[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN111900209A - 一种沟槽结构碳化硅氧化物场效应管及其制备方法 - Google Patents

一种沟槽结构碳化硅氧化物场效应管及其制备方法 Download PDF

Info

Publication number
CN111900209A
CN111900209A CN202010871123.8A CN202010871123A CN111900209A CN 111900209 A CN111900209 A CN 111900209A CN 202010871123 A CN202010871123 A CN 202010871123A CN 111900209 A CN111900209 A CN 111900209A
Authority
CN
China
Prior art keywords
layer
oxide film
type sic
type
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010871123.8A
Other languages
English (en)
Inventor
金宰年
叶宏伦
钟其龙
刘崇志
张本义
钟健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aksu Silicon Card Semiconductor Technology R & D Co ltd
Xinjiang Can Ke Semiconductor Material Manufacturing Co ltd
Can Long Technology Development Co Ltd
Original Assignee
Aksu Silicon Card Semiconductor Technology R & D Co ltd
Xinjiang Can Ke Semiconductor Material Manufacturing Co ltd
Can Long Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aksu Silicon Card Semiconductor Technology R & D Co ltd, Xinjiang Can Ke Semiconductor Material Manufacturing Co ltd, Can Long Technology Development Co Ltd filed Critical Aksu Silicon Card Semiconductor Technology R & D Co ltd
Priority to CN202010871123.8A priority Critical patent/CN111900209A/zh
Publication of CN111900209A publication Critical patent/CN111900209A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thyristors (AREA)

Abstract

本发明涉及一种沟槽结构碳化硅氧化物场效应管及其制备方法,其在双沟槽栅极MOSFET器件中采用双层外延工艺,分散栅极绝缘膜的电埸强度,在沟槽底部形成高浓度掺杂p+型体层,以保护栅区底部表面的绝缘膜。此外,直接通过LPCVD在高温下将N2O气体在沟槽侧壁氧化绝缘层的方法,以减少缺陷并固定厚度,从而提高性能,生产高度可靠的器件。

Description

一种沟槽结构碳化硅氧化物场效应管及其制备方法
技术领域
本发明涉及半导体技术领域,具体涉及一种沟槽结构碳化硅氧化物场效应管及其制备方法。
背景技术
与目前常用的硅功率半导体相比,SiC功率半导体具有优异的材料特性,因而被广泛应用在混合动力(HV)和电动汽车(EV)、消费电子和工业逆变器、太阳能逆变器、间断电源(UPS)等大电流开关装置中,特别是在电动汽车领域的电机联控装置中,可以预期的取得高频率,低噪声,小和轻的逆变器。
如图1所示,传统一般常规的SiC沟MOSFET器件,首先是在n+型SiC基板1’上生长活性区域n-型SiC层2’和p型体SiC层4’,作为掺入高浓度,依次形成源极区5’和接地区6’,形成源极电极7’。此外,在侧壁和沟槽栅区底部表面形成栅极绝缘膜沟槽柵极氧化(絕緣)层9’后,在沟槽内填充:n+多晶态电极10’,接着生长漏电极14’结构和形成栅极11’。 这种器件结构的可靠性上存在很大问题,由于内电场集中在沟槽底面,电流密度偏高,成为一易破坏区域。
发明内容
针对现有技术存在的问题,本发明的目的在于提供一种沟槽结构碳化硅氧化物场效应管及其制备方法,其可以解决强电场造成的易破坏问题,提高场效应管的可靠性。
为实现上述目的,本发明采用的技术方案是:
一种沟槽结构碳化硅氧化物场效应管,其从下至上依次设有n+型SiC基板、n-型SiC层、n型SiC层、和绝缘层;
所述n+型SiC基板的下端面设有漏极金属电极;
所述n-型SiC层靠近n型SiC层的位置处设有p+型埋层;
所述n型SiC层上设有p型体外延层和防护环型结,在p型体外延层上设有p+接地、n+源和栅极沟槽,所述栅极沟槽内设有栅极底部绝缘层、沟槽栅极氧化绝缘层和n+多晶态电极;
所述绝缘层上设有源极金属电极和栅极金属电极,所述源极金属电极与n+多晶态电极接触。
所述绝缘层包括氧化层和ILD绝缘层,所述氧化层与n型SiC层接触。
一种沟槽结构碳化硅氧化物场效应管的制备方法,其包括以下步骤:
步骤1、在n+型SiC基板晶圆片上依次生长n-型SiC外延层和氧化膜,在氧化膜上覆盖一层光刻胶,光刻出p+型埋层的位置;高温下向光刻出的位置处注入高浓度的铝;
步骤2、去除前一步遮蔽的氧化膜,然后在n-型SiC外延层上生长n型SiC外延层,然后在n型SiC外延层上生长氧化膜;接着覆盖一层光刻胶,光刻出保护区域,再以高温向保护区域内注入铝掺杂质;
步骤3、除去前一步骤的遮蔽的氧化膜,重新覆盖上氧化薄膜和光刻胶,光刻出p型体外延层的定义位置,再以高温向光刻出的位置上注入铝掺杂质。
步骤4、完成前一步骤后,继续覆盖光刻胶,然后光刻出n+源的定义位置,并在高温下向n+源的定义位置注入N氮掺杂质;
除去前一步骤遮蔽的氧化膜,重新覆盖上氧化膜和光刻胶,光刻出p+接地的定义位置,再向p+接地的定义位置注入铝掺杂质;
步骤5、除去前一步骤的遮蔽的氧化膜,重新覆盖上一层光刻胶,活化步骤1-4掺入的杂质,形成p+型埋层、防护环型结、p型体外延层、n+源和p+接地,光刻胶石墨化形成石墨层;
步骤6、去除上一步骤的石墨层,然后以CVD法依次生第一氧化膜、多晶硅、第二氧化膜,接着蚀刻出栅区的U形的栅极沟槽;在U形的栅极沟槽内涂覆氧化层,并进行热硬化处理,从而在沟槽底部形成氧化膜,其厚保持在0.5μm-1μm;
步骤7、采用气体生长方式在U形的栅极沟槽内生长50-100nm沟槽栅极氧化绝缘层,然后在高温下通N2O和N2的混合气体,使原本存在SiC/SiO2接触面的缺陷口,混合氮气通过该形成氮化膜;接着,以磷酸清洗掉表面的氮化膜,去除多晶硅和第二氧化膜;在U形的栅极沟槽上生长n+多晶态电极;
步骤8、在第一氧化膜上生长BPSG薄膜,然后在900℃大气压力下通氮气,形成ILD绝缘层,然后在ILD绝缘层覆盖光刻胶保护;
在n+型SiC基板晶圆片的下表面交替堆栈氧化膜与多晶硅至所需厚度;再进行抛光并镀上镍金属,然后再以1000℃,大气压力下的氩气氛,进行RTP工艺处理,形成欧姆接触;
步骤9、在IDL绝缘层上定义出上部源极金属电极的位置,并蚀刻出源极区;依次交替堆栈氧化膜与多晶硅至所需厚度、镀上镍金属,然后再以1000℃,大气压力氩气氛下,进行RTP工艺处理,形成欧姆接触;
步骤10、清洗ILD绝缘层上部表面,镀上TiW/AlSi合金厚膜;再光刻出所需的栅极金属电极和源极金属电极;
在450℃下、大气压力的通H2/N2,清洗n+型SiC基板的下表面,利用电子束镀上Ti/Ag薄膜,形成漏极金属电极,然后进行热处理,完成金属电极布置。
采用上述方案后,本发明在双沟槽栅极MOSFET器件中采用双层外延工艺,分散栅极绝缘膜的电埸强度,在沟槽底部形成高浓度掺杂p+型体层,以保护栅区底部表面的绝缘膜。此外,直接通过LPCVD在高温下将N2O气体在沟槽侧壁氧化绝缘层的方法,以减少缺陷并固定厚度,从而提高性能,生产高度可靠的器件。
附图说明
图1为现有技术的场效应管结构示意图;
图2为本发明的场效应管结构示意图;
图3-图10为本发明的场效应管制备流程图。
具体实施方式
如图2所示,本发明揭示了一种沟槽结构碳化硅氧化物场效应管,其从下至上依次设有n+型SiC基板1、n-型SiC层2、n型SiC层3、和绝缘层;
所述n+型SiC基板1的下端面设有漏极金属电极14;
所述n-型SiC层2靠近n型SiC层3的位置处设有p+型埋层15;
所述n型SiC层3上设有p型体外延层4和防护环型结13,在p型体外延层4上设有p+接地6、n+源5和栅极沟槽8,所述栅极沟槽8内设有栅极底部绝缘层12、沟槽栅极氧化绝缘层9和n+多晶态电极10;
所述绝缘层上设有源极金属电极7和栅极金属电极11,所述源极金属电极7与n+多晶态电极10接触。
如图3至图10所示,本发明还揭示了一种沟槽结构碳化硅氧化物场效应管的制备方法,其包括以下步骤:
步骤1、在n+型SiC基板1上生长n-型SiC层2,然后以CVD(化学沉积)法沉积一层氧化膜覆盖在n-型SiC层2;接着覆盖一层光刻胶,光刻出p+型埋层15的位置,蚀刻5um的SiC;最后,在600℃的温度下向光刻出的位置处注入高浓度的铝(Al)。
步骤2、去除前一步遮蔽的氧化膜,然后在高温下以CVD法在n-型SiC层2上生长n型SiC层3,然后再次应用CVD法在n型SiC层3上生長氧化膜;接着覆盖一层光刻胶,光刻出保护区域,再向保护区域内高温注入铝掺杂质。
步骤3、除去前一步骤的遮蔽的氧化膜后,重新覆盖上氧化薄膜和光刻胶,光刻出p型体外延层4的定义位置,再以600℃温度向光刻出的位置上注入铝掺杂质。
步骤4、完成前一步骤后,再覆盖光刻胶,然后光刻出n+源5的定义位置,并在600℃的温度下向n+源5的定义位置注入N氮掺杂质。除去前一步骤遮蔽的氧化膜,重新覆盖上氧化膜和光刻胶,光刻出p+接地6的定义位置,再以600℃温度向p+接地6的定义位置注入铝掺杂质。
步骤5、除去前一步骤的遮蔽的氧化膜,重新覆盖上一层光刻胶,在1600~1700℃下加热30分钟~1小时,活化步骤1-4掺入的杂质,形成p+型埋层15、防护环型结13(保护区域处)、p型体外延层4、n+源5和p+接地6。在高温下,光刻胶会石墨化(燃烧);覆蔽在表面的石墨可以防止表面的碳化硅升华。
步骤6、利用O2等离子与氧化反应去除上一步骤的石墨层后,以CVD法依次生氧化膜、多晶硅、氧化膜,定义沟槽栅区的位置,以湿式蚀刻,进一步去除该位置的光刻胶,再蚀刻出栅区的沟槽8至1.5至2.0um水平,U形类型的沟槽8被蚀刻和牺牲氧化(sacrificialoxidation)。进一步以LPCVD(Low Pressure Chemical Vapor Deposition,低压力化学气相沉积法)涂覆氧化层,然后在1100℃、大气压力通氮气(N2)做热硬化处理,沟槽底部的氧化膜(即栅极底部绝缘层12)厚保持在500nm-1μm。
步骤7、采用气体生长的方式在U形的栅极沟槽8生长50~100nm沟槽栅极氧化绝缘层9,再1250℃通N2O(10%)和N2的混合气体,使原本存在SiC/SiO2接触面的缺陷口,混合氮气通过该形成氮氧化物,这可确保接口缺陷(Dit)小于5x1011。以磷酸清洗掉表面的氮化膜后,进行CMP(化学机械抛光)与RIE(反应离子蚀刻)去除表面的氧化膜后;生长n+多晶态电极10。
步骤8、利用LPCVD、HTO(High Temperature Oxidation,高温氧化)生长BPSG薄膜,然后在900℃大气压力下通氮气(N2),生长ILD绝缘层。然后在ILD绝缘层覆盖光刻胶保护;在n+型SiC基板1的下表面交替堆栈氧化膜与多晶硅至所需厚度;再以CMP抛光,镀上镍金属,然后再以1000℃,大气压力氩气氛下,进行3分钟的RTP(快速热处理)工艺,形成欧姆接触。
步骤9、定义出上部源极金属电极7的位置,通过干式和湿式蚀ILD绝缘层的源极区。依次交替堆栈氧化膜与多晶硅至所需厚度、镀上镍金属,然后再以1000℃,大气压力氩气氛下,进行3分钟的RTP(快速热处理)工艺,形成欧姆接触。
步骤10、 以氢氟酸清洗上部表面,镀上TiW/AlSi合金厚膜;再干式光刻出所需的栅极金属电极11和源极金属电极7。在450℃下、大气压力的通H2/N2,以氢氟酸清洗n+型SiC基板1的下表面,利用电子束镀上Ti/Ag薄膜,形成漏极金属电极14,然后进行热处理,完成金属电极布置。
本发明是在双沟槽栅极MOSFET器件中采用双层外延工艺,分散栅极绝缘膜的电埸强度,在沟槽底部形成高浓度掺杂p+型体层,以保护栅区底部表面的绝缘膜。此外,直接通过LPCVD在高温下将N2O气体在沟槽侧壁氧化绝缘层的方法,以减少缺陷并固定厚度,从而提高性能,生产高度可靠的器件。
以上所述,仅是本发明实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (3)

1.一种沟槽结构碳化硅氧化物场效应管,其特征在于:从下至上依次设有n+型SiC基板、n-型SiC层、n型SiC层、和绝缘层;
所述n+型SiC基板的下端面设有漏极金属电极;
所述n-型SiC层靠近n型SiC层的位置处设有p+型埋层;
所述n型SiC层上设有p型体外延层和防护环型结,在p型体外延层上设有p+接地、n+源和栅极沟槽,所述栅极沟槽内设有栅极底部绝缘层、沟槽栅极氧化绝缘层和n+多晶态电极;
所述绝缘层上设有源极金属电极和栅极金属电极,所述源极金属电极与n+多晶态电极接触。
2.根据权利要求1所述的一种沟槽结构碳化硅氧化物场效应管,其特征在于:所述绝缘层包括氧化层和ILD绝缘层,所述氧化层与n型SiC层接触。
3.一种沟槽结构碳化硅氧化物场效应管的制备方法,其特征在于:包括以下步骤:
步骤1、在n+型SiC基板晶圆片上依次生长n-型SiC外延层和氧化膜,在氧化膜上覆盖一层光刻胶,光刻出p+型埋层的位置;高温下向光刻出的位置处注入高浓度的铝;
步骤2、去除前一步遮蔽的氧化膜,然后在n-型SiC外延层上生长n型SiC外延层,然后在n型SiC外延层上生长氧化膜;接着覆盖一层光刻胶,光刻出保护区域,再以高温向保护区域内注入铝掺杂质;
步骤3、除去前一步骤的遮蔽的氧化膜,重新覆盖上氧化薄膜和光刻胶,光刻出p型体外延层的定义位置,再以高温向光刻出的位置上注入铝掺杂质;
步骤4、完成前一步骤后,继续覆盖光刻胶,然后光刻出n+源的定义位置,并在高温下向n+源的定义位置注入N氮掺杂质;
除去前一步骤遮蔽的氧化膜,重新覆盖上氧化膜和光刻胶,光刻出p+接地的定义位置,再向p+接地的定义位置注入铝掺杂质;
步骤5、除去前一步骤的遮蔽的氧化膜,重新覆盖上一层光刻胶,活化步骤1-4掺入的杂质,形成p+型埋层、防护环型结、p型体外延层、n+源和p+接地,光刻胶石墨化形成石墨层;
步骤6、去除上一步骤的石墨层,然后以CVD法依次生第一氧化膜、多晶硅、第二氧化膜,接着蚀刻出栅区的U形的栅极沟槽;在U形的栅极沟槽内涂覆氧化层,并进行热硬化处理,从而在沟槽底部形成氧化膜,其厚保持在0.5μm-1μm;
步骤7、采用气体生长方式在U形的栅极沟槽内生长50-100nm沟槽栅极氧化绝缘层,然后在高温下通N2O和N2的混合气体,使原本存在SiC/SiO2接触面的缺陷口,混合氮气通过该形成氮化膜;接着,以磷酸清洗掉表面的氮化膜,去除多晶硅和第二氧化膜;在U形的栅极沟槽上生长n+多晶态电极;
步骤8、在第一氧化膜上生长BPSG薄膜,然后在900℃大气压力下通氮气,形成ILD绝缘层,然后在ILD绝缘层覆盖光刻胶保护;
在n+型SiC基板晶圆片的下表面交替堆栈氧化膜与多晶硅至所需厚度;再进行抛光并镀上镍金属,然后再以1000℃,大气压力下的氩气氛,进行RTP工艺处理,形成欧姆接触;
步骤9、在IDL绝缘层上定义出上部源极金属电极的位置,并蚀刻出源极区;依次交替堆栈氧化膜与多晶硅至所需厚度、镀上镍金属,然后再以1000℃,大气压力氩气氛下,进行RTP工艺处理,形成欧姆接触;
步骤10、清洗ILD绝缘层上部表面,镀上TiW/AlSi合金厚膜;再光刻出所需的栅极金属电极和源极金属电极;
在450℃下、大气压力的通H2/N2,清洗n+型SiC基板的下表面,利用电子束镀上Ti/Ag薄膜,形成漏极金属电极,然后进行热处理,完成金属电极布置。
CN202010871123.8A 2020-08-26 2020-08-26 一种沟槽结构碳化硅氧化物场效应管及其制备方法 Pending CN111900209A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010871123.8A CN111900209A (zh) 2020-08-26 2020-08-26 一种沟槽结构碳化硅氧化物场效应管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010871123.8A CN111900209A (zh) 2020-08-26 2020-08-26 一种沟槽结构碳化硅氧化物场效应管及其制备方法

Publications (1)

Publication Number Publication Date
CN111900209A true CN111900209A (zh) 2020-11-06

Family

ID=73225785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010871123.8A Pending CN111900209A (zh) 2020-08-26 2020-08-26 一种沟槽结构碳化硅氧化物场效应管及其制备方法

Country Status (1)

Country Link
CN (1) CN111900209A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078174A (ja) * 2006-09-19 2008-04-03 Fuji Electric Holdings Co Ltd トレンチゲート型炭化珪素半導体装置
CN101834203A (zh) * 2008-12-25 2010-09-15 罗姆股份有限公司 半导体装置及半导体装置的制造方法
CN109065540A (zh) * 2018-08-06 2018-12-21 中国科学院半导体研究所 一种集成SBD的SiC UMOSFET的结构及制备方法
CN213150782U (zh) * 2020-08-26 2021-05-07 璨隆科技发展有限公司 一种沟槽结构碳化硅氧化物场效应管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078174A (ja) * 2006-09-19 2008-04-03 Fuji Electric Holdings Co Ltd トレンチゲート型炭化珪素半導体装置
CN101834203A (zh) * 2008-12-25 2010-09-15 罗姆股份有限公司 半导体装置及半导体装置的制造方法
CN109065540A (zh) * 2018-08-06 2018-12-21 中国科学院半导体研究所 一种集成SBD的SiC UMOSFET的结构及制备方法
CN213150782U (zh) * 2020-08-26 2021-05-07 璨隆科技发展有限公司 一种沟槽结构碳化硅氧化物场效应管

Similar Documents

Publication Publication Date Title
US8716087B2 (en) Silicon carbide semiconductor device and method for producing the same
JP4843854B2 (ja) Mosデバイス
JP4932701B2 (ja) トレンチ型半導体デバイス及びその製造方法
CN101859706B (zh) 碳化硅半导体装置的制造方法及碳化硅半导体装置
WO2014054121A1 (ja) 半導体装置、半導体装置の製造方法
CN102227000B (zh) 基于超级结的碳化硅mosfet器件及制备方法
CN106876256B (zh) SiC双槽UMOSFET器件及其制备方法
CN112382655B (zh) 一种宽禁带功率半导体器件及制备方法
JP5054735B2 (ja) 半導体基材内に材料層を製造する方法
CN114927559B (zh) 一种碳化硅基超结沟槽型mosfet及制备方法
JP2005039257A (ja) 半導体装置及びその製造方法
CN113990948A (zh) 一种半导体器件及其应用与制造方法
CN107481939B (zh) 帽层结构氧化镓场效应晶体管的制备方法
CN113013229A (zh) 一种碳化硅umosfet功率器件及其制备方法
CN112599603A (zh) 基于纵向肖特基源隧穿结的准垂直场效应晶体管及方法
KR20190052001A (ko) 규소 탄화물 상의 절연 층 및 반도체 소자 제조 방법
CN213150782U (zh) 一种沟槽结构碳化硅氧化物场效应管
CN115377200A (zh) 一种半导体器件及其制备方法
CN111081778A (zh) 一种碳化硅沟槽型mosfet器件及其制造方法
CN103930996A (zh) 半导体器件
CN206574721U (zh) 一种集成肖特基二极管的SiC双沟槽型MOSFET器件
CN109801959B (zh) 一种SiC基DMOSFET器件及其制备方法
CN111900209A (zh) 一种沟槽结构碳化硅氧化物场效应管及其制备方法
CN110323283B (zh) 一种浮结型肖特基势垒二极管及其制作方法
CN109686792B (zh) 一种常关型SiC基DMOSFET器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination