether the authentication succeeds or fails, as shown in step S16 in FIG. 2 .

在一实施例中,识别单元15根据第一信息Ve1与第一模板信息En1的差异D1以及第二信息Ve2与第二模板信息En2的差异D2来产生识别结果Vre。识别单元15可以使用但不限于欧式距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、标准化欧氏距离、马氏距离及汉明距离的其中之一种来判断第一信息Ve1与第一模板信息En1的差异D1以及判断第二信息Ve2与第二模板信息En2的差异D2,接着再将差异D1与D2分别乘上权重W1及W2后相加产生一总和,其中权重W1与W2为非0的数值。若该总和小于一预设值TH1,则产生的识别结果Vre为数值"1",表示认证成功。相反的,若该总和大于预设值TH1,则产生的识别结果Vre为数值"0"代表此次认证为失败。In one embodiment, the identification unit 15 generates the identification result Vre according to the difference D1 between the first information Ve1 and the first template information En1 and the difference D2 between the second information Ve2 and the second template information En2. The identification unit 15 can use, but is not limited to, one of Euclidean distance, Manhattan distance, Chebyshev distance, Minkowski distance, normalized Euclidean distance, Mahalanobis distance, and Hamming distance to determine the difference between the first information Ve1 and the first information Ve1. The difference D1 of the template information En1 and the difference D2 of the second information Ve2 and the second template information En2 are judged, and then the difference D1 and D2 are multiplied by the weights W1 and W2, respectively, and then added together to generate a sum, wherein the weights W1 and W2 are not A value of 0. If the sum is less than a preset value TH1, the generated identification result Vre is a value of "1", indicating that the authentication is successful. On the contrary, if the sum is greater than the preset value TH1, the generated identification result Vre is a value of "0", indicating that the authentication is a failure.

在另一实施例中,识别单元15包括一分类器151,分类器151可以由硬件或软件实现,其使用机器学习的方法进行分类。分类器151可以进行一识别步骤以产生识别结果Vre。该识别步骤包括但不限于判断第一信息Ve1与第二信息Ve2的组合和第一模板信息En1与第二模板信息En2的组合之间的相似度以产生识别结果Vre。若该相似度大于一预设值TH2,则产生的识别结果Vre为数值"1",代表认证成功,反之则产生识别结果Vre为数值"0",代表认证失败。In another embodiment, the identification unit 15 includes a classifier 151, which can be implemented by hardware or software, and uses a machine learning method for classification. The classifier 151 may perform a recognition step to generate the recognition result Vre. The identifying step includes, but is not limited to, judging the similarity between the combination of the first information Ve1 and the second information Ve2 and the combination of the first template information En1 and the second template information En2 to generate the identification result Vre. If the similarity is greater than a preset value TH2, the generated identification result Vre is a value of "1", indicating that the authentication is successful; otherwise, the generated identification result Vre is a value of "0", indicating that the authentication has failed.

在一实施例中,识别单元15同样包括分类器151,识别单元15先使用但不限于欧式距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、标准化欧氏距离、马氏距离及汉明距离的其中之一种来判断第一信息Ve1与第一模板信息En1是否相似。若否,则识别单元15产生识别结果Vre为”0”,表示认证失败。若是,识别单元15再利用分类器151进行前述的识别步骤产生识别结果Vre。这样作的好处是可以节省资源。如果判断出第一信息Ve1与第一模板信息EN1不相似,即已足已判断待验证者与注册的使用者不同。因此也就没必要再继续进行该识别步骤。In one embodiment, the identification unit 15 also includes a classifier 151. The identification unit 15 first uses but is not limited to Euclidean distance, Manhattan distance, Chebyshev distance, Minkowski distance, normalized Euclidean distance, Mahalanobis distance and Hamming distance. One of the distances is used to determine whether the first information Ve1 is similar to the first template information En1. If not, the identification unit 15 generates the identification result Vre as "0", indicating that the authentication fails. If so, the identifying unit 15 uses the classifier 151 to perform the aforementioned identifying steps to generate the identifying result Vre. The advantage of doing this is that it saves resources. If it is determined that the first information Ve1 is not similar to the first template information EN1, it is enough to determine that the person to be verified is different from the registered user. It is therefore unnecessary to continue the identification step.

在另一实施例中,识别单元15同样包括分类器151,识别单元15先使用但不限于欧式距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、标准化欧氏距离、马氏距离及汉明距离的其中之一种来判断第二信息Ve2与第二模板信息En2是否相似。若否,则识别单元15产生识别结果Vre为”0”,表示认证失败。若是,识别单元15再利用分类器151进行前述的识别步骤产生识别结果Vre。In another embodiment, the identification unit 15 also includes a classifier 151. The identification unit 15 first uses but is not limited to Euclidean distance, Manhattan distance, Chebyshev distance, Minkowski distance, normalized Euclidean distance, Mahalanobis distance and Hanoi distance. One of the clear distances is used to determine whether the second information Ve2 is similar to the second template information En2. If not, the identification unit 15 generates the identification result Vre as "0", indicating that the authentication fails. If so, the identifying unit 15 uses the classifier 151 to perform the aforementioned identifying steps to generate the identifying result Vre.

如果第一特征萃取单元12是使用训练好的深度学习的模型,需要预先进行训练以获得特征萃取的能力。以下以指纹识别为例说明。在训练的过程中,是提供许多不同人的指纹图像给一训练程序T1。该训练程序T1具有与第一特征萃取单元12相同的模型架构。训练程序T1根据这些不同人的指纹图像及其对应的拥有者,获得一组系数用于萃取指纹图像的特征。这个过程其实就是告诉训练程序T1哪张指纹图像是代表谁,让训练程序T1学习怎么作分类。第一特征萃取单元12即利用该组系数进行运作,以萃取指纹图像的特征而产生第一信息。这个第一信息描述的是这个指纹的独特性,也可以被理解是用数学的方式在描述这张指纹是什么样子。如果第一特征萃取单元12是使用计算机视觉的方法来萃取特征,则其使用的是已经定义好的特征,来描述这个生物特征是什么样子,也就是其独特性。If the first feature extraction unit 12 uses a trained deep learning model, pre-training is required to obtain the feature extraction capability. The following takes fingerprint recognition as an example. During the training process, fingerprint images of many different people are provided to a training program T1. The training program T1 has the same model architecture as the first feature extraction unit 12 . The training program T1 obtains a set of coefficients for extracting the features of the fingerprint images according to the fingerprint images of these different people and their corresponding owners. This process is actually to tell the training program T1 which fingerprint image represents who, and let the training program T1 learn how to classify. The first feature extraction unit 12 operates using the set of coefficients to extract the features of the fingerprint image to generate the first information. This first information describes the uniqueness of the fingerprint, and it can also be understood as describing what the fingerprint looks like in a mathematical way. If the first feature extraction unit 12 uses a computer vision method to extract features, it uses already defined features to describe what the biological feature looks like, that is, its uniqueness.

如果第二特征萃取单元13是使用训练好的深度学习的模型,也同样需要预先进行训练以获得特征萃取的能力。以下以指纹识别为例说明。在训练的过程中,需要准备大量的真指纹图像与假指纹指像提供给训练程序T2,该训练程序T2具有与第一特征萃取单元13相同的模型架构。前述大量的真指纹图像是经由感测许多不同人的指纹而获得,都是从活体上取得的指纹图像。将这些指纹图像形成于例如硅胶之类的材质,并进行感测,即可获得前述大量的假指纹图像。通过告诉该训练程序T2哪些是真指纹图像,哪些是假指纹图像,训练程序T2经过学习之后可获得一组系数用于识别真指纹或假指纹。这个过程其实就是在让训练程序T2学习怎么识别真假指纹。第二特征萃取单元13即利用该组系数萃取指纹图像的特征而产生第二信息。用这个第二信息也可以直接判断是真指纹或假指纹,但本发明并不是这样作。本发明的第二特征萃取单元13主要是在取得在萃取特征之后到判断真假指纹之前所产生的一组特征值作为第二信息。所以说这个第二信息描述的是这个指纹的真假特性,也可以被理解是用数学的方式在描述这张指纹的真实性。如果第一特征萃取单元12是使用计算机视觉的方法来萃取特征,则其使用的是已经定义好的特征,来描述这个生物特征的真假特性。If the second feature extraction unit 13 uses a trained deep learning model, it also needs to be pre-trained to obtain the capability of feature extraction. The following takes fingerprint recognition as an example. During the training process, a large number of real fingerprint images and fake fingerprint images need to be prepared and provided to the training program T2, and the training program T2 has the same model architecture as the first feature extraction unit 13. The aforementioned large number of real fingerprint images are obtained by sensing the fingerprints of many different people, all of which are fingerprint images obtained from living bodies. These fingerprint images are formed on a material such as silica gel and then sensed to obtain the aforementioned large number of fake fingerprint images. By telling the training program T2 which are real fingerprint images and which are fake fingerprint images, the training program T2 can obtain a set of coefficients for identifying real fingerprints or fake fingerprints after learning. This process is actually letting the training program T2 learn how to identify real and fake fingerprints. The second feature extraction unit 13 uses the set of coefficients to extract the features of the fingerprint image to generate the second information. The second information can also be used to directly determine whether it is a real fingerprint or a fake fingerprint, but this is not the case in the present invention. The second feature extraction unit 13 of the present invention mainly obtains a set of feature values generated after the feature extraction and before determining the true and false fingerprints as the second information. Therefore, the second information describes the authenticity of the fingerprint, and it can also be understood to describe the authenticity of the fingerprint in a mathematical way. If the first feature extraction unit 12 uses a computer vision method to extract features, it uses already defined features to describe the true and false characteristics of the biological feature.

通过预先提供大量的图像给第一特征萃取单元12与第二特征萃取单元13,可以获得大量的第一信息与第二信息供分类器151的机器学习的模型学习分类。使得分类器151具有判断身份验证成功或失败的能力。以指纹辨识为例,需要先准备一训练程序T3具有与分类器151相同的模型架构。接下来要提供大量的第一信息与第二信息的组合给训练程序T3,并且告诉训练程序T3哪些组合是验证成功,哪些组合是验证失败。例如,告诉训练程序T3用真指纹图像产生的第一信息与第二信息代表验证成功(pass),用真指纹图像产生的第一信息与假指纹产生的第二信息代表验证失败(fail)。训练程序T3从这个过程可以学习到如何判断第一信息与第二信息的组合代表验证成功或失败。By providing a large number of images to the first feature extraction unit 12 and the second feature extraction unit 13 in advance, a large amount of first information and second information can be obtained for the machine learning model of the classifier 151 to learn and classify. The classifier 151 has the ability to judge the success or failure of authentication. Taking fingerprint recognition as an example, it is necessary to prepare a training program T3 which has the same model structure as the classifier 151 . Next, it is necessary to provide a large number of combinations of the first information and the second information to the training program T3, and tell the training program T3 which combinations are successful in verification and which combinations are failed in verification. For example, the training program T3 is told to use the first information and the second information generated by the real fingerprint image to represent the verification success (pass), and the first information generated from the real fingerprint image and the second information generated by the fake fingerprint to represent the verification failure (fail). From this process, the training program T3 can learn how to judge that the combination of the first information and the second information represents the verification success or failure.

从以上训练和识别的描述即可了解,本发明是通过第一特征萃取单元11产生的第一信息来判断现在感测的这张指纹和注册的指纹像不像以及通过第二特征萃取单元12产生的第二信息来判断现在感测的这张指纹的真假特性和注册指纹的真假特性是否接近,来决定身份验证是否通过。It can be understood from the above description of training and identification that the present invention uses the first information generated by the first feature extraction unit 11 to determine whether the fingerprint currently sensed is similar to the registered fingerprint and the second feature extraction unit 12 The generated second information is used to judge whether the true and false characteristics of the currently sensed fingerprint are close to the true and false characteristics of the registered fingerprint, so as to determine whether the identity verification is passed.

图2提供一实施例说明CNN 131的架构,其主要包括特征撷取部分1311与分类部分1312。图像A经过特征撷取部分1311及分类部分1312的处理,在分类器1312产生嵌入特征信息,该嵌入特征信息是代表该图像A所示的生物特征(例如指纹)的真假特性。该嵌入特征信息可以是一组数值,例如"1101000”。请注意,第二特征萃取单元13并不利用分类部分1312进行分类而产生真或假的辨识结果,而是取得分类器1312所产生的嵌入特征信息。如果使用一特征萃取单元直接判断一待验证的生物特征是真或者假,可能会有准确性的问题。以指纹识别为例,如果提供10种材质的假指纹来训练该特征萃取单元,对于这10种材质以外的假指纹,该特征萃取单元便无法准确的判断是真或假。而本发明的第二萃取特征单元13并不直接判断该生物特征是真或假,而是获得描述该生物特征的真假特性的嵌入特征信息,来跟内存中已注册的第二模板信息作比对。因此,对于第二萃取特征单元13没有学习过的新材质,对于本发明的身份验证的准确性的影响较低。FIG. 2 provides an embodiment to illustrate the structure of the CNN 131 , which mainly includes a feature extraction part 1311 and a classification part 1312 . The image A is processed by the feature extraction part 1311 and the classification part 1312, and the classifier 1312 generates embedded feature information, the embedded feature information represents the true and false characteristics of the biometric feature (eg fingerprint) shown in the image A. The embedded feature information may be a set of values, such as "1101000". Please note that the second feature extraction unit 13 does not use the classification part 1312 for classification to generate a true or false identification result, but obtains the embedded feature information generated by the classifier 1312 . If a feature extraction unit is used to directly determine whether a biometric feature to be verified is true or false, there may be problems with accuracy. Taking fingerprint recognition as an example, if fake fingerprints of 10 materials are provided to train the feature extraction unit, the feature extraction unit cannot accurately determine whether it is true or false for false fingerprints other than these 10 materials. However, the second feature extraction unit 13 of the present invention does not directly determine whether the biological feature is true or false, but obtains embedded feature information describing the true and false characteristics of the biological feature, which is used for comparison with the registered second template information in the memory. Comparison. Therefore, for the new material that the second extraction feature unit 13 has not learned, the impact on the accuracy of the identity verification of the present invention is relatively low.

以上对于本发明的较佳实施例所作的叙述为阐明的目的,而无意限定本发明精确地为所揭露的形式,基于以上的教导或从本发明的实施例学习而作修改或变化是可能的,实施例为解说本发明的原理以及让熟习该项技术者以各种实施例利用本发明在实际应用上而选择及叙述,本发明的技术思想企图由权利要求范围及其均等来决定。The above description of the preferred embodiments of the present invention is for illustrative purposes, and is not intended to limit the present invention to the exact form disclosed. Modifications or changes are possible based on the above teachings or learning from the embodiments of the present invention. , the embodiment is to illustrate the principle of the present invention and to allow those skilled in the art to select and describe the present invention in practical application with various embodiments, and the technical idea of the present invention is intended to be determined by the scope of claims and their equivalents.

Claims (28)

1.一种生物特征的辨识系统,其特征在于,包括:1. A biometric identification system, characterized in that, comprising: 一传感器,用于感测一第一生物特征以产生一图像;a sensor for sensing a first biometric feature to generate an image; 一第一特征萃取单元,耦接该传感器,根据该图像产生一第一信息,该第一信息描述该第一生物特征的独特性;a first feature extraction unit, coupled to the sensor, to generate first information according to the image, the first information describing the uniqueness of the first biological feature; 一第二特征萃取单元,耦接该传感器,该第二特征萃取单元根据该图像产生一第二信息,该第二信息描述该第一生物特征的真假特性;以及a second feature extraction unit, coupled to the sensor, the second feature extraction unit generates a second information according to the image, the second information describes the true and false characteristics of the first biological feature; and 一识别单元,耦接该第一特征萃取单元及该第二特征萃取单元,根据该第二信息或该第一信息与该第二信息,产生一识别结果。An identification unit, coupled to the first feature extraction unit and the second feature extraction unit, generates an identification result according to the second information or the first information and the second information. 2.如权利要求1所述的辨识系统,其特征在于,该识别结果代表通过或不通过身份认证。2 . The identification system of claim 1 , wherein the identification result represents pass or fail the identity authentication. 3 . 3.如权利要求1所述的辨识系统,其特征在于,该传感器为一指纹传感器,该第一生物特征为一指纹。3 . The identification system of claim 1 , wherein the sensor is a fingerprint sensor, and the first biometric feature is a fingerprint. 4 . 4.如权利要求1所述的辨识系统,其特征在于,更包括一内存,用于储存一第一模板信息与一第二模板信息。4. The identification system of claim 1, further comprising a memory for storing a first template information and a second template information. 5.如权利要求4所述的辨识系统,其特征在于,该识别单元根据该第一信息与该第一模板信息的差异以及该第二信息与该第二模板信息的差异,产生该识别结果。5. The identification system of claim 4, wherein the identification unit generates the identification result according to the difference between the first information and the first template information and the difference between the second information and the second template information . 6.如权利要求5所述的辨识系统,其特征在于,该识别单元使用欧式距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、标准化欧氏距离、马氏距离及汉明距离的其中之一判断该第一信息与该第一模板信息的差异以及判断该第二信息与该第二模板信息的差异。6. The identification system according to claim 5, wherein the identification unit uses Euclidean distance, Manhattan distance, Chebyshev distance, Minkowski distance, normalized Euclidean distance, Mahalanobis distance and Hamming distance. One is to determine the difference between the first information and the first template information and to determine the difference between the second information and the second template information. 7.如权利要求4所述的辨识系统,其特征在于,该识别单元包括一分类器,该分类器用于进行一识别步骤以判断该第一信息与该第二信息的组合和该第一模板信息与该第二模板信息的组合之间的相似度,以产生该识别结果。7 . The identification system of claim 4 , wherein the identification unit comprises a classifier, and the classifier is used for performing an identification step to determine the combination of the first information and the second information and the first template. 8 . similarity between the combination of information and the second template information to generate the recognition result. 8.如权利要求7所述的辨识系统,其特征在于,该分类器包括支持向量机或类神经网络。8. The identification system of claim 7, wherein the classifier comprises a support vector machine or a neural network. 9.如权利要求7所述的辨识系统,其特征在于,该识别单元更包括先判断该第一信息与该第一模板信息是否相似,若是,该识别单元利用该分类器进行该识别步骤。9 . The identification system of claim 7 , wherein the identification unit further comprises first determining whether the first information is similar to the first template information, and if so, the identification unit uses the classifier to perform the identification step. 10 . 10.如权利要求7所述的辨识系统,其特征在于,该识别单元更包括先判断该第二信息与该第二模板信息是否相似,若是,该识别单元利用该分类器进行该识别步骤。10 . The identification system of claim 7 , wherein the identification unit further comprises first judging whether the second information is similar to the second template information, and if so, the identification unit uses the classifier to perform the identification step. 11 . 11.如权利要求9或10所述的辨识系统,其特征在于,该识别单元更包括使用欧式距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、标准化欧氏距离、马氏距离及汉明距离的其中之一判断该第一信息与该第一模板信息是否相似或判断该第二信息与该第二模板信息是否相似。11. The identification system according to claim 9 or 10, wherein the identification unit further comprises using Euclidean distance, Manhattan distance, Chebyshev distance, Minkowski distance, standardized Euclidean distance, Mahalanobis distance and Hanoi distance. One of the clear distances is used to determine whether the first information is similar to the first template information or to determine whether the second information is similar to the second template information. 12.如权利要求1所述的辨识系统,其特征在于,该第一特征萃取单元或该第二特征萃取单元包括一深度学习模型。12 . The identification system of claim 1 , wherein the first feature extraction unit or the second feature extraction unit comprises a deep learning model. 13 . 13.如权利要求1所述的辨识系统,其特征在于,该第一特征萃取单元或该第二特征萃取单元包括一卷积神经网络。13. The identification system of claim 1, wherein the first feature extraction unit or the second feature extraction unit comprises a convolutional neural network. 14.如权利要求1所述的辨识系统,其特征在于,该第一特征萃取单元或该第二特征萃取单元使用加速段测试特征、自适应通用加速分割检测、尺度不变特征转换、加速稳健特征、KAZE、AKAZE、局部二值模式、局部相位量化或方向梯度直方图算法来获得该第一信息。14. The identification system of claim 1, wherein the first feature extraction unit or the second feature extraction unit uses accelerated segment test features, adaptive general accelerated segmentation detection, scale-invariant feature conversion, accelerated robustness Feature, KAZE, AKAZE, Local Binary Pattern, Local Phase Quantization or Orientation Gradient Histogram algorithm to obtain this first information. 15.一种生物特征的辨识方法,其特征在于,包括下列步骤:15. A method for identifying biological features, comprising the following steps: A.感测一第一生物特征以产生一图像;A. Sensing a first biometric feature to generate an image; B.根据该图像产生一第一信息,其中该第一信息描述该第一生物特征的独特性;B. generating a first message according to the image, wherein the first message describes the uniqueness of the first biological feature; C.从该图像取得一第二信息,其中该第二信息描述该第一生物特征的真假特性;以及C. obtaining a second information from the image, wherein the second information describes the true and false characteristics of the first biometric; and D.根据该第二信息或者该第一信息与该第二信息,产生一识别结果。D. Generate an identification result according to the second information or the first information and the second information. 16.如权利要求15所述的辨识方法,其特征在于,更包括根据该识别结果判断通过或不通过身份认证。16. The identification method of claim 15, further comprising judging whether to pass or fail the identity authentication according to the identification result. 17.如权利要求15所述的辨识方法,其特征在于,该第一生物特征为一指纹。17. The identification method of claim 15, wherein the first biometric feature is a fingerprint. 18.如权利要求15所述的辨识方法,其特征在于,更包括从一内存取得一第一模板信息与一第二模板信息。18. The identification method of claim 15, further comprising obtaining a first template information and a second template information from a memory. 19.如权利要求18所述的辨识方法,其特征在于,该步骤D包括根据该第一信息与该第一模板信息的差异以及该第二信息与该第二模板信息的差异,产生该识别结果。19. The identification method of claim 18, wherein the step D comprises generating the identification according to the difference between the first information and the first template information and the difference between the second information and the second template information result. 20.如权利要求19所述的辨识方法,其特征在于,该步骤D更包括使用欧式距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、标准化欧氏距离、马氏距离及汉明距离的其中之一判断该第一信息与该第一模板信息的差异以及判断该第二信息与该第二模板信息的差异。20. The identification method of claim 19, wherein step D further comprises using Euclidean distance, Manhattan distance, Chebyshev distance, Minkowski distance, normalized Euclidean distance, Mahalanobis distance and Hamming distance One of judging the difference between the first information and the first template information and judging the difference between the second information and the second template information. 21.如权利要求18所述的辨识方法,其特征在于,该步骤D包括使用一分类器进行一识别步骤以判断该第一信息与该第二信息的组合和该第一模板信息与该第二模板信息的组合之间的相似度,以产生该识别结果。21 . The identification method of claim 18 , wherein the step D comprises performing an identification step using a classifier to determine the combination of the first information and the second information and the first template information and the first information. 22 . The similarity between the combination of the two template information to produce the recognition result. 22.如权利要求21所述的辨识方法,其特征在于,更包括以支持向量机或类神经网络来实现该分类器。22. The identification method of claim 21, further comprising implementing the classifier with a support vector machine or a neural network-like network. 23.如权利要求21所述的辨识方法,其特征在于,该步骤D更包括:23. The identification method of claim 21, wherein the step D further comprises: 判断该第一信息与该第一模板信息是否相似;以及determining whether the first information is similar to the first template information; and 若是,进行该识别步骤。If so, perform this identification step. 24.如权利要求21所述的辨识方法,其特征在于,该步骤D更包括:24. The identification method of claim 21 , wherein the step D further comprises: 判断该第二信息与该第二模板信息是否相似;以及determining whether the second information is similar to the second template information; and 若是,进行该识别步骤。If so, perform this identification step. 25.如权利要求23或24所述的辨识方法,其特征在于,该步骤D更包括使用欧式距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、标准化欧氏距离、马氏距离及汉明距离的其中之一判断该第一信息与该第一模板信息是否相似或判断该第二信息与该第二模板信息是否相似。25. The identification method according to claim 23 or 24, wherein the step D further comprises using Euclidean distance, Manhattan distance, Chebyshev distance, Minkowski distance, standardized Euclidean distance, Mahalanobis distance and Hanoi distance. One of the clear distances is used to determine whether the first information is similar to the first template information or to determine whether the second information is similar to the second template information. 26.如权利要求15所述的辨识方法,其特征在于,该步骤B包括使用加速段测试特征、自适应通用加速分割检测、尺度不变特征转换、加速稳健特征、KAZE、AKAZE、局部二值模式、局部相位量化或方向梯度直方图算法来获得该第一信息。26. The identification method of claim 15, wherein step B comprises using accelerated segment test features, adaptive general accelerated segmentation detection, scale-invariant feature transformation, accelerated robust features, KAZE, AKAZE, local binary mode, local phase quantization or directional gradient histogram algorithm to obtain this first information. 27.如权利要求15所述的辨识方法,其特征在于,该步骤B包括使用一深度学习模型来获取该第一信息或该第二信息。27. The identification method of claim 15, wherein step B comprises using a deep learning model to obtain the first information or the second information. 28.如权利要求15所述的辨识方法,其特征在于,该步骤B包括使用一卷积神经网络来获取该第一信息或该第二信息。28. The identification method of claim 15, wherein step B comprises using a convolutional neural network to obtain the first information or the second information.
CN202010666402.0A 2020-07-01 2020-07-13 Biological feature identification system and identification method Active CN112001233B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW109122271A TWI792017B (en) 2020-07-01 2020-07-01 Biometric identification system and identification method thereof
TW109122271 2020-07-01

Publications (2)

Publication Number Publication Date
CN112001233A true CN112001233A (en) 2020-11-27
CN112001233B CN112001233B (en) 2024-08-20

Family

ID=73467956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010666402.0A Active CN112001233B (en) 2020-07-01 2020-07-13 Biological feature identification system and identification method

Country Status (2)

Country Link
CN (1) CN112001233B (en)
TW (1) TWI792017B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI794696B (en) * 2020-12-14 2023-03-01 晶元光電股份有限公司 Optical sensing device

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070211926A1 (en) * 2006-03-13 2007-09-13 Fujitsu Limited Fingerprint authenticating apparatus, live-finger determining apparatus, and live-finger determining method
CN101162499A (en) * 2006-10-13 2008-04-16 上海银晨智能识别科技有限公司 Method for using human face formwork combination to contrast
CN102708360A (en) * 2012-05-09 2012-10-03 深圳市亚略特生物识别科技有限公司 Method for generating and automatically updating fingerprint template
JP2012252644A (en) * 2011-06-06 2012-12-20 Seiko Epson Corp Biological identification device and biological identification method
CN103136504A (en) * 2011-11-28 2013-06-05 汉王科技股份有限公司 Face recognition method and device
CN103902961A (en) * 2012-12-28 2014-07-02 汉王科技股份有限公司 Face recognition method and device
CN104042220A (en) * 2014-05-28 2014-09-17 上海思立微电子科技有限公司 Device and method for detecting living body fingerprint
CN105740750A (en) * 2014-12-11 2016-07-06 深圳印象认知技术有限公司 Fingerprint in-vivo detection and identification method and apparatus
US20170004352A1 (en) * 2015-07-03 2017-01-05 Fingerprint Cards Ab Apparatus and computer-implemented method for fingerprint based authentication
CN106657056A (en) * 2016-12-20 2017-05-10 深圳芯启航科技有限公司 Biological feature information management method and system
CN107223251A (en) * 2017-05-03 2017-09-29 深圳市汇顶科技股份有限公司 Determination method, identity identifying method and the device of vital sign information
CN107278308A (en) * 2017-05-20 2017-10-20 深圳信炜科技有限公司 Image-recognizing method, pattern recognition device, electronic installation and computer-readable storage medium
CN107358145A (en) * 2017-05-20 2017-11-17 深圳信炜科技有限公司 Imaging sensor and electronic installation
WO2018082011A1 (en) * 2016-11-04 2018-05-11 深圳市汇顶科技股份有限公司 Living fingerprint recognition method and device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9946930B2 (en) * 2007-06-11 2018-04-17 Jeffrey A. Matos Apparatus and method for verifying the identity of an author and a person receiving information
CN107088071B (en) * 2016-02-17 2021-10-15 松下知识产权经营株式会社 Biological information detection device
US10410045B2 (en) * 2016-03-23 2019-09-10 Intel Corporation Automated facial recognition systems and methods

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070211926A1 (en) * 2006-03-13 2007-09-13 Fujitsu Limited Fingerprint authenticating apparatus, live-finger determining apparatus, and live-finger determining method
CN101162499A (en) * 2006-10-13 2008-04-16 上海银晨智能识别科技有限公司 Method for using human face formwork combination to contrast
JP2012252644A (en) * 2011-06-06 2012-12-20 Seiko Epson Corp Biological identification device and biological identification method
CN103136504A (en) * 2011-11-28 2013-06-05 汉王科技股份有限公司 Face recognition method and device
CN102708360A (en) * 2012-05-09 2012-10-03 深圳市亚略特生物识别科技有限公司 Method for generating and automatically updating fingerprint template
CN103902961A (en) * 2012-12-28 2014-07-02 汉王科技股份有限公司 Face recognition method and device
CN104042220A (en) * 2014-05-28 2014-09-17 上海思立微电子科技有限公司 Device and method for detecting living body fingerprint
CN105740750A (en) * 2014-12-11 2016-07-06 深圳印象认知技术有限公司 Fingerprint in-vivo detection and identification method and apparatus
US20170004352A1 (en) * 2015-07-03 2017-01-05 Fingerprint Cards Ab Apparatus and computer-implemented method for fingerprint based authentication
CN106663204A (en) * 2015-07-03 2017-05-10 指纹卡有限公司 Apparatus and computer-implemented method for fingerprint based authentication
WO2018082011A1 (en) * 2016-11-04 2018-05-11 深圳市汇顶科技股份有限公司 Living fingerprint recognition method and device
CN106657056A (en) * 2016-12-20 2017-05-10 深圳芯启航科技有限公司 Biological feature information management method and system
CN107223251A (en) * 2017-05-03 2017-09-29 深圳市汇顶科技股份有限公司 Determination method, identity identifying method and the device of vital sign information
CN107278308A (en) * 2017-05-20 2017-10-20 深圳信炜科技有限公司 Image-recognizing method, pattern recognition device, electronic installation and computer-readable storage medium
CN107358145A (en) * 2017-05-20 2017-11-17 深圳信炜科技有限公司 Imaging sensor and electronic installation

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
RODRIGO FRASSETTO NOGUEIRA ET. AL: "Evaluating software-based fingerprint liveness detection using Convolutional Networks and Local Binary Patterns", 2014 IEEE WORKSHOP ON BIOMETRIC MEASUREMENTS AND SYSTEMS FOR SECURITY AND MEDICAL APPLICATIONS (BIOMS) PROCEEDINGS, 17 October 2014 (2014-10-17), pages 129 - 29 *
张杨等: "一种基于相似离度匹配的人脸精确跟踪算法", 东北大学学报(自然科学版), no. 02, 15 February 2011 (2011-02-15), pages 188 - 192 *
李伟等: "基于"互联网+"的高压线验电器与接地线智能管理装置的实现", 科学技术与工程, 30 December 2020 (2020-12-30), pages 14085 - 14094 *
李长云等: "智能感知技术及在电气工程中的应用", 电子科技大学出版社, pages: 129 *
赛斯维传感器网: "从光学传感器到电容传感器——指纹采集技术的演进", pages 1 - 5, Retrieved from the Internet <URL:https://www.sensorway.cn/knowledge/2013.html> *

Also Published As

Publication number Publication date
TW202203055A (en) 2022-01-16
CN112001233B (en) 2024-08-20
TWI792017B (en) 2023-02-11

Similar Documents

Publication Publication Date Title
Oloyede et al. Unimodal and multimodal biometric sensing systems: a review
Ribaric et al. A biometric identification system based on eigenpalm and eigenfinger features
Ribarić et al. Multimodal biometric user-identification system for network-based applications
Ali et al. Multimodal biometrics enhancement recognition system based on fusion of fingerprint and palmprint: a review
Heenaye et al. A multimodal hand vein biometric based on score level fusion
Charfi et al. Bimodal biometric system based on SIFT descriptors of hand images
Shawkat et al. The new hand geometry system and automatic identification
Charfi et al. Novel hand biometric system using invariant descriptors
Charfi et al. Personal recognition system using hand modality based on local features
Ribaric et al. A biometric verification system based on the fusion of palmprint and face features
Mokni et al. Palmprint identification using GLCM texture features extraction and SVM classifier.
TWI792017B (en) Biometric identification system and identification method thereof
Tahmasebi et al. Robust intra-class distance-based approach for multimodal biometric game theory-based rank-level fusion of ear, palmprint and signature
KR100564766B1 (en) Personal Registration and Authentication System Using Multiple Biometric Information and Its Methods
Kaur et al. Minutiae extraction and variation of fast Fourier transform on fingerprint recognition
Binh Tran et al. Multimodal personal verification using likelihood ratio for the match score fusion
Kumar Hand image biometric based personal authentication system
Vinod et al. Handwritten Signature Identification and Fraud Detection using Deep Learning and Computer Vision
Chowdhury et al. Biometric authentication using facial recognition
Trabelsi et al. A bi-modal palmvein palmprint biometric human identification based on fusing new CDSDP features
Oyeniyi et al. An enhanced iris feature extraction technique using continuous wavelet transform
Sujitha et al. Counter measures for indirect attack for iris based biometric authentication
Benson-Emenike Mercy et al. Trimodal Biometric Authentication System using Cascaded Link-based Feed forward Neural Network [CLBFFNN]
Harivinod et al. A bimodal biometric system using palmprint and face modality
Sree et al. Dorsal Hand Vein Pattern Authentication by Hough Peaks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant