[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN111980869B - 漂浮式双叶轮风电机组转速与浮台运动控制的解耦方法 - Google Patents

漂浮式双叶轮风电机组转速与浮台运动控制的解耦方法 Download PDF

Info

Publication number
CN111980869B
CN111980869B CN202010915920.1A CN202010915920A CN111980869B CN 111980869 B CN111980869 B CN 111980869B CN 202010915920 A CN202010915920 A CN 202010915920A CN 111980869 B CN111980869 B CN 111980869B
Authority
CN
China
Prior art keywords
pid
floating platform
impeller
rotating speed
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010915920.1A
Other languages
English (en)
Other versions
CN111980869A (zh
Inventor
马冲
李刚
邹荔兵
张启应
陈思范
刘凡鹰
魏煜锋
任永
卢军
王超
朱玲
文智胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MingYang Smart Energy Group Co Ltd
Original Assignee
MingYang Smart Energy Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MingYang Smart Energy Group Co Ltd filed Critical MingYang Smart Energy Group Co Ltd
Priority to CN202010915920.1A priority Critical patent/CN111980869B/zh
Publication of CN111980869A publication Critical patent/CN111980869A/zh
Application granted granted Critical
Publication of CN111980869B publication Critical patent/CN111980869B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/22Foundations specially adapted for wind motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/02Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0272Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor by measures acting on the electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0276Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling rotor speed, e.g. variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/044Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with PID control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

本发明公开了一种漂浮式双叶轮风电机组转速与浮台运动控制的解耦方法,设定θave为叶轮1桨叶角度均值θmean1和叶轮2桨叶角度均值θmean2的加权平均值,Wave为叶轮1发电机转速W1和叶轮2发电机转速W2的加权平均值,并为变桨控制器配置两套PID控制参数,分别为PIDfast参数和PIDslow参数,PIDfast参数是用于控制转速波动,PIDslow参数是用于抑制浮台运动,当θave经过一阶低通滤波器滤波后的值大于20°或滤波后的值大于10°且Wave大于额定转速的9%之后,变桨参数由PIDslow切换到PIDfast,而由PIDfast切换回PIDslow的条件则是当上述要求不满足且延迟预设时间之后,通过两套PID控制参数的切换,实现了转速控制与浮台运动控制的平稳过渡。

Description

漂浮式双叶轮风电机组转速与浮台运动控制的解耦方法
技术领域
本发明涉及漂浮式双叶轮风电机组浮台的技术领域,尤其是指一种漂浮式双叶轮风电机组转速与浮台运动控制的解耦方法。
背景技术
目前,风电机组逐步向深远海发展,海上漂浮式风电机组是其重点研发方向。对于漂浮式风电机组来说,对机组运行状态的控制较固定式机组要求更高,控制更精准,且需要控制的自由度更多,比如对浮台的运动控制。漂浮式风电机组的浮台有六个方向的运动自由度,为了抑制浮台的运动或者为了不激励浮台的负阻尼运动(浮台的俯仰方向),通常采用的比较简便的方法是变桨控制器的设计带宽要小于浮台运动的频率,这样,变桨动作不会响应浮台运动频率也就不会激起浮台负阻尼的运动;但同时这又带来了新问题,即:额定风速以上变桨系统采用这样的控制策略会导致叶轮转速和功率波动很大,极易超速或过功率且由叶轮转速驱动的部件载荷会增加。这就需要设计一套控制逻辑来切换浮台运动控制和转速控制,对于漂浮式双叶轮风电机组来说,这种策略尤为重要,即保证不会激励浮台负阻尼运动,又能在转速波动过大时能够通过变桨很好地抑制转速。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提出了一种漂浮式双叶轮风电机组转速与浮台运动控制的解耦方法,可实现转速控制与浮台运动控制的平稳过渡,确保能够不激励浮台负阻尼运动的同时,还能有效控制叶轮转速的波动,达到衰减由浮台运动造成的塔底低频载荷。
为实现上述目的,本发明所提供的技术方案为:漂浮式双叶轮风电机组转速与浮台运动控制的解耦方法,所述漂浮式双叶轮风电机组为两台风机通过Y形塔架共用一个浮台,两台风机通过各自偏航驱动系统分别装于Y形塔架的两个端部上,Y形塔架的底部固定于浮台上,两台风机的叶轮旋转方向相反,以抵消两台风机的离心力;该方法为了协调两个叶轮的桨叶动作共同抑制浮台运动,设定θave为叶轮1桨叶角度均值θmean1和叶轮2桨叶角度均值θmean2的加权平均值,它表征为两个叶轮各自轮毂中心处风速的加权平均值,设定Wave为叶轮1发电机转速W1和叶轮2发电机转速W2的加权平均值,并为机组的变桨控制器配置两套PID控制参数,分别为PIDfast参数和PIDslow参数,其中PIDfast参数是用于控制转速波动,PIDslow参数是用于抑制浮台运动,以使变桨控制器带宽小于浮台运动频率,该两套PID控制参数切换逻辑是:当θave经过一阶低通滤波器滤波后的值大于20°或滤波后的值大于10°且Wave大于额定转速的9%之后,变桨参数由PIDslow切换到PIDfast,即变桨参数由浮台运动控制切换到转速控制,而由PIDfast切换回PIDslow的条件则是当上述要求不满足且延迟预设时间之后,再由转速控制切回到浮台运动控制,通过两套PID控制参数的切换,实现了转速控制与浮台运动控制的平稳过渡,确保能够不激励浮台负阻尼运动的同时,还能够有效控制叶轮转速的波动。
进一步,所述变桨控制器的控制逻辑为测量转速与转速设定值的差值经过一系列滤波之后送到PID控制器并输出变桨指令值。
进一步,所述θave为由机组的主控系统采集叶轮1、2的桨叶角度均值θmean1、θmean2进行加权平均处理后得到的两个叶轮平均变桨角度均值。
进一步,所述Wave为由机组的主控系统采集叶轮1、2的发电机测量转速值进行加权平均处理后得到的速度平均值。
进一步,所述一阶低通滤波器的一阶传递函数为:
Figure GDA0002961836710000031
式中,T为滤波器时间常数,s为拉普拉斯算子。
本发明与现有技术相比,具有如下优点与有益效果:
1、在漂浮式双叶轮风电机组应用本发明的解耦方法,即保证了在高风速下和大湍流工况下对叶轮转速的控制,又确保了浮台运动不被激励且运动平稳。
2、由于PIDfast主要用来抑制浮台运动,对于转速控制来说变桨平稳反而降低了塔架的低频载荷。
3、本发明的解耦方法兼顾了转速控制和浮台运动控制,对系泊系统低频疲劳载荷也衰减明显。
附图说明
图1为漂浮式双叶轮风电机组示意图。
图2为本发明解耦逻辑示意图。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
漂浮式风电机组在额定风速以上运行时,特别是在额定风速附近,其叶轮推力达到峰值,随着风速增加推力减小,推力对风速的偏导数为负数,即气动阻尼为负;在额定风速附近负阻尼绝对值最大,随风速增加负阻尼绝对值减小,所以在额定风速附近时浮台极易失稳,如果此时变桨动作又耦合上浮台运动,则加剧浮台俯仰(pitch rotation)方向的波动。随着风速增加到接近切出风速时候气动阻尼接近零值或为正值,此时的浮台运动趋于平稳,变桨控制器则可侧重于对叶轮转速的波动控制。
对于一阶非对称风速场可以被线性化,桨叶角度与风速变化紧密相关,即在任一瞬时的风速均可在桨距作用场找到对应的桨叶角度,所以变桨角度的变化也可近似描述风速的变化。
在本实施例中,应用对象为漂浮式双叶轮风电机组,如图1所示,这款机组具体是两台风机通过Y形塔架共用一个浮台,两台风机通过各自偏航驱动系统分别装于Y形塔架的两个端部上,Y形塔架的底部固定于浮台上,两台风机的叶轮旋转方向相反,以抵消两台风机的离心力。
对于两台风机共用一个浮台,本实施例所提供的漂浮式双叶轮风电机组转速与浮台运动控制的解耦方法,为了协调两个叶轮的桨叶动作共同抑制浮台运动,设定θave为叶轮1桨叶角度均值θmean1和叶轮2桨叶角度均值θmean2的加权平均值,它表征为两个叶轮各自轮毂中心处风速的加权平均值,设定Wave为叶轮1发电机转速W1和叶轮2发电机转速W2的加权平均值,并为机组的变桨控制器配置两套PID控制参数,分别为PIDfast参数和PIDslow参数,其中PIDfast参数是用于控制转速波动,PIDslow参数是用于抑制浮台运动,以使变桨控制器带宽小于浮台运动频率,该两套PID控制参数切换逻辑是:当θave经过一阶低通滤波器滤波后的值大于20°或滤波后的值大于10°且Wave大于额定转速的9%之后,变桨参数由PIDslow切换到PIDfast,即变桨参数由浮台运动控制切换到转速控制,而由PIDfast切换回PIDslow的条件则是当上述要求不满足且延迟5s之后,再由转速控制切回到浮台运动控制。其中,一阶低通滤波器的一阶传递函数为:
Figure GDA0002961836710000041
式中,T为滤波器时间常数,s为拉普拉斯算子。
上述解耦方法通过两套PID控制参数的切换,实现了转速控制与浮台运动控制的平稳过渡,确保能够不激励浮台负阻尼运动的同时,还能够有效控制叶轮转速的波动。
如图2所示,为转速控制(亦可称为:变桨控制)与浮台运动控制的解耦逻辑框图。
变桨控制器的简单控制逻辑为测量转速与转速设定值的差值经过一系列滤波之后送到PID控制器并输出变桨指令值。
θave为由机组的主控系统采集叶轮1、2的桨叶角度均值θmean1、θmean2进行加权平均处理后得到的两个叶轮平均变桨角度均值。
Wave为由机组的主控系统采集叶轮1、2的发电机测量转速值进行加权平均处理后得到的速度平均值。
由机组的主控系统将计算得到的Wave和θave下发到叶轮1和叶轮2的变桨控制器中再做如下解耦:
当θave大于20°时,变桨参数由浮台运动控制切换到转速控制即:PIDslow→PIDfast;当θave大于10°并且Wave大于额定转速的9%时,变桨参数由浮台运动控制切换到转速控制即:PIDslow→PIDfast
当以上条件不满足时,延迟5秒的时间再由转速控制切回到浮台运动控制,即:PIDfast→PIDslow
以上所述实施例只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (5)

1.漂浮式双叶轮风电机组转速与浮台运动控制的解耦方法,所述漂浮式双叶轮风电机组为两台风机通过Y形塔架共用一个浮台,两台风机通过各自偏航驱动系统分别装于Y形塔架的两个端部上,Y形塔架的底部固定于浮台上,两台风机的叶轮旋转方向相反,以抵消两台风机的离心力;其特征在于:该方法为了协调两个叶轮的桨叶动作共同抑制浮台运动,设定θave为叶轮1桨叶角度均值θmean1和叶轮2桨叶角度均值θmean2的加权平均值,它表征为两个叶轮各自轮毂中心处风速的加权平均值,设定Wave为叶轮1发电机转速W1和叶轮2发电机转速W2的加权平均值,并为机组的变桨控制器配置两套PID控制参数,分别为PIDfast参数和PIDslow参数,其中PIDfast参数是用于控制转速波动,PIDslow参数是用于抑制浮台运动,以使变桨控制器带宽小于浮台运动频率,该两套PID控制参数切换逻辑是:当θave经过一阶低通滤波器滤波后的值大于20°或滤波后的值大于10°且Wave大于额定转速的9%之后,变桨参数由PIDslow切换到PIDfast,即变桨参数由浮台运动控制切换到转速控制,而由PIDfast切换回PIDslow的条件则是当上述要求不满足且延迟预设时间之后,再由转速控制切回到浮台运动控制,通过两套PID控制参数的切换,实现了转速控制与浮台运动控制的平稳过渡,确保能够不激励浮台负阻尼运动的同时,还能够有效控制叶轮转速的波动。
2.根据权利要求1所述的漂浮式双叶轮风电机组转速与浮台运动控制的解耦方法,其特征在于:所述变桨控制器的控制逻辑为测量转速与转速设定值的差值经过一系列滤波之后送到PID控制器并输出变桨指令值。
3.根据权利要求1所述的漂浮式双叶轮风电机组转速与浮台运动控制的解耦方法,其特征在于:所述θave为由机组的主控系统采集叶轮1、2的桨叶角度均值θmean1、θmean2进行加权平均处理后得到的两个叶轮平均变桨角度均值。
4.根据权利要求1所述的漂浮式双叶轮风电机组转速与浮台运动控制的解耦方法,其特征在于:所述Wave为由机组的主控系统采集叶轮1、2的发电机测量转速值进行加权平均处理后得到的速度平均值。
5.根据权利要求1所述的漂浮式双叶轮风电机组转速与浮台运动控制的解耦方法,其特征在于:所述一阶低通滤波器的一阶传递函数为:
Figure FDA0002665011820000021
式中,T为滤波器时间常数,s为拉普拉斯算子。
CN202010915920.1A 2020-09-03 2020-09-03 漂浮式双叶轮风电机组转速与浮台运动控制的解耦方法 Active CN111980869B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010915920.1A CN111980869B (zh) 2020-09-03 2020-09-03 漂浮式双叶轮风电机组转速与浮台运动控制的解耦方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010915920.1A CN111980869B (zh) 2020-09-03 2020-09-03 漂浮式双叶轮风电机组转速与浮台运动控制的解耦方法

Publications (2)

Publication Number Publication Date
CN111980869A CN111980869A (zh) 2020-11-24
CN111980869B true CN111980869B (zh) 2021-07-06

Family

ID=73447444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010915920.1A Active CN111980869B (zh) 2020-09-03 2020-09-03 漂浮式双叶轮风电机组转速与浮台运动控制的解耦方法

Country Status (1)

Country Link
CN (1) CN111980869B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112628070B (zh) * 2020-12-18 2021-12-28 明阳智慧能源集团股份公司 一种海上漂浮式风电机组浮台纵摇加阻控制方法与模块
CN113266523B (zh) * 2021-04-25 2022-05-03 明阳智慧能源集团股份公司 漂浮式双叶轮风电机组波浪扰动的前馈控制方法与系统
CN113503225B (zh) * 2021-06-29 2022-11-15 华北电力大学 一种串联式同向旋转双叶轮风力发电机组共振穿越的方法
CN115839309A (zh) * 2021-09-18 2023-03-24 中国华能集团清洁能源技术研究院有限公司 双风轮风能转换装置工作状态的控制方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102996335B (zh) * 2012-10-24 2015-03-11 南车株洲电力机车研究所有限公司 一种大型风电机组变桨距控制与转矩控制的解耦控制方法
US10247170B2 (en) * 2016-06-07 2019-04-02 General Electric Company System and method for controlling a dynamic system
KR102050174B1 (ko) * 2016-12-13 2020-01-08 오브쉐스트보 에스 오그라니첸노이 오트베트스트벤노스트유 "브이디엠-테크니카" 풍력 터빈 파워 인출을 조정하는 방법
CN108005848B (zh) * 2017-11-28 2019-09-27 山东科技大学 基于sma差压反馈的抑制风力机挥舞共振的智能变桨系统
ES2937911T3 (es) * 2017-12-14 2023-04-03 Vestas Wind Sys As Amortiguación de la torre durante la producción de energía de una turbina eólica

Also Published As

Publication number Publication date
CN111980869A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
CN111980869B (zh) 漂浮式双叶轮风电机组转速与浮台运动控制的解耦方法
EP2479426B1 (en) Method for determining a pitch angle offset signal and for controlling a rotor frequency of a wind turbine for speed avoidance control
CN105986961B (zh) 一种变速变桨风力机功率优化控制方法
CN105298749B (zh) 用以运行风力涡轮系统的方法和系统
CN104428531B (zh) 操作风力涡轮机的方法以及适合于所述方法的系统
US8317471B2 (en) Method for preventing rotor overspeed of a wind turbine
CN102192087B (zh) 基于转子加速度的风力涡轮机的旋转速度控制
KR101115278B1 (ko) 풍차의 피치각 제어 장치, 풍차의 피치각 제어 장치를 구비한 풍차 및 풍차의 피치각 제어방법
CN108533451B (zh) 一种风力发电机组的变桨控制方法
CN108488035B (zh) 永磁直驱风力发电机组失速和变桨混合控制方法
EP3631200B1 (en) System and method for optimizing power output of a wind turbine during an operational constraint
CN102518555A (zh) 一种兆瓦级风力机组及其控制方法、控制系统
TWI688708B (zh) 風力發電裝置及其之控制方法
EP3064770B1 (en) Wind turbine power generation facility and method of controlling the same
CN113323804B (zh) 解决风力发电机组塔架二阶前后振动的控制方法与模块
CN111706463A (zh) 双叶轮漂浮式风力发电机组的偏航控制方法及装置、机组
EP3728838B1 (en) Applying wind turbine yaw moment via pitching
CN111188732A (zh) 一种风力发电变桨鲁棒容错控制方法
US20090196752A1 (en) Method for stopping a wind turbine
US12018652B2 (en) Method and controller for full-power control of a wind turbine
CN114320733A (zh) 风能设施的转子叶片、风能设施和设计转子叶片的方法
CN114537658B (zh) 一种动态响应的变转速旋翼降噪装置、方法及系统
CN115199471B (zh) 一种基于偏航变桨联动控制降载的功率控制方法和系统
CN114109718B (zh) 一种风电机组停机状态下的载荷控制方法
CN117846872A (zh) 一种海上风电机组抗台风软切出控制方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant