[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN111986522A - Airborne equipment positioning method based on ADS-B signal, airborne equipment and storage medium thereof - Google Patents

Airborne equipment positioning method based on ADS-B signal, airborne equipment and storage medium thereof Download PDF

Info

Publication number
CN111986522A
CN111986522A CN202010745045.7A CN202010745045A CN111986522A CN 111986522 A CN111986522 A CN 111986522A CN 202010745045 A CN202010745045 A CN 202010745045A CN 111986522 A CN111986522 A CN 111986522A
Authority
CN
China
Prior art keywords
data
point data
aircraft
ads
trajectory point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010745045.7A
Other languages
Chinese (zh)
Other versions
CN111986522B (en
Inventor
陈泽良
陈利
张举兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Xinhang Technology Co ltd
Original Assignee
Guangzhou Xinhang Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Xinhang Technology Co ltd filed Critical Guangzhou Xinhang Technology Co ltd
Priority to CN202010745045.7A priority Critical patent/CN111986522B/en
Publication of CN111986522A publication Critical patent/CN111986522A/en
Application granted granted Critical
Publication of CN111986522B publication Critical patent/CN111986522B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft
    • G08G5/70Arrangements for monitoring traffic-related situations or conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

本发明公开了一种基于ADS‑B信号的机载设备定位方法、机载设备及其存储介质,该方法包括接收从多个机载设备采集的飞机的周期性ADS‑B信息;根据所述ADS‑B信息,确定所述飞机的ADS‑B报文数据包;根据所述ADS‑B报文数据包以及预设的报文数据解析策略,确定所述飞机在多个周期内的轨迹点数据;根据所述飞机在多个周期内的轨迹点数据,将下一周期内的多个轨迹点数据进行数据修正;根据所述数据修正的多个轨迹点数据,确定所述飞机的飞行参考坐标特征信息。由此,可以减少在计算中产生的误差,避免机载设备与飞机共同飞机时产生位置偏离,定位更为精准。

Figure 202010745045

The invention discloses an airborne equipment positioning method based on ADS-B signals, an airborne equipment and a storage medium thereof. The method includes receiving periodic ADS-B information of an aircraft collected from a plurality of airborne equipments; ADS-B information, determine the ADS-B message data packet of the aircraft; according to the ADS-B message data packet and the preset message data analysis strategy, determine the trajectory points of the aircraft in multiple cycles data; according to the trajectory point data of the aircraft in multiple cycles, perform data correction on the multiple trajectory point data in the next cycle; according to the multiple trajectory point data corrected by the data, determine the flight reference of the aircraft Coordinate feature information. As a result, the error generated in the calculation can be reduced, the positional deviation of the airborne equipment and the aircraft can be avoided, and the positioning is more accurate.

Figure 202010745045

Description

基于ADS-B信号的机载设备定位方法、机载设备及其存储介质Airborne equipment positioning method based on ADS-B signal, airborne equipment and storage medium thereof

技术领域technical field

本发明涉及ADS-B技术领域,尤其涉及一种基于ADS-B信号的机载设备定位方法、机载设备及其存储介质。The present invention relates to the technical field of ADS-B, and in particular, to an airborne device positioning method based on ADS-B signals, an airborne device and a storage medium thereof.

背景技术Background technique

ADS-B指的是广播式自动相关监视,是国际民航组织(ICAO)为了未来航空运输发展的需要,以卫星技术、数据通信技术和计算机技术为基础提出的一种监视技术。ADS-B refers to Automatic Dependent Surveillance Broadcast, which is a surveillance technology proposed by the International Civil Aviation Organization (ICAO) based on satellite technology, data communication technology and computer technology for the needs of future air transport development.

ADS-B系统以先进的地空/空空数据链为通信手段,以GPS导航系统及其他机载设备产生的信息为数据源,实时地、自发地、间歇性地对外广播自身的状态参数,在地面用数据链接收设备可直接监视空中目标;在空中相邻运行的飞机通过机载设备相互侦听邻近广播就能实现对周围空域交通状况全面、详细地了解。The ADS-B system uses the advanced ground-air/air-air data link as the means of communication, takes the information generated by the GPS navigation system and other airborne equipment as the data source, and broadcasts its own state parameters in real time, spontaneously and intermittently. Ground-based data link receiving equipment can directly monitor air targets; aircrafts operating adjacent to each other in the air can listen to each other's proximity broadcasts through airborne equipment to achieve a comprehensive and detailed understanding of the surrounding airspace traffic conditions.

机载设备可以用于接收其它飞机或地面站的ADS-B信息,而机载设备在对飞机的定位控制时,会因外界干扰影响下使得计算的精度会有一定的误差,导致该机载设备会产生位置偏离,难以满足定位精准的需求。The airborne equipment can be used to receive ADS-B information from other aircraft or ground stations. When the airborne equipment controls the positioning of the aircraft, the calculation accuracy will have a certain error due to the influence of external interference. The device will deviate from the position, and it is difficult to meet the needs of accurate positioning.

发明内容SUMMARY OF THE INVENTION

本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的第一个目的在于提出一种基于ADS-B信号的机载设备定位方法,包括:The present invention aims to solve one of the technical problems in the related art at least to a certain extent. To this end, the first object of the present invention is to propose a method for locating an airborne device based on an ADS-B signal, including:

接收从多个机载设备采集的飞机的周期性ADS-B信息;Receive periodic ADS-B information of the aircraft collected from multiple airborne devices;

根据所述ADS-B信息,确定所述飞机的ADS-B报文数据包;According to the ADS-B information, determine the ADS-B message data packet of the aircraft;

根据所述ADS-B报文数据包以及预设的报文数据解析策略,确定所述飞机在多个周期内的轨迹点数据;According to the ADS-B message data packet and the preset message data analysis strategy, determine the trajectory point data of the aircraft in multiple cycles;

根据所述飞机在多个周期内的轨迹点数据,将下一周期内的多个轨迹点数据进行数据修正;According to the trajectory point data of the aircraft in multiple cycles, perform data correction on the multiple trajectory point data in the next cycle;

根据所述数据修正的多个轨迹点数据,确定所述飞机的飞行参考坐标特征信息。According to the plurality of trajectory point data corrected by the data, the flight reference coordinate feature information of the aircraft is determined.

优选地,根据本发明的一个实施例,所述根据所述ADS-B报文数据包以及预设的报文数据解析策略,确定所述ADS-B报文数据包中所述飞机在多个周期内的轨迹点数据,包括:Preferably, according to an embodiment of the present invention, according to the ADS-B message data packet and a preset message data analysis strategy, it is determined that the aircraft in the ADS-B message data packet is in multiple Trajectory point data within a cycle, including:

将所述ADS-B报文数据包划分多个类型;dividing the ADS-B message data packet into multiple types;

根据所述每个类型的ADS-B报文数据包中的数据串,解析每个数据串的字段数据;Parse the field data of each data string according to the data string in the ADS-B message data packet of each type;

根据所述每个数据串的字段数据,确定每个所述字段数据中的报文帧头和报文长度;According to the field data of each data string, determine the message frame header and message length in each of the field data;

根据所述报文帧头和所述报文长度,确定所述飞机的多个水平位置数据源;Determine a plurality of horizontal position data sources of the aircraft according to the message frame header and the message length;

根据所述多个水平位置数据源,确定所述飞机在多个周期内的所述轨迹点数据。According to the plurality of horizontal position data sources, the trajectory point data of the aircraft in a plurality of cycles is determined.

优选地,根据本发明的一个实施例,所述根据所述飞机在多个周期内的轨迹点数据,将所述多个轨迹点数据进行数据修正,包括:Preferably, according to an embodiment of the present invention, performing data correction on the plurality of trajectory point data according to the trajectory point data of the aircraft in multiple cycles includes:

根据所述多个周期内的轨迹点数据,确定当前周期内的第一轨迹点数据、上一周期内的第二轨迹点数据,以及下一周期内的第三轨迹点数据;According to the trajectory point data in the multiple cycles, determine the first trajectory point data in the current cycle, the second trajectory point data in the previous cycle, and the third trajectory point data in the next cycle;

根据所述第一轨迹点数据、所述第二轨迹点数据、所述第三轨迹点数据以及预设轨迹点数据,计算所述第一轨迹点数据、所述第二轨迹点数据与所述预设轨迹点数据的距离偏离量;According to the first trajectory point data, the second trajectory point data, the third trajectory point data and the preset trajectory point data, the first trajectory point data, the second trajectory point data and the The distance deviation of the preset track point data;

根据所述距离偏离量,将所述第三轨迹点数据进行数据修正。Data correction is performed on the third trajectory point data according to the distance deviation amount.

优选地,根据本发明的一个实施例,所述根据所述第一轨迹点数据、所述第二轨迹点数据、所述第三轨迹点数据,以及预设轨迹点数据,计算所述第一轨迹点数据、所述第二轨迹点数据与所述预设轨迹点数据的距离偏离量,包括:Preferably, according to an embodiment of the present invention, calculating the first trajectory point data according to the first trajectory point data, the second trajectory point data, the third trajectory point data, and preset trajectory point data The track point data, the distance deviation between the second track point data and the preset track point data, including:

通过以下计算公式确定所述距离偏移量:The distance offset is determined by the following calculation formula:

Figure BDA0002608078130000021
其中,1≤P≤2,L为第一轨迹点数据,L′为预设轨迹点数据,H为第二轨迹点数据,n为轨迹点的数量,S为距离偏移量,i为坐标方向。
Figure BDA0002608078130000021
Where, 1≤P≤2, L is the first track point data, L' is the preset track point data, H is the second track point data, n is the number of track points, S is the distance offset, and i is the coordinate direction.

优选地,根据本发明的一个实施例,所述根据所述距离偏离量,将所述第三轨迹点数据进行数据修正,包括:Preferably, according to an embodiment of the present invention, performing data correction on the third trajectory point data according to the distance deviation includes:

通过以下计算公式将所述第三轨迹点数据进行数据修正:The data of the third track point is corrected by the following calculation formula:

Figure BDA0002608078130000031
Figure BDA0002608078130000031

其中,(K′XK′Y,K′Z)为数据修正后的第三轨迹点数据的坐标特征,(KX,KY,KZ)为第三轨迹点数据的坐标特征,(SX,SY,SZ)为坐标方向的距离偏移量。Among them, (K′ X K′ Y , K′ Z ) are the coordinate features of the third track point data after data correction, (K X , K Y , K Z ) are the coordinate features of the third track point data, (S X , S Y , S Z ) are the distance offsets in the coordinate direction.

优选地,根据本发明的一个实施例,当所述飞机在飞行时,将所述数据修正后的第三轨迹点数据的K′X作为所述飞机的X轴参考坐标,将所述数据修正后的第三轨迹点数据的K′Y作为所述飞机的Y轴参考坐标,将所述数据修正后的第三轨迹点数据的K′Z作为所述飞机的Z轴参考坐标。Preferably, according to an embodiment of the present invention, when the aircraft is flying, K′ X of the third trajectory point data after the data correction is used as the X-axis reference coordinate of the aircraft, and the data is corrected The K′ Y of the third trajectory point data after the data is used as the Y-axis reference coordinate of the aircraft, and the K′ Z of the third trajectory point data after the data correction is used as the Z-axis reference coordinate of the aircraft.

本发明的第二个目的在于提出一种基于ADS-B信号的机载设备定位装置,包括:The second object of the present invention is to propose a device for positioning airborne equipment based on ADS-B signals, including:

接收模块,用于接收从多个机载设备采集的飞机的周期性ADS-B信息;The receiving module is used to receive the periodic ADS-B information of the aircraft collected from multiple airborne devices;

第一确定模块,用于根据所述ADS-B信息,确定所述飞机的ADS-B报文数据包;a first determining module, configured to determine the ADS-B message data packet of the aircraft according to the ADS-B information;

第二确定模块,用于根据所述ADS-B报文数据包以及预设的报文数据解析策略,确定所述飞机在多个周期内的轨迹点数据;a second determination module, configured to determine the trajectory point data of the aircraft in multiple cycles according to the ADS-B message data packet and a preset message data analysis strategy;

修正模块,用于根据所述飞机在多个周期内的轨迹点数据,将下一周期内的多个轨迹点数据进行数据修正;a correction module, configured to perform data correction on a plurality of trajectory point data in the next cycle according to the trajectory point data of the aircraft in a plurality of cycles;

第三确定模块,用于根据所述数据修正的多个轨迹点数据,确定所述飞机的坐标特征信息。The third determining module is configured to determine the coordinate feature information of the aircraft according to the multiple track point data corrected by the data.

优选地,根据本发明的一个实施例,所述第二确定模块包括:Preferably, according to an embodiment of the present invention, the second determining module includes:

分类子模块,用于将所述ADS-B报文数据包划分多个类型;A classification submodule for dividing the ADS-B message data packet into multiple types;

解析子模块,用于根据所述每个类型的ADS-B报文数据包中的数据串,解析每个数据串的字段数据;A parsing submodule for parsing the field data of each data string according to the data string in the ADS-B message data packet of each type;

第一确定子模块,用于根据所述每个数据串的字段数据,确定每个所述字段数据中的报文帧头和报文长度;The first determination submodule is used to determine the message frame header and message length in each of the field data according to the field data of each data string;

第二确定子模块,用于根据所述报文帧头和所述报文长度,确定所述飞机的多个水平位置数据源;a second determination submodule, configured to determine a plurality of horizontal position data sources of the aircraft according to the message frame header and the message length;

第三确定子模块,用于根据所述多个水平位置数据源,确定所述飞机在每个周期内的所述轨迹点数据。The third determination submodule is configured to determine the trajectory point data of the aircraft in each cycle according to the multiple horizontal position data sources.

本发明的第三个目的在于提出一种机载设备,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述的基于ADS-B信号的机载设备定位方法。A third object of the present invention is to provide an airborne device comprising a memory, a processor and a computer program stored on the memory and executable on the processor, when the processor executes the computer program The above-mentioned method for locating the airborne equipment based on the ADS-B signal is realized.

本发明的第四个目的在于提出一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上述的基于ADS-B信号的机载设备定位方法。The fourth object of the present invention is to provide a computer storage medium on which a computer program is stored, and when the program is executed by a processor, realizes the above-mentioned method for locating an airborne device based on an ADS-B signal.

根据本发明实施例提供的基于ADS-B信号的机载设备定位方法,通过接收从多个机载设备采集的飞机的周期性ADS-B信息,并且根据所述ADS-B信息,确定所述飞机的ADS-B报文数据包,然后根据所述ADS-B报文数据包以及预设的报文数据解析策略,确定所述飞机在多个周期内的轨迹点数据,根据所述飞机在多个周期内的轨迹点数据,将下一周期内的多个轨迹点数据进行数据修正,由此,可以减少在计算中产生的误差,避免机载设备与飞机共同飞机时产生位置偏离,定位更为精准。According to the method for locating an airborne device based on an ADS-B signal provided by an embodiment of the present invention, the periodic ADS-B information of the aircraft collected from a plurality of airborne devices is received, and according to the ADS-B information, the The ADS-B message data packet of the aircraft, and then according to the ADS-B message data packet and the preset message data analysis strategy, determine the trajectory point data of the aircraft in multiple cycles, and determine the trajectory point data of the aircraft in multiple cycles. For the trajectory point data in multiple cycles, the data of multiple trajectory points in the next cycle can be corrected, thereby reducing the error generated in the calculation, avoiding the position deviation when the airborne equipment and the aircraft share the plane, positioning more precise.

根据所述数据修正的多个轨迹点数据,确定所述飞机的飞行参考坐标特征信息。According to the plurality of trajectory point data corrected by the data, the flight reference coordinate feature information of the aircraft is determined.

本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the present invention will be set forth, in part, from the following description, and in part will be apparent from the following description, or may be learned by practice of the invention.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention, and for those of ordinary skill in the art, other drawings can also be obtained according to the structures shown in these drawings without creative efforts.

图1是本发明提供的基于ADS-B信号的机载设备应用场景示意图;1 is a schematic diagram of an application scenario of an airborne device based on an ADS-B signal provided by the present invention;

图2是本发明提供的基于ADS-B信号的机载设备定位方法的流程示意图;2 is a schematic flowchart of an airborne device positioning method based on an ADS-B signal provided by the present invention;

图3是本发明提供的基于ADS-B信号的机载设备定位方法的另一流程示意图;3 is another schematic flowchart of the method for locating an airborne device based on an ADS-B signal provided by the present invention;

图4是本发明提供的基于ADS-B信号的机载设备定位方法的另一流程示意图;4 is another schematic flowchart of the method for locating an airborne device based on an ADS-B signal provided by the present invention;

图5是本发明提供的基于ADS-B信号的机载设备定位装置的结构框图;Fig. 5 is the structural block diagram of the airborne equipment positioning device based on ADS-B signal provided by the present invention;

图6是本发明提供的基于ADS-B信号的机载设备定位装置的另一结构框图;Fig. 6 is another structural block diagram of the airborne equipment positioning device based on ADS-B signal provided by the present invention;

图7是本发明提供的机载设备的结构框图。FIG. 7 is a structural block diagram of an airborne device provided by the present invention.

本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。The realization, functional characteristics and advantages of the present invention will be further described with reference to the accompanying drawings in conjunction with the embodiments.

具体实施方式Detailed ways

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。The following describes in detail the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, only used to explain the present invention, and should not be construed as a limitation of the present invention.

参照图1所示,飞机上安装有机载设备,机载设备可以和卫星实现通讯并获取本机的位置、高度等信息,每架飞机的机载设备将本机的位置、高度等信息形成ADS-B信息,并且相互之间可以接收传递ADS-B信息,同时地面站也可以接收ADS-B信息,从而实现对飞机的监视。Referring to Figure 1, the aircraft is equipped with onboard equipment, which can communicate with satellites and obtain information such as the position and altitude of the aircraft. The onboard equipment of each aircraft forms the position and altitude of the aircraft ADS-B information, and can receive and transmit ADS-B information between each other, and the ground station can also receive ADS-B information, so as to monitor the aircraft.

参照图2所示,本发明的实施例中提供了一种基于ADS-B信号的机载设备定位方法,包括:Referring to FIG. 2 , an embodiment of the present invention provides a method for locating an airborne device based on an ADS-B signal, including:

步骤S10,接收从多个机载设备采集的飞机的周期性ADS-B信息。Step S10, receiving periodic ADS-B information of the aircraft collected from multiple airborne devices.

在本实施例中,机载设备包括有GNSS接收机、1090ES应答机、1090ES接收机及CDTI,其中,GNSS接收机是用于机载的GPS接收,1090ES应答机可以接收GNSS接收机发送的定位信息,1090ES接收机是用于接收并解码1090MHz信息的电子设备,CDTI可以为飞行员提供临近交通状况;其中,飞机上的机载设备可以采集本机的位置、高度等信息,并将采集的信息传递至机载的应答机,使得应答机将该信息进行重组形成ADS-B信息,并将机载天线将ADS-B信息发送至其他的飞机上,使得其他飞机上的机载设备可以接收到该ADS-B信息;可以理解的是,其他飞机的机载设备可以通过本机的机载设备获取到本机的ADS-B信息,从而使其它飞机能够对本机进行监视,In this embodiment, the airborne equipment includes a GNSS receiver, a 1090ES transponder, a 1090ES receiver and a CDTI, wherein the GNSS receiver is used for airborne GPS reception, and the 1090ES transponder can receive the positioning sent by the GNSS receiver Information, 1090ES receiver is an electronic device used to receive and decode 1090MHz information, CDTI can provide pilots with nearby traffic conditions; among them, the on-board equipment on the aircraft can collect the location, altitude and other information of the aircraft, and the collected information It is transmitted to the airborne transponder, so that the transponder reorganizes the information to form ADS-B information, and the airborne antenna sends the ADS-B information to other aircraft, so that the airborne equipment on other aircraft can receive it. The ADS-B information; it can be understood that the onboard equipment of other aircraft can obtain the ADS-B information of the aircraft through the onboard equipment of the aircraft, so that other aircraft can monitor the aircraft,

步骤S20,根据ADS-B信息,确定飞机的ADS-B报文数据包。Step S20, according to the ADS-B information, determine the ADS-B message data packet of the aircraft.

在本实施例中,ADS-B信息是周期性进行发送的,并在ADS-B信息中包含本机的身份、经纬度、高度、速度、飞机状态等数据。本机可以通过获取其他飞机上的ADS-B信息,从而确定其他飞机的ADS-B报文数据包,其中,ADS-B报文数据包中包括有水平位置,水平位置完好性,唯一的24位ICAO航空器地址码,航空器识别码,特殊位置识别码,气压高度,应急状态、应急指示及版本号;可以理解的是,每架飞机上的机载设备都可以确定出其它飞机的ADS-B报文数据包,从而在后续中进行解析。In this embodiment, the ADS-B information is sent periodically, and the ADS-B information includes data such as the identity, latitude and longitude, altitude, speed, and aircraft status of the aircraft. The local aircraft can determine the ADS-B message data packets of other aircraft by obtaining the ADS-B information on other aircraft, wherein the ADS-B message data packets include horizontal position, horizontal position integrity, unique 24 ICAO aircraft address code, aircraft identification code, special location identification code, barometric altitude, emergency state, emergency instruction and version number; it is understandable that the on-board equipment of each aircraft can determine the ADS-B of other aircraft message data packets, which will be parsed in the follow-up.

步骤S30,根据ADS-B报文数据包以及预设的报文数据解析策略,确定飞机在多个周期内的轨迹点数据。Step S30, according to the ADS-B message data packet and the preset message data analysis strategy, determine the trajectory point data of the aircraft in multiple cycles.

参照图3所示,上述步骤S30的具体实现方式包括:Referring to FIG. 3 , the specific implementation manner of the above step S30 includes:

步骤S301,将ADS-B报文数据包划分多个类型;Step S301, dividing the ADS-B message data packet into multiple types;

步骤S302,根据每个类型的ADS-B报文数据包中的数据串,解析每个数据串的字段数据;Step S302, parse the field data of each data string according to the data string in the ADS-B message data packet of each type;

步骤S303,根据每个数据串的字段数据,确定每个字段数据中的报文帧头和报文长度;Step S303, according to the field data of each data string, determine the message frame header and message length in each field data;

步骤S304,根据报文帧头和报文长度,确定飞机的多个水平位置数据源;Step S304, according to the message frame header and message length, determine multiple horizontal position data sources of the aircraft;

步骤S305,根据多个水平位置数据源,确定飞机在多个周期内的轨迹点数据。Step S305, according to multiple horizontal position data sources, determine the trajectory point data of the aircraft in multiple cycles.

在本实施例中,可以将ADS-B报文数据包进行分类成不同的类型,在ADS-B报文数据包中包含有数据包的类型、长度、字段描述,并且由十六进制数据串组成,在解析时,可以通过报文帧头和报文长度进行解析出报文数据包中所包含的水平位置数据源,其中,水平位置数据源中包括有飞机的纬度和经度,将飞机的纬度和经度确定后,则将飞机在多个周期内的多个纬度和多个经度确定为轨迹点数据。In this embodiment, the ADS-B message data packet can be classified into different types, and the ADS-B message data packet contains the type, length, and field description of the data packet, and is represented by hexadecimal data. When parsing, the horizontal position data source contained in the message data packet can be parsed through the message frame header and message length. The horizontal position data source includes the latitude and longitude of the aircraft. After the latitude and longitude of the aircraft are determined, the multiple latitudes and multiple longitudes of the aircraft in multiple cycles are determined as trajectory point data.

步骤S40,根据飞机在多个周期内的轨迹点数据,将下一周期内的多个轨迹点数据进行数据修正。Step S40, according to the trajectory point data of the aircraft in the multiple cycles, perform data correction on the multiple trajectory point data in the next cycle.

参照图4所示,上述步骤S40的具体实现方式包括:Referring to FIG. 4 , the specific implementation of the above step S40 includes:

S401,根据多个周期内的轨迹点数据,确定当前周期内的第一轨迹点数据、上一周期内的第二轨迹点数据,以及下一周期内的第三轨迹点数据;S401, according to the trajectory point data in multiple cycles, determine the first trajectory point data in the current cycle, the second trajectory point data in the previous cycle, and the third trajectory point data in the next cycle;

S402,根据第一轨迹点数据、第二轨迹点数据、第三轨迹点数据以及预设轨迹点数据,计算第一轨迹点数据、第二轨迹点数据与预设轨迹点数据的距离偏离量;S402, according to the first trajectory point data, the second trajectory point data, the third trajectory point data and the preset trajectory point data, calculate the distance deviation between the first trajectory point data, the second trajectory point data and the preset trajectory point data;

S403,根据距离偏离量,将第三轨迹点数据进行数据修正。S403 , performing data correction on the third track point data according to the distance deviation.

在本实施例中,当前周期可以设定为5分钟,可以将5分钟内飞机的轨迹点确定为第一轨迹点数据,将当前周期的前5分钟确定为上一周期,确定上一周期内的轨迹点为第二轨迹点数据,将当前周期的后5分钟确定为下一周期,并将下一周期的轨迹点数据确定为第三轨迹点数据;其中,飞机的预设的航线有预设轨迹点数据,通过预设轨迹点数据进行计算第一轨迹点数据和第二轨迹点数据,从而确定出距离偏移量。In this embodiment, the current cycle can be set to 5 minutes, the trajectory point of the aircraft within 5 minutes can be determined as the first trajectory point data, the first 5 minutes of the current cycle can be determined as the previous cycle, The trajectory point is the second trajectory point data, the last 5 minutes of the current cycle is determined as the next cycle, and the trajectory point data of the next cycle is determined as the third trajectory point data; wherein, the preset route of the aircraft has predetermined Assuming the trajectory point data, the first trajectory point data and the second trajectory point data are calculated by using the preset trajectory point data, so as to determine the distance offset.

进一步地,上述步骤S402的具体实现方式包括:Further, the specific implementation of the above step S402 includes:

通过以下计算公式确定距离偏移量:The distance offset is determined by the following calculation formula:

Figure BDA0002608078130000071
其中,1≤P≤2,L为第一轨迹点数据,L′为预设轨迹点数据,H为第二轨迹点数据,n为轨迹点的数量,S为距离偏移量,i为坐标方向。
Figure BDA0002608078130000071
Where, 1≤P≤2, L is the first track point data, L' is the preset track point data, H is the second track point data, n is the number of track points, S is the distance offset, and i is the coordinate direction.

在本实施例中,可以将第一轨迹点数据设定为L1,L2......Ln,将第二轨迹点数据设定为H1,H2......Hn,第三轨迹点数据设定为K1,K2......Kn,预设轨迹点数据设定为L′1,L′2......L′n,在飞机的位置产生偏离时,可以将通过计算出距离偏移量Si,根据上述公式计算时,当第一轨迹点数据L1,L2.....Ln、第二轨迹点数据H1,H2......Hn与预设轨迹点数据L′1,L′2......L′n一致时,则表示飞机的位置没有产生偏离;当第一轨迹点数据L1,L2......Ln或第二轨迹点H1,H2......Hn与预设轨迹点数据L′1,L′2......L′n一致,第二轨迹点数据H1,H2......Hn或第一轨迹点数据L1,L2......Ln与预设轨迹点数据L′1,L′2......L′n不同时,则=1,飞机的位置产生偏离,由此,即可计算出第一轨迹点L1,L2......Ln或第二轨迹点产生的距离偏移量;当第一轨迹点数据L1,L2......Ln和第二轨迹点数据H1,H2......Hn与预设轨迹点数据L′1,L′2......L′n不同时,则P=2,表示飞机的第一轨迹点数据L1,L2......Ln和第二轨迹点数据H1,H2......Hn数据均产生偏离,则共同计算出第一轨迹点数据L1,L2......Ln和第二轨迹点数据H1,H2......Hn的距离偏移量;由此,可以使其计算更精准。In this embodiment, the first trajectory point data can be set as L 1 , L 2 ......L n , and the second trajectory point data can be set as H 1 , H 2 ...... H n , the third track point data is set as K 1 , K 2 ...... K n , the preset track point data is set as L' 1 , L' 2 ...... L' n , When the position of the aircraft deviates, the distance offset S i can be calculated by calculating according to the above formula, when the first trajectory point data L 1 , L 2 .....L n , the second trajectory point data When H 1 , H 2 ...... H n are consistent with the preset trajectory point data L' 1 , L' 2 ...... L' n , it means that the position of the aircraft does not deviate; when the first The trajectory point data L 1 , L 2 ......L n or the second trajectory point H 1 , H 2 ...... H n and the preset trajectory point data L' 1 , L' 2 ...... ...L' n are consistent, the second trajectory point data H 1 , H 2 ...... H n or the first trajectory point data L 1 , L 2 ...... L n and the preset trajectory point When the data L' 1 , L' 2 ...... L' n are different, then = 1, and the position of the aircraft deviates, so the first trajectory points L 1 , L 2 ....... can be calculated. ..L n or the distance offset generated by the second trajectory point; when the first trajectory point data L 1 , L 2 ......L n and the second trajectory point data H 1 , H 2 ....... When ..H n is different from the preset trajectory point data L' 1 , L' 2 ......L' n , then P=2, indicating the first trajectory point data L 1 , L 2 ...... of the aircraft ...L n and the second trajectory point data H 1 , H 2 ...... H n all deviate, then the first trajectory point data L 1 , L 2 ......L are jointly calculated The distance offset between n and the second track point data H 1 , H 2 . . . H n ; thus, the calculation can be made more accurate.

进一步地,上述步骤S403的具体实现方式包括:Further, the specific implementation of the above step S403 includes:

通过以下计算公式将第三轨迹点数据进行数据修正:The data of the third track point is corrected by the following calculation formula:

Figure BDA0002608078130000081
Figure BDA0002608078130000081

其中,(K′XK′Y,K′Z)为数据修正后的第三轨迹点数据的坐标特征,(KX,KY,KZ)为第三轨迹点数据的坐标特征,(SX,SY,SZ)为坐标方向的距离偏移量。Among them, (K′ X K′ Y , K′ Z ) are the coordinate features of the third track point data after data correction, (K X , K Y , K Z ) are the coordinate features of the third track point data, (S X , S Y , S Z ) are the distance offsets in the coordinate direction.

在本实施例中,在计算出飞机在不同方向产生的位置偏离后,通过上述计算公式对第三轨迹点数据K1,K2......Kn进行数据修正,使飞机能够提前确定飞机飞行的轨迹点数据进行调整,从而避免飞机偏离;可以理解的是,在当前周期内,可以对下一周期的航线进行提前修正,其中,航线修正的可以是飞机的X轴方向、Y轴方向或Z轴方向,因此,第三轨迹点数据K1,K2......Kn的X轴方向设置为KX,Y轴方向设定为KY,Z轴方向设定为KZ,在数据修正时,通过对飞机不同方向的轨迹点数据进行数据修正,由此,可以使其定位更精准。In this embodiment, after calculating the position deviation of the aircraft in different directions, the third trajectory point data K 1 , K 2 . . . Determine the trajectory point data of the aircraft flight and adjust it to avoid the aircraft deviating; it is understandable that in the current cycle, the route of the next cycle can be corrected in advance, and the route correction can be the X-axis direction of the aircraft, the Y-axis direction, the Y-axis direction axis direction or Z-axis direction, therefore, the X-axis direction of the third track point data K 1 , K 2 ...... K n is set as K X , the Y -axis direction is set as KY , and the Z-axis direction is set is K Z , during data correction, by performing data correction on the trajectory point data of the aircraft in different directions, thus, the positioning can be made more accurate.

步骤S50,根据数据修正的多个轨迹点数据,确定飞机的飞行参考坐标特征信息。Step S50: Determine the flight reference coordinate feature information of the aircraft according to the data of the plurality of trajectory points corrected by the data.

具体的,上述步骤的S50的具体实现方式包括:当飞机在飞行时,将数据修正后的第三轨迹点数据的K′X作为飞机的X轴参考坐标,将数据修正后的第三轨迹点数据的K′Y作为飞机的Y轴参考坐标,将数据修正后的第三轨迹点数据的K′Z作为飞机的Z轴参考坐标。Specifically, the specific implementation of S50 in the above steps includes: when the aircraft is flying, taking K′ X of the third trajectory point data after data correction as the X-axis reference coordinate of the aircraft, and using the third trajectory point after data correction as the X-axis reference coordinate of the aircraft The K′ Y of the data is used as the Y-axis reference coordinate of the aircraft, and the K′ Z of the third trajectory point data after data correction is used as the Z-axis reference coordinate of the aircraft.

其中,数据修正后的参考坐标可以设定为K′X,K′Y,K′Z,在数据修正后,飞机飞行的坐标可以按照K′X,K′Y,K′Z,通过对下一周期的参考坐标进行修正,从而可以使得飞机在飞行过程中能够持续进行飞行坐标的数据修正,避免产生位置偏离,飞行坐标更为精准。Among them, the reference coordinates after data correction can be set as K′ X , K′ Y , K′ Z , and after the data correction, the coordinates of the aircraft flight can be based on K′ X , K′ Y , K′ Z , through the following The reference coordinates are corrected in one cycle, so that the aircraft can continuously correct the data of the flight coordinates during the flight, avoid position deviation, and the flight coordinates are more accurate.

根据本发明实施例提供的基于ADS-B信号的机载设备定位方法,通过接收从多个机载设备采集的飞机的周期性ADS-B信息,并且根据所述ADS-B信息,确定所述飞机的ADS-B报文数据包,然后根据所述ADS-B报文数据包以及预设的报文数据解析策略,确定所述飞机在多个周期内的轨迹点数据,根据所述飞机在多个周期内的轨迹点数据,将下一周期内的多个轨迹点数据进行数据修正,由此,可以减少在计算中产生的误差,避免机载设备与飞机共同飞机时产生位置偏离,定位更为精准。According to the method for locating an airborne device based on an ADS-B signal provided by an embodiment of the present invention, the periodic ADS-B information of the aircraft collected from a plurality of airborne devices is received, and according to the ADS-B information, the The ADS-B message data packet of the aircraft, and then according to the ADS-B message data packet and the preset message data analysis strategy, determine the trajectory point data of the aircraft in multiple cycles, and determine the trajectory point data of the aircraft in multiple cycles. For the trajectory point data in multiple cycles, the data of multiple trajectory points in the next cycle can be corrected, thereby reducing the error generated in the calculation, avoiding the position deviation when the airborne equipment and the aircraft share the plane, positioning more precise.

参照图5所示,本发明的第二个目的在于提出一种基于ADS-B信号的机载设备定位装置,该机载设备定位装置60包括:Referring to FIG. 5 , the second object of the present invention is to provide an airborne device positioning device based on ADS-B signals, and the airborne device positioning device 60 includes:

接收模块601,用于接收从多个机载设备采集的飞机的周期性ADS-B信息;A receiving module 601, configured to receive periodic ADS-B information of the aircraft collected from multiple airborne devices;

第一确定模块602,用于根据ADS-B信息,确定飞机的ADS-B报文数据包;The first determining module 602 is used to determine the ADS-B message data packet of the aircraft according to the ADS-B information;

第二确定模块603,用于根据ADS-B报文数据包以及预设的报文数据解析策略,确定飞机在多个周期内的轨迹点数据;The second determination module 603 is configured to determine the trajectory point data of the aircraft in multiple cycles according to the ADS-B message data packet and the preset message data analysis strategy;

修正模块604,用于根据飞机在多个周期内的轨迹点数据,将下一周期内的多个轨迹点数据进行数据修正;A correction module 604, configured to perform data correction on the multiple track point data in the next cycle according to the track point data of the aircraft in multiple cycles;

第三确定模块605,用于根据数据修正的多个轨迹点数据,确定飞机的坐标特征信息。The third determination module 605 is configured to determine the coordinate feature information of the aircraft according to the multiple track point data corrected by the data.

参照图6所示,第二确定模块602包括:6, the second determining module 602 includes:

分类子模块6021,用于将ADS-B报文数据包划分多个类型;The classification submodule 6021 is used to divide the ADS-B message data packet into multiple types;

解析子模块6022,用于根据每个类型的ADS-B报文数据包中的数据串,解析每个数据串的字段数据;The parsing submodule 6022 is used to parse the field data of each data string according to the data string in each type of ADS-B message data packet;

第一确定子模块6023,用于根据每个数据串的字段数据,确定每个字段数据中的报文帧头和报文长度;The first determination submodule 6023 is used to determine the message frame header and message length in each field data according to the field data of each data string;

第二确定子模块6024,用于根据报文帧头和报文长度,确定飞机的多个水平位置数据源;The second determination submodule 6024 is used to determine a plurality of horizontal position data sources of the aircraft according to the message frame header and the message length;

第三确定子模块6025,用于根据多个水平位置数据源,确定飞机在每个周期内的轨迹点数据。The third determination sub-module 6025 is configured to determine the trajectory point data of the aircraft in each cycle according to multiple horizontal position data sources.

需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于装置或系统类实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。It should be noted that the various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments. For the same and similar parts of the various embodiments, refer to each other Can. As for the apparatus or system embodiment, since it is basically similar to the method embodiment, the description is relatively simple, and for related parts, please refer to the partial description of the method embodiment.

参照图7所示,图7示出了本发明实施例提供的机载设备实施例的结构示意图,为了便于描述,仅示出了与本发明实施例相关的部分。具体的,该机载设备700包括存储器702、处理器701以及存储在所述存储器702中并可在所述处理器701上运行的计算机程序,所述处理器701执行所述计算机程序时实现如上述实施例所述方法的步骤,例如图1所示的S10至S50的步骤。或者,所述处理器701执行所述计算机程序时实现上述实施例所述装置中的各模块/单元的功能,例如图5所示模块601至605的功能。Referring to FIG. 7 , FIG. 7 shows a schematic structural diagram of an embodiment of an airborne device provided by an embodiment of the present invention. For ease of description, only parts related to the embodiment of the present invention are shown. Specifically, the onboard device 700 includes a memory 702, a processor 701, and a computer program stored in the memory 702 and running on the processor 701. When the processor 701 executes the computer program, the The steps of the method described in the above embodiment are, for example, the steps from S10 to S50 shown in FIG. 1 . Alternatively, when the processor 701 executes the computer program, the functions of each module/unit in the apparatus described in the foregoing embodiment are implemented, for example, the functions of the modules 601 to 605 shown in FIG. 5 .

示例性的,所述计算机程序可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器702中,并由所述处理器701执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序在所述机载设备700中的执行过程。Exemplarily, the computer program can be divided into one or more modules/units, and the one or more modules/units are stored in the memory 702 and executed by the processor 701 to complete the present invention. invention. The one or more modules/units may be a series of computer program instruction segments capable of performing specific functions, and the instruction segments are used to describe the execution process of the computer program in the onboard device 700 .

所述机载设备700可包括,但不仅限于处理器701、存储器702。本领域技术人员可以理解,图仅仅是机载设备700的示例,并不构成对机载设备700的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述机载设备700还可以包括输入输出设备、网络接入设备、总线等。The onboard device 700 may include, but is not limited to, a processor 701 and a memory 702 . Those skilled in the art can understand that the figure is only an example of the airborne device 700, and does not constitute a limitation to the airborne device 700, and may include more or less components than the one shown, or combine some components, or different Components such as the onboard device 700 may also include input and output devices, network access devices, buses, and the like.

所称处理器701可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器701、数字信号处理器701(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(FieldProgrammable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立预设硬件组件等。通用处理器701可以是微处理器701或者该处理器701也可以是任何常规的处理器701等。The so-called processor 701 may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors 701, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC) ), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete preset hardware components, and the like. The general purpose processor 701 may be a microprocessor 701 or the processor 701 may be any conventional processor 701 or the like.

所述存储器702可以是所述机载设备700的内部存储单元,例如机载设备700的硬盘或内存。所述存储器702也可以是所述机载设备700的外部存储设备,例如所述机载设备700上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(SecureDigital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器702还可以既包括所述机载设备700的内部存储单元也包括外部存储设备。所述存储器702用于存储所述计算机程序以及所述机载设备700所需的其他程序和数据。所述存储器702还可以用于暂时地存储已经输出或者将要输出的数据。The memory 702 may be an internal storage unit of the onboard device 700 , such as a hard disk or a memory of the onboard device 700 . The memory 702 may also be an external storage device of the onboard device 700, such as a pluggable hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD card) equipped on the onboard device 700. ) card, flash card (Flash Card) and so on. Further, the memory 702 may also include both an internal storage unit of the onboard device 700 and an external storage device. The memory 702 is used to store the computer program and other programs and data required by the onboard device 700 . The memory 702 may also be used to temporarily store data that has been output or is to be output.

本发明实施例还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器701执行时实现如上述实施例中所述方法中的步骤,例如图2所示的步骤S10至步骤S50。或者,所述计算机程序被处理器701执行时实现上述实施例中所述装置中的各模块/单元的功能,例如图5所示的模块601至605的功能。Embodiments of the present invention further provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by the processor 701, the steps in the methods described in the foregoing embodiments are implemented, for example, as shown in FIG. 2 . Steps S10 to S50 shown. Alternatively, when the computer program is executed by the processor 701, the functions of each module/unit in the apparatus described in the above embodiments are realized, for example, the functions of the modules 601 to 605 shown in FIG. 5 .

所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器701执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。The computer program can be stored in a computer-readable storage medium, and when the computer program is executed by the processor 701, the steps of the above-mentioned method embodiments can be implemented. Wherein, the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like. The computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a U disk, a removable hard disk, a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electric carrier signal, telecommunication signal and software distribution medium, etc.

需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括是电载波信号和电信信号。It should be noted that the content contained in the computer-readable media may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, the computer-readable media Excluded are electrical carrier signals and telecommunication signals.

在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。In the foregoing embodiments, the description of each embodiment has its own emphasis. For parts that are not described or described in detail in a certain embodiment, reference may be made to the relevant descriptions of other embodiments.

本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。The steps in the method of the embodiment of the present invention may be adjusted, combined and deleted in sequence according to actual needs.

本发明实施例系统中的模块或单元可以根据实际需要进行合并、划分和删减。The modules or units in the system of the embodiment of the present invention may be combined, divided and deleted according to actual needs.

本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子预设硬件、或者计算机软件和电子预设硬件的结合来实现。这些功能究竟以预设硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Those of ordinary skill in the art can realize that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented by electronic preset hardware, or a combination of computer software and electronic preset hardware. Whether these functions are performed by default hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of the present invention.

本发明所提供的实施例中,应该理解到,所揭露的装置/机载设备700和方法,可以通过其它的方式实现。例如,以上所描述的装置/机载设备700实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。In the embodiments provided by the present invention, it should be understood that the disclosed apparatus/airborne device 700 and method may be implemented in other manners. For example, the above-described embodiments of the apparatus/airborne device 700 are only illustrative. For example, the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple divisions. Individual units or components may be combined or may be integrated into another system, or some features may be omitted, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.

以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。The above-mentioned embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be used for the foregoing implementations. The technical solutions described in the examples are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present invention, and should be included in the within the protection scope of the present invention.

Claims (10)

1.一种基于ADS-B信号的机载设备定位方法,其特征在于,包括:1. an airborne equipment positioning method based on ADS-B signal, is characterized in that, comprises: 接收从多个机载设备采集的飞机的周期性ADS-B信息;Receive periodic ADS-B information of the aircraft collected from multiple airborne devices; 根据所述ADS-B信息,确定所述飞机的ADS-B报文数据包;According to the ADS-B information, determine the ADS-B message data packet of the aircraft; 根据所述ADS-B报文数据包以及预设的报文数据解析策略,确定所述飞机在多个周期内的轨迹点数据;According to the ADS-B message data packet and the preset message data analysis strategy, determine the trajectory point data of the aircraft in multiple cycles; 根据所述飞机在多个周期内的轨迹点数据,将下一周期内的多个轨迹点数据进行数据修正;According to the trajectory point data of the aircraft in multiple cycles, perform data correction on the multiple trajectory point data in the next cycle; 根据所述数据修正的多个轨迹点数据,确定所述飞机的飞行参考坐标特征信息。According to the plurality of trajectory point data corrected by the data, the flight reference coordinate feature information of the aircraft is determined. 2.根据权利要求1所述的方法,其特征在于,所述根据所述ADS-B报文数据包以及预设的报文数据解析策略,确定所述ADS-B报文数据包中所述飞机在多个周期内的轨迹点数据,包括:2. The method according to claim 1, characterized in that, according to the ADS-B message data packet and a preset message data analysis strategy, it is determined that the ADS-B message data packet described in the Aircraft trajectory point data over multiple cycles, including: 将所述ADS-B报文数据包划分多个类型;dividing the ADS-B message data packet into multiple types; 根据所述每个类型的ADS-B报文数据包中的数据串,解析每个数据串的字段数据;Parse the field data of each data string according to the data string in the ADS-B message data packet of each type; 根据所述每个数据串的字段数据,确定每个所述字段数据中的报文帧头和报文长度;According to the field data of each data string, determine the message frame header and message length in each of the field data; 根据所述报文帧头和所述报文长度,确定所述飞机的多个水平位置数据源;Determine a plurality of horizontal position data sources of the aircraft according to the message frame header and the message length; 根据所述多个水平位置数据源,确定所述飞机在多个周期内的所述轨迹点数据。According to the plurality of horizontal position data sources, the trajectory point data of the aircraft in a plurality of cycles is determined. 3.根据权利要求1所述的方法,其特征在于,所述根据所述飞机在多个周期内的轨迹点数据,将所述多个轨迹点数据进行数据修正,包括:3 . The method according to claim 1 , wherein, according to the trajectory point data of the aircraft in multiple cycles, performing data correction on the plurality of trajectory point data, comprising: 3 . 根据所述多个周期内的轨迹点数据,确定当前周期内的第一轨迹点数据、上一周期内的第二轨迹点数据,以及下一周期内的第三轨迹点数据;According to the trajectory point data in the multiple cycles, determine the first trajectory point data in the current cycle, the second trajectory point data in the previous cycle, and the third trajectory point data in the next cycle; 根据所述第一轨迹点数据、所述第二轨迹点数据、所述第三轨迹点数据以及预设轨迹点数据,计算所述第一轨迹点数据、所述第二轨迹点数据与所述预设轨迹点数据的距离偏离量;According to the first trajectory point data, the second trajectory point data, the third trajectory point data and the preset trajectory point data, the first trajectory point data, the second trajectory point data and the The distance deviation of the preset track point data; 根据所述距离偏离量,将所述第三轨迹点数据进行数据修正。Data correction is performed on the third trajectory point data according to the distance deviation amount. 4.根据权利要求3所述的方法,其特征在于,所述根据所述第一轨迹点数据、所述第二轨迹点数据、所述第三轨迹点数据,以及预设轨迹点数据,计算所述第一轨迹点数据、所述第二轨迹点数据与所述预设轨迹点数据的距离偏离量,包括:4 . The method according to claim 3 , wherein the calculation is performed according to the first trajectory point data, the second trajectory point data, the third trajectory point data, and the preset trajectory point data. 5 . The distance deviation between the first trajectory point data, the second trajectory point data and the preset trajectory point data, including: 通过以下计算公式确定所述距离偏移量:The distance offset is determined by the following calculation formula:
Figure FDA0002608078120000021
其中,1≤P≤2,L为第一轨迹点数据,L′为预设轨迹点数据,H为第二轨迹点数据,n为轨迹点的数量,S为距离偏移量,i为坐标方向。
Figure FDA0002608078120000021
Where, 1≤P≤2, L is the first track point data, L' is the preset track point data, H is the second track point data, n is the number of track points, S is the distance offset, and i is the coordinate direction.
5.根据权利要求3所述的方法,其特征在于,所述根据所述距离偏离量,将所述第三轨迹点数据进行数据修正,包括:5. The method according to claim 3, wherein, performing data correction on the third trajectory point data according to the distance deviation, comprising: 通过以下计算公式将所述第三轨迹点数据进行数据修正:The data of the third track point is corrected by the following calculation formula:
Figure FDA0002608078120000022
Figure FDA0002608078120000022
其中,(K′XK′Y,K′Z)为数据修正后的第三轨迹点数据的坐标特征,(KX,KY,KZ)为第三轨迹点数据的坐标特征,(SX,SY,SZ)为坐标方向的距离偏移量。Among them, (K′ X K′ Y , K′ Z ) are the coordinate features of the third track point data after data correction, (K X , K Y , K Z ) are the coordinate features of the third track point data, (S X , S Y , S Z ) are the distance offsets in the coordinate direction.
6.根据权利要求5所述的方法,其特征在于,当所述飞机在飞行时,将所述数据修正后的第三轨迹点数据的K′X作为所述飞机的X轴参考坐标,将所述数据修正后的第三轨迹点数据的K′Y作为所述飞机的Y轴参考坐标,将所述数据修正后的第三轨迹点数据的K′Z作为所述飞机的Z轴参考坐标。6 . The method according to claim 5 , wherein when the aircraft is flying, the K′ X of the third trajectory point data after the data correction is used as the X-axis reference coordinate of the aircraft, 6 . The K′ Y of the third track point data after the data correction is used as the Y-axis reference coordinate of the aircraft, and the K′ Z of the third track point data after the data correction is used as the Z-axis reference coordinate of the aircraft . 7.一种基于ADS-B信号的机载设备定位装置,其特征在于,包括:7. an airborne equipment positioning device based on ADS-B signal, is characterized in that, comprises: 接收模块,用于接收从多个机载设备采集的飞机的周期性ADS-B信息;The receiving module is used to receive the periodic ADS-B information of the aircraft collected from multiple airborne devices; 第一确定模块,用于根据所述ADS-B信息,确定所述飞机的ADS-B报文数据包;a first determining module, configured to determine the ADS-B message data packet of the aircraft according to the ADS-B information; 第二确定模块,用于根据所述ADS-B报文数据包以及预设的报文数据解析策略,确定所述飞机在多个周期内的轨迹点数据;a second determination module, configured to determine the trajectory point data of the aircraft in multiple cycles according to the ADS-B message data packet and a preset message data analysis strategy; 修正模块,用于根据所述飞机在多个周期内的轨迹点数据,将下一周期内的多个轨迹点数据进行数据修正;a correction module, configured to perform data correction on a plurality of trajectory point data in the next cycle according to the trajectory point data of the aircraft in a plurality of cycles; 第三确定模块,用于根据所述数据修正的多个轨迹点数据,确定所述飞机的坐标特征信息。The third determining module is configured to determine the coordinate feature information of the aircraft according to the multiple track point data corrected by the data. 8.根据权利要求7所述的装置,其特征在于,所述第二确定模块包括:8. The apparatus according to claim 7, wherein the second determining module comprises: 分类子模块,用于将所述ADS-B报文数据包划分多个类型;A classification submodule for dividing the ADS-B message data packet into multiple types; 解析子模块,用于根据所述每个类型的ADS-B报文数据包中的数据串,解析每个数据串的字段数据;A parsing submodule for parsing the field data of each data string according to the data string in the ADS-B message data packet of each type; 第一确定子模块,用于根据所述每个数据串的字段数据,确定每个所述字段数据中的报文帧头和报文长度;The first determination submodule is used to determine the message frame header and message length in each of the field data according to the field data of each data string; 第二确定子模块,用于根据所述报文帧头和所述报文长度,确定所述飞机的多个水平位置数据源;a second determination submodule, configured to determine a plurality of horizontal position data sources of the aircraft according to the message frame header and the message length; 第三确定子模块,用于根据所述多个水平位置数据源,确定所述飞机在每个周期内的所述轨迹点数据。The third determination submodule is configured to determine the trajectory point data of the aircraft in each cycle according to the multiple horizontal position data sources. 9.一种机载设备,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至6任意一项所述的基于ADS-B信号的机载设备定位方法。9. An airborne device comprising a memory, a processor, and a computer program stored on the memory and executable on the processor, wherein the processor implements the computer program as claimed when executing the computer program The airborne equipment positioning method based on ADS-B signal according to any one of requirements 1 to 6 is required. 10.一种计算机存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1至6任意一项所述的基于ADS-B信号的机载设备定位方法。10. A computer storage medium on which a computer program is stored, characterized in that, when the program is executed by a processor, the method for locating an airborne device based on an ADS-B signal according to any one of claims 1 to 6 is realized .
CN202010745045.7A 2020-07-29 2020-07-29 Airborne equipment positioning method based on ADS-B signal, airborne equipment and storage medium thereof Active CN111986522B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010745045.7A CN111986522B (en) 2020-07-29 2020-07-29 Airborne equipment positioning method based on ADS-B signal, airborne equipment and storage medium thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010745045.7A CN111986522B (en) 2020-07-29 2020-07-29 Airborne equipment positioning method based on ADS-B signal, airborne equipment and storage medium thereof

Publications (2)

Publication Number Publication Date
CN111986522A true CN111986522A (en) 2020-11-24
CN111986522B CN111986522B (en) 2022-03-22

Family

ID=73445626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010745045.7A Active CN111986522B (en) 2020-07-29 2020-07-29 Airborne equipment positioning method based on ADS-B signal, airborne equipment and storage medium thereof

Country Status (1)

Country Link
CN (1) CN111986522B (en)

Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2653918A1 (en) * 1989-10-31 1991-05-03 Europ Agence Spatiale REAL TIME RECTIFICATION METHOD OF IMAGES OF GEOSTATIONARY METEOROLOGICAL SATELLITES.
JPH04348220A (en) * 1991-05-27 1992-12-03 Sumitomo Electric Ind Ltd Vehicle position detection device with offset correction function
EP1901088A1 (en) * 2006-09-18 2008-03-19 Cambridge Positioning Systems Limited Integrated mobile-terminal navigation
CN101692315A (en) * 2009-09-25 2010-04-07 民航总局空管局技术中心 Method for analyzing high precision 4D flight trajectory of airplane based on real-time radar data
CN101739845A (en) * 2009-12-18 2010-06-16 中国航空无线电电子研究所 Aeronautical data chain information-based civil aircraft aviation electronic verification system and method thereof
CN102496313A (en) * 2011-12-31 2012-06-13 南京莱斯信息技术股份有限公司 Correction method of aircraft plan prediction locus by using supervision data
CN102682590A (en) * 2011-03-16 2012-09-19 高德软件有限公司 Method and device for processing traffic information in real time
CA2774088A1 (en) * 2011-04-14 2012-10-14 Thales Method for locating aircraft which is independent of any satellite navigation system
CN102884440A (en) * 2010-03-17 2013-01-16 霍尼韦尔国际公司 Systems and methods for short baseline, low cost determination of airborne aircraft location
CN102881188A (en) * 2012-10-18 2013-01-16 四川九洲空管科技有限责任公司 Method for establishing track of broadcast automatic related monitoring target
CN203101647U (en) * 2013-01-24 2013-07-31 四川九洲空管科技有限责任公司 Portable ADS-B (Automatic Dependent Surveillance-Broadcast) surveillance device based on 1090ES data link
US20130238269A1 (en) * 2010-11-17 2013-09-12 Hillcrest Laboratories, Inc. Apparatuses and methods for dynamic tracking and compensation of magnetic near field
CN103578300A (en) * 2013-11-06 2014-02-12 华北计算技术研究所 Network-oriented low-altitude flight dynamically monitoring system
CN103963051A (en) * 2013-01-28 2014-08-06 精工爱普生株式会社 Robot and robot controller
JP2015025728A (en) * 2013-07-26 2015-02-05 株式会社田定工作所 Positioning method and positioning device using signal from aircraft
TW201510958A (en) * 2013-09-14 2015-03-16 Rlg Docking Systems Corp Method of orientating calibration for aircraft approach guiding system
JP2016040554A (en) * 2015-11-18 2016-03-24 株式会社ナビタイムジャパン Information processing system, information processing apparatus, information processing method, and information processing program
CN105676246A (en) * 2016-01-06 2016-06-15 中国人民解放军海军航空工程学院青岛校区 Airplane monitor system and method on the basis of real-time dynamic positioning and data link
US20170032684A1 (en) * 2015-07-31 2017-02-02 Airbus Operations (S.A.S.) Method and system for assisting the guidance of an aircraft along a runway approach axis
CN106415299A (en) * 2014-03-07 2017-02-15 霍尼韦尔国际公司 Systems and methods for high reliability surveillance of aircraft
CN206161871U (en) * 2016-11-02 2017-05-10 上海海积信息科技股份有限公司 Vehicle control appearance that traveles
CN106790058A (en) * 2016-12-20 2017-05-31 武汉数字工程研究所(中国船舶重工集团公司第七0九研究所) A kind of ADS B message data parsing method and systems
CN106846919A (en) * 2017-01-16 2017-06-13 南京航空航天大学 A kind of four-dimensional dynamic track prediction method based on ADS B information updatings
CN106969765A (en) * 2015-11-27 2017-07-21 泰勒斯公司 The method represented for the in-flight track of calculating aircraft
CN107038900A (en) * 2017-04-25 2017-08-11 西安航空学院 A kind of general aviation low-altitude monitor and service system
CN107231185A (en) * 2017-06-06 2017-10-03 北京邮电大学 A kind of machine ground wireless communication apparatus and method based on ADS B signals
CN107403563A (en) * 2016-05-19 2017-11-28 中国民用航空总局第二研究所 Open the navigation or air flight absolutely empty supervision equipment, method, system and all purpose aircraft
CN108306670A (en) * 2016-12-16 2018-07-20 泰雷兹管理与服务德国股份有限公司 Method for verifying the location information being included in ADS-B and the base stations ADS-B
CN109074095A (en) * 2017-12-26 2018-12-21 深圳市大疆创新科技有限公司 A kind of flight path original road playback method and aircraft
CN109211236A (en) * 2017-06-30 2019-01-15 沈阳新松机器人自动化股份有限公司 navigation locating method, device and robot
CN109307510A (en) * 2017-07-28 2019-02-05 广州极飞科技有限公司 Flight navigation method, apparatus and unmanned vehicle
CN110308470A (en) * 2018-03-27 2019-10-08 上海汽车集团股份有限公司 Vehicle positioning method and vehicle positioning system
CN110636439A (en) * 2019-09-26 2019-12-31 北京无线体育俱乐部有限公司 Position acquisition method and device
US20200066163A1 (en) * 2018-08-21 2020-02-27 The Boeing Company Restricted airspace monitoring systems and methods
CN110850456A (en) * 2020-01-15 2020-02-28 北京航空航天大学东营研究院 Positioning equipment, positioning method and monitoring device of high-altitude unmanned aerial vehicle
CN111077549A (en) * 2019-12-31 2020-04-28 深圳一清创新科技有限公司 Position data correction method, apparatus and computer readable storage medium
CN111210668A (en) * 2019-12-30 2020-05-29 四川函钛科技有限公司 Landing stage flight trajectory offset correction method based on time sequence QAR parameter
CN111279215A (en) * 2018-12-03 2020-06-12 深圳市大疆创新科技有限公司 Target detection method and device, track management method and device and unmanned aerial vehicle

Patent Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2653918A1 (en) * 1989-10-31 1991-05-03 Europ Agence Spatiale REAL TIME RECTIFICATION METHOD OF IMAGES OF GEOSTATIONARY METEOROLOGICAL SATELLITES.
JPH04348220A (en) * 1991-05-27 1992-12-03 Sumitomo Electric Ind Ltd Vehicle position detection device with offset correction function
EP1901088A1 (en) * 2006-09-18 2008-03-19 Cambridge Positioning Systems Limited Integrated mobile-terminal navigation
CN101692315A (en) * 2009-09-25 2010-04-07 民航总局空管局技术中心 Method for analyzing high precision 4D flight trajectory of airplane based on real-time radar data
CN101739845A (en) * 2009-12-18 2010-06-16 中国航空无线电电子研究所 Aeronautical data chain information-based civil aircraft aviation electronic verification system and method thereof
CN102884440A (en) * 2010-03-17 2013-01-16 霍尼韦尔国际公司 Systems and methods for short baseline, low cost determination of airborne aircraft location
US20130238269A1 (en) * 2010-11-17 2013-09-12 Hillcrest Laboratories, Inc. Apparatuses and methods for dynamic tracking and compensation of magnetic near field
CN102682590A (en) * 2011-03-16 2012-09-19 高德软件有限公司 Method and device for processing traffic information in real time
CA2774088A1 (en) * 2011-04-14 2012-10-14 Thales Method for locating aircraft which is independent of any satellite navigation system
CN102496313A (en) * 2011-12-31 2012-06-13 南京莱斯信息技术股份有限公司 Correction method of aircraft plan prediction locus by using supervision data
CN102881188A (en) * 2012-10-18 2013-01-16 四川九洲空管科技有限责任公司 Method for establishing track of broadcast automatic related monitoring target
CN203101647U (en) * 2013-01-24 2013-07-31 四川九洲空管科技有限责任公司 Portable ADS-B (Automatic Dependent Surveillance-Broadcast) surveillance device based on 1090ES data link
CN103963051A (en) * 2013-01-28 2014-08-06 精工爱普生株式会社 Robot and robot controller
JP2015025728A (en) * 2013-07-26 2015-02-05 株式会社田定工作所 Positioning method and positioning device using signal from aircraft
TW201510958A (en) * 2013-09-14 2015-03-16 Rlg Docking Systems Corp Method of orientating calibration for aircraft approach guiding system
CN103578300A (en) * 2013-11-06 2014-02-12 华北计算技术研究所 Network-oriented low-altitude flight dynamically monitoring system
CN106415299A (en) * 2014-03-07 2017-02-15 霍尼韦尔国际公司 Systems and methods for high reliability surveillance of aircraft
US20170032684A1 (en) * 2015-07-31 2017-02-02 Airbus Operations (S.A.S.) Method and system for assisting the guidance of an aircraft along a runway approach axis
CN106409016A (en) * 2015-07-31 2017-02-15 空中客车运营简化股份公司 Method and system for assisting guidance of an aircraft along a runway approach axis
JP2016040554A (en) * 2015-11-18 2016-03-24 株式会社ナビタイムジャパン Information processing system, information processing apparatus, information processing method, and information processing program
CN106969765A (en) * 2015-11-27 2017-07-21 泰勒斯公司 The method represented for the in-flight track of calculating aircraft
CN105676246A (en) * 2016-01-06 2016-06-15 中国人民解放军海军航空工程学院青岛校区 Airplane monitor system and method on the basis of real-time dynamic positioning and data link
CN107403563A (en) * 2016-05-19 2017-11-28 中国民用航空总局第二研究所 Open the navigation or air flight absolutely empty supervision equipment, method, system and all purpose aircraft
CN206161871U (en) * 2016-11-02 2017-05-10 上海海积信息科技股份有限公司 Vehicle control appearance that traveles
CN108306670A (en) * 2016-12-16 2018-07-20 泰雷兹管理与服务德国股份有限公司 Method for verifying the location information being included in ADS-B and the base stations ADS-B
CN106790058A (en) * 2016-12-20 2017-05-31 武汉数字工程研究所(中国船舶重工集团公司第七0九研究所) A kind of ADS B message data parsing method and systems
CN106846919A (en) * 2017-01-16 2017-06-13 南京航空航天大学 A kind of four-dimensional dynamic track prediction method based on ADS B information updatings
CN107038900A (en) * 2017-04-25 2017-08-11 西安航空学院 A kind of general aviation low-altitude monitor and service system
CN107231185A (en) * 2017-06-06 2017-10-03 北京邮电大学 A kind of machine ground wireless communication apparatus and method based on ADS B signals
CN109211236A (en) * 2017-06-30 2019-01-15 沈阳新松机器人自动化股份有限公司 navigation locating method, device and robot
CN109307510A (en) * 2017-07-28 2019-02-05 广州极飞科技有限公司 Flight navigation method, apparatus and unmanned vehicle
CN109074095A (en) * 2017-12-26 2018-12-21 深圳市大疆创新科技有限公司 A kind of flight path original road playback method and aircraft
CN110308470A (en) * 2018-03-27 2019-10-08 上海汽车集团股份有限公司 Vehicle positioning method and vehicle positioning system
US20200066163A1 (en) * 2018-08-21 2020-02-27 The Boeing Company Restricted airspace monitoring systems and methods
CN111279215A (en) * 2018-12-03 2020-06-12 深圳市大疆创新科技有限公司 Target detection method and device, track management method and device and unmanned aerial vehicle
CN110636439A (en) * 2019-09-26 2019-12-31 北京无线体育俱乐部有限公司 Position acquisition method and device
CN111210668A (en) * 2019-12-30 2020-05-29 四川函钛科技有限公司 Landing stage flight trajectory offset correction method based on time sequence QAR parameter
CN111077549A (en) * 2019-12-31 2020-04-28 深圳一清创新科技有限公司 Position data correction method, apparatus and computer readable storage medium
CN110850456A (en) * 2020-01-15 2020-02-28 北京航空航天大学东营研究院 Positioning equipment, positioning method and monitoring device of high-altitude unmanned aerial vehicle

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
WOLFGANG KAMPICHLER等: "Location based communication services for UAS in the NAS", 《2016 IEEE/AIAA 35TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC)》 *
宋伟: "基于ADS-B数据的航迹处理子系统设计与实现", 《中国优秀硕士学位论文全文数据库 (信息科技辑)》 *
徐国标: "基于ADS-B数据的三维航迹可视化技术", 《中国民航飞行学院学报》 *
徐进: "基于RSSI的室内无线定位算法的设计与实现", 《中国优秀硕士学位论文全文数据库 (信息科技辑)》 *
邓人博: "基于监视数据的终端区航空器异常行为识别研究", 《中国优秀硕士学位论文全文数据库 (工程科技Ⅱ辑)》 *
陈金星: "基于泰勒级数的无线传感器网络定位算法研究", 《中国优秀硕士学位论文全文数据库 (信息科技辑)》 *

Also Published As

Publication number Publication date
CN111986522B (en) 2022-03-22

Similar Documents

Publication Publication Date Title
US9255804B2 (en) Determination of state vector, timing, and navigation quality metrics from reception of ADS-B transmissions
CN108303720B (en) Vehicle positioning method and device and terminal equipment
CN111372185A (en) Wireless positioning method and device
US9824591B1 (en) Multi-media analysis for implementing advanced flight following and generating of projected tracks
CN106415299A (en) Systems and methods for high reliability surveillance of aircraft
CN106998589A (en) A kind of UAV Communication method and device
CN110673087B (en) Aircraft route monitoring method and device based on ADS-B broadcast signal and computer storage medium
US9201135B1 (en) Determination of state vector, timing, and navigation quality metrics from reception of SBS transmissions
EP3757970A1 (en) Methods and systems for authenticating an automatic dependent surveillance-broadcast (ads-b) signal
EP4095488A1 (en) Positioning method and apparatus
CN113537344B (en) A processing method, device and medium for multi-source flight surveillance data fusion
CN111986522A (en) Airborne equipment positioning method based on ADS-B signal, airborne equipment and storage medium thereof
CN115421507A (en) Method and equipment for positioning unmanned aerial vehicle flyer in multipoint intersection manner
WO2016095526A1 (en) Time service method, apparatus and system, and storage medium
CN102610917B (en) Method for controlling antennas by high-precision data leading
CN105842709A (en) Aerial monitoring system and method thereof
CN112512111A (en) Time determination method and device, and signal sending method and device
US20180364706A1 (en) Autonomous distress tracking device
CN116032386A (en) Non-planar phased array receiving channel correction method and system
CN115214884A (en) Method and device for transmitting remote identification information, storage medium and electronic device
US20190096143A1 (en) Suppressing transmission of data from position reporting beacons using geographic location
CN119091694A (en) Collaborative data fusion method of ADS-B, 5G, ad hoc network and Remote ID based on Kalman filter
CN119472225A (en) Time synchronization method, device and storage medium for split flying car
US20230069277A1 (en) Communication device, communication system, and method for communication
CN209356681U (en) An ADS-B monitoring system based on Beidou ground-based enhancement technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 510000 2305, No. 2, Fangda Road, Huangpu District, Guangzhou, Guangdong

Applicant after: GUANGZHOU XINHANG TECHNOLOGY Co.,Ltd.

Address before: No.2305, No.2, Fangda Road, Huangpu District, Guangzhou, Guangdong 510700

Applicant before: GUANGZHOU XINHANG TECHNOLOGY Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant