CN111908910B - 一种暖白光照明用高显指透明陶瓷及其制备方法 - Google Patents
一种暖白光照明用高显指透明陶瓷及其制备方法 Download PDFInfo
- Publication number
- CN111908910B CN111908910B CN202010829635.8A CN202010829635A CN111908910B CN 111908910 B CN111908910 B CN 111908910B CN 202010829635 A CN202010829635 A CN 202010829635A CN 111908910 B CN111908910 B CN 111908910B
- Authority
- CN
- China
- Prior art keywords
- color
- transparent ceramic
- solution
- rendering
- warm white
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/44—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7774—Aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/442—Carbonates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/443—Nitrates or nitrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6582—Hydrogen containing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6586—Processes characterised by the flow of gas
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
- C04B2235/662—Annealing after sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
- C04B2235/9653—Translucent or transparent ceramics other than alumina
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Luminescent Compositions (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明提供了一种暖白光照明用高显指透明陶瓷及其制备方法,采用共沉淀法制备了具有强结构刚性的透明陶瓷,掺杂Ce3+取代Sr2+和Lu3+时,在410 nm的激发下显示出较低的色温,实现了光谱展宽,提高了显指,非常适合用于适用于室内暖白光照明。
Description
技术领域
本发明属于透明陶瓷应用技术领域,本发明提供一种暖白光照明用高显指透明陶瓷及其制备方法。
背景技术
近年来,随着发光材料及其制备技术的发展,以半导体发光二极管为基础的白光LED照明受到人们的广泛关注。实现白光LED照明的方式有多种,其中,“蓝色LED芯片+黄色荧光粉”的组合方式是目前实现白光LED照明的重要方式之一。然而,高分子材料容易老化,且耐高温性差,从而会对白光LED的颜色品质和流明效率产生影响。
而且,由于缺少红色成分,导致色温(CCT)高,显色指数(CRI)低,在室内照明时不能给人带来温暖和舒适。此外,460 nm左右的强蓝色发射带太窄,导致出现富蓝色。为了获得热白光LED,近紫外LED芯片复合三色(红、绿、蓝)荧光粉成为人们研究的热点。这种方法可以有效地提高显色指数,调节色温,但不同荧光粉的制作复杂度和重吸收应是明显的,尤其是红色荧光粉对蓝光的吸收,这会降低荧光粉的发光效率。为了解决这一问题,人们采用掺Ce3+的YAG荧光陶瓷代替传统的荧光粉来封装白光LED。荧光陶瓷较传统的荧光粉具有较高的吸收系数和折射率,且其透明性好、硬度高、耐腐蚀、耐高温、制作工艺简单、生产成本低,可以大批量生产,且掺杂浓度易于控制,Ce3+掺杂在陶瓷中的分布也比较均匀。而采用蓝色InGaN芯片配以绿色和红色荧光粉来解决这一缺陷,虽然可以满足高CRI和低CCT的要求,但是绿色的缺失使其并不不适用于高质量的暖白光LED照明。因此,探索获得高CRI、低CCT的高效暖白光的新途径是一项迫切的工作。
近年来人们在荧光陶瓷的研究上花费了大量的精力和时间,合成了多种不同颜色的稀土和过渡元素掺杂的荧光陶瓷。但是Ce3+掺杂的石榴石结构的透明陶瓷很少能发出有效的青绿色光。虽然有些绿色发光的荧光粉如BaSi2O2N2:Eu2+,(Lu2M) (Al4Si) O12:Ce3+ (M=Mg、Ca、Sr和Ba), Ca2LuHf2 (AlO4)3:Ce3+等等,他们的缺点也是不可忽视的,如发射光谱较窄,热稳定性差,限制了其应用于高质量的暖白光LED。因此,探索在具有宽光谱发射的高效绿色荧光透明陶瓷对高质量的暖白光LED具有重要意义。
发明内容
1.为了解决上述问题,本发明提供了一种暖白光照明用高显指透明陶瓷及其制备方法,采用共沉淀法制备了具有强结构刚性的透明陶瓷,掺杂Ce3+取代Sr2+和Lu3+时,在410nm的激发下显示出较低的色温,实现了光谱展宽,提高了显指,非常适合用于适用于室内暖白光照明。
2.本发明的技术方案如下:
首先,按照化学计量比配置包括Ce3+、Lu3+、Sr2+、Hf4+和Al3+的硝酸盐溶液及氨水和碳酸氢铵的复合沉淀剂溶液;然后,共沉淀过程,将复合沉淀剂溶液滴入至金属离子的硝酸盐溶液中并搅拌,并调整pH至8~10,然后常温下静置陈化,陈化后再依次加入去离子和无水乙醇抽滤、烘干、煅烧、过筛,得到前驱体粉体;最后,将得到的前驱体粉体进行冷等静压成型,得到素坯;将素坯置于真空烧结炉中烧结,然后置于管式炉中在氮中氢气氛下进行退火,抛光后得到所述透明陶瓷。
进一步的,所述金属离子的硝酸盐溶液的溶度为0.05~5.0mol/L;氨水和碳酸氢铵的复合沉淀剂溶液的浓度为0.05-10mol/L,碳酸氢铵与氨水的摩尔浓度比为1: (0.5~5);
所述复合沉淀剂溶液以5~10 ml/min的速率滴入到金属离子的硝酸盐溶液中,并不断搅拌;混合沉淀溶液搅拌速率为300~600 r/min,静置陈化时间为0.5~48h,抽滤速度为50~80 ml/min,加入的去离子水或无水乙醇与沉淀溶液的体积比为 (1~2):1,次数分别为3~5次;抽滤后得到的前驱体在50~80°C的烘箱中干燥12~48 h;然后在900~1300°C煅烧2-6h。
所述冷等静压的压力为200~240 MPa,保压3~6 min;真空烧结的温度为1700~1900oC,升温速率为2~5 oC/min,保温时间为5~10 h;退火时,所述氮气与氢气的体积之比为1:(0.2~1),退火温度为1100 oC~1400 oC。
有益效果
1.本发明提供的一种暖白光照明用高显指透明陶瓷材料,具有更高的结构刚性,在410 nm的激发下,具有430~750 nm的宽发射光谱,色温低于3800K,显指达到90~91.6,所制成的LED器件可得到优异的暖白光。
2.本发明提供的方法在制备透明陶瓷的过程中,选用高纯的原料粉体,并严格控制共沉淀过程中杂质的引入,制备出的透明陶瓷前驱体纯度高,具有更好的热稳定性,非常适合用于高质量透明陶瓷的制备。
3.本发明提供的用于暖白光照明的高显指透明陶瓷,制备方法简便,陈化时间可在大范围内调整,有利于工业化生产。
附图说明
图1 实施例1制备的透明陶瓷与400 nmLED芯片和CaAlSiN3:Eu3+组合的发光装置电致发光光谱与点亮照片
具体实施方式
下面结合具体实例对本发明做进一步的说明,但不应以此限制本发明的保护范围。
实施例1:Ce0.02(Sr2Lu)0.98Hf2(AlO4)3透明陶瓷
首先,按照化学计量比配置包括Ce3+、Lu3+、Sr2+、Hf4+和Al3+的硝酸盐溶液及氨水和碳酸氢铵的复合沉淀剂溶液;然后,共沉淀过程,将复合沉淀剂溶液滴入至金属离子的硝酸盐溶液中并搅拌,并调整pH至9,然后常温下静置陈化,陈化后再依次加入去离子和无水乙醇抽滤、烘干、煅烧、过筛,得到前驱体粉体;最后,将得到的前驱体粉体进行冷等静压成型,得到素坯;将素坯置于真空烧结炉中烧结,然后置于管式炉中在氮中氢气氛下进行退火,抛光后得到所述透明陶瓷。
进一步的,所述金属离子的硝酸盐溶液的溶度为5.0mol/L;氨水和碳酸氢铵的复合沉淀剂溶液的浓度为0.05mol/L,碳酸氢铵与氨水的摩尔浓度比为1: 0.5;
所述复合沉淀剂溶液以10 ml/min的速率滴入到金属离子的硝酸盐溶液中,并不断搅拌;混合沉淀溶液搅拌速率为300 r/min,静置陈化时间为48h,抽滤速度为50 ml/min,加入的去离子水或无水乙醇与沉淀溶液的体积比为 2:1,次数分别为5次;抽滤后得到的前驱体在50°C的烘箱中干燥48 h;然后在900°C煅烧6 h。
所述冷等静压的压力为200MPa,保压3 min;真空烧结的温度为1900 oC,升温速率为2 oC/min,保温时间为10 h;退火时,所述氮气与氢气的体积之比为1:0.2,退火温度为1400 oC。
如图1,在410 nm的激发下,具有430~750 nm的宽发射光谱,色温为3780K,显指达到91.6。
实施例2: Ce0.05(Sr2Lu)0.95Hf2(AlO4)3透明陶瓷
首先,按照化学计量比配置包括Ce3+、Lu3+、Sr2+、Hf4+和Al3+的硝酸盐溶液及氨水和碳酸氢铵的复合沉淀剂溶液;然后,共沉淀过程,将复合沉淀剂溶液滴入至金属离子的硝酸盐溶液中并搅拌,并调整pH至8,然后常温下静置陈化,陈化后再依次加入去离子和无水乙醇抽滤、烘干、煅烧、过筛,得到前驱体粉体;最后,将得到的前驱体粉体进行冷等静压成型,得到素坯;将素坯置于真空烧结炉中烧结,然后置于管式炉中在氮中氢气氛下进行退火,抛光后得到所述透明陶瓷。
进一步的,所述金属离子的硝酸盐溶液的溶度为0.05mol/L;氨水和碳酸氢铵的复合沉淀剂溶液的浓度为0.05-10mol/L,碳酸氢铵与氨水的摩尔浓度比为1:5;
所述复合沉淀剂溶液以5 ml/min的速率滴入到金属离子的硝酸盐溶液中,并不断搅拌;混合沉淀溶液搅拌速率为600 r/min,静置陈化时间为0.5h,抽滤速度为80 ml/min,加入的去离子水或无水乙醇与沉淀溶液的体积比为 1:1,次数分别为4次;抽滤后得到的前驱体在80°C的烘箱中干燥12 h;然后在1300°C煅烧2 h。
所述冷等静压的压力为240 MPa,保压6 min;真空烧结的温度为1700 oC,升温速率为5 oC/min,保温时间为5 h;退火时,所述氮气与氢气的体积之比为1:1,退火温度为1100 oC。
在410 nm的激发下,具有430~750 nm的宽发射光谱,色温为3702K,显指达到90.2。
实施例3:Ce0.03(Sr2Lu)0.97Hf2(AlO4)3透明陶瓷
首先,按照化学计量比配置包括Ce3+、Lu3+、Sr2+、Hf4+和Al3+的硝酸盐溶液及氨水和碳酸氢铵的复合沉淀剂溶液;然后,共沉淀过程,将复合沉淀剂溶液滴入至金属离子的硝酸盐溶液中并搅拌,并调整pH至10,然后常温下静置陈化,陈化后再依次加入去离子和无水乙醇抽滤、烘干、煅烧、过筛,得到前驱体粉体;最后,将得到的前驱体粉体进行冷等静压成型,得到素坯;将素坯置于真空烧结炉中烧结,然后置于管式炉中在氮中氢气氛下进行退火,抛光后得到所述透明陶瓷。
进一步的,所述金属离子的硝酸盐溶液的溶度为1.0mol/L;氨水和碳酸氢铵的复合沉淀剂溶液的浓度为2mol/L,碳酸氢铵与氨水的摩尔浓度比为1:1;
所述复合沉淀剂溶液以8 ml/min的速率滴入到金属离子的硝酸盐溶液中,并不断搅拌;混合沉淀溶液搅拌速率为400 r/min,静置陈化时间为12h,抽滤速度为70 ml/min,加入的去离子水或无水乙醇与沉淀溶液的体积比为 1.5:1,次数分别为3次;抽滤后得到的前驱体在75°C的烘箱中干燥24 h;然后在1000°C煅烧5 h。
所述冷等静压的压力为220 MPa,保压4 min;真空烧结的温度为1750 oC,升温速率为4 oC/min,保温时间为8 h;退火时,所述氮气与氢气的体积之比为1:0.5,退火温度为1200 oC。
在410 nm的激发下,具有430~750 nm的宽发射光谱,色温为3750K,显指达到90。
实施例4:Ce0.02(Sr2Lu)0.98Hf2(AlO4)3透明陶瓷
首先,按照化学计量比配置包括Ce3+、Lu3+、Sr2+、Hf4+和Al3+的硝酸盐溶液及氨水和碳酸氢铵的复合沉淀剂溶液;然后,共沉淀过程,将复合沉淀剂溶液滴入至金属离子的硝酸盐溶液中并搅拌,并调整pH至7,然后常温下静置陈化,陈化后再依次加入去离子和无水乙醇抽滤、烘干、煅烧、过筛,得到前驱体粉体;最后,将得到的前驱体粉体进行冷等静压成型,得到素坯;将素坯置于真空烧结炉中烧结,然后置于管式炉中在氮中氢气氛下进行退火,抛光后得到所述透明陶瓷。
进一步的,所述金属离子的硝酸盐溶液的溶度为5.0mol/L;氨水和碳酸氢铵的复合沉淀剂溶液的浓度为0.05mol/L,碳酸氢铵与氨水的摩尔浓度比为1: 0.5;
所述复合沉淀剂溶液以10 ml/min的速率滴入到金属离子的硝酸盐溶液中,并不断搅拌;混合沉淀溶液搅拌速率为300 r/min,静置陈化时间为48h,抽滤速度为50 ml/min,加入的去离子水或无水乙醇与沉淀溶液的体积比为 2:1,次数分别为5次;抽滤后得到的前驱体在50°C的烘箱中干燥48 h;然后在900°C煅烧1 h。
所述冷等静压的压力为200MPa,保压3 min;真空烧结的温度为1900 oC,升温速率为2 oC/min,保温时间为10 h;退火时,所述氮气与氢气的体积之比为1:0.2,退火温度为1400 oC。
与实施例1相比,在较低的pH下进行共沉淀且素烧时间较短,在点亮时出现了陶瓷样品断裂的情况,热稳定性差,不适合应用。
Claims (3)
1.一种暖白光照明用高显指透明陶瓷的制备方法,其特征在于,所制备的透明陶瓷粉体满足下式组分:
Cex(Sr2Lu)1-xHf2(AlO4)3
其中0<x≤0.05,具体步骤如下:
步骤一:按照化学计量比配置包括Ce3+、Lu3+、Sr2+、Hf4+和Al3+的硝酸盐溶液及氨水和碳酸氢铵的复合沉淀剂溶液;金属离子的硝酸盐溶液的溶度为0.05~5.0mol/L;氨水和碳酸氢铵的复合沉淀剂溶液的浓度为0.05-10mol/L,碳酸氢铵与氨水的摩尔浓度比为1: (0.5~5);
步骤二:共沉淀过程,将复合沉淀剂溶液滴入至金属离子的硝酸盐溶液中并搅拌,并调整pH至8~10,然后常温下静置陈化,陈化后再依次加入去离子和无水乙醇抽滤、烘干、煅烧、过筛,得到前驱体粉体;复合沉淀剂溶液以5~10 ml/min的速率滴入到金属离子的硝酸盐溶液中,并不断搅拌;混合沉淀溶液搅拌速率为300~600 r/min,静置陈化时间为0.5~48h,抽滤速度为50~80 ml/min,加入的去离子水或无水乙醇与沉淀溶液的体积比为 (1~2):1,次数分别为3~5次;抽滤后得到的前驱体在50~80 o C 的烘箱中干燥12~48 h;然后在900~1300o C 煅烧2-6 h;
步骤三:将得到的前驱体粉体进行冷等静压成型,得到素坯;将素坯置于真空烧结炉中烧结,然后置于管式炉中在氮中氢气氛下进行退火,抛光后得到所述透明陶瓷;冷等静压的压力为200~240 MPa,保压3~6 min;真空烧结的温度为1700~1900 oC,升温速率为2~5 oC/min,保温时间为5~10 h;退火时,所述氮气与氢气的体积之比为1:(0.2~1),退火温度为1100 oC~1400 oC。
2.按权利要求1所述的暖白光照明用高显指透明陶瓷的制备方法,其特征在于,最终制备得到的暖白光照明用高显指透明陶瓷在410 nm的激发下,具有430~750 nm的宽发射光谱,色温低于3800K,显指达到90~91.6。
3.一种暖白光照明用高显指透明陶瓷,其特征在于,按权利要求1或2所述的暖白光照明用高显指透明陶瓷的制备方法制备而成。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010829635.8A CN111908910B (zh) | 2020-08-18 | 2020-08-18 | 一种暖白光照明用高显指透明陶瓷及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010829635.8A CN111908910B (zh) | 2020-08-18 | 2020-08-18 | 一种暖白光照明用高显指透明陶瓷及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111908910A CN111908910A (zh) | 2020-11-10 |
CN111908910B true CN111908910B (zh) | 2022-04-22 |
Family
ID=73279047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010829635.8A Active CN111908910B (zh) | 2020-08-18 | 2020-08-18 | 一种暖白光照明用高显指透明陶瓷及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111908910B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112500163A (zh) * | 2020-12-24 | 2021-03-16 | 中红外激光研究院(江苏)有限公司 | 一种高可见光透过率氧化钇透明陶瓷的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106459758A (zh) * | 2014-05-01 | 2017-02-22 | 东北泰克诺亚奇股份有限公司 | 发光体及辐射探测器 |
CN106520119A (zh) * | 2016-10-24 | 2017-03-22 | 兰州大学 | 一种可发出青色光的荧光粉及其制备方法 |
WO2019053242A1 (de) * | 2017-09-18 | 2019-03-21 | Merck Patent Gmbh | Mehrkomponentenleuchtstoffe als farbkonverter für festkörperlichtquellen |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007010719A1 (de) * | 2007-03-06 | 2008-09-11 | Merck Patent Gmbh | Leuchtstoffe bestehend aus dotierten Granaten für pcLEDs |
CN101333441A (zh) * | 2008-07-16 | 2008-12-31 | 上海大学 | Ce3+掺杂的镥铝石榴石纳米陶瓷发光粉体的制备方法 |
EP2730637B1 (en) * | 2011-07-05 | 2017-06-14 | Panasonic Corporation | Rare-earth aluminum garnet type fluorescent substance and light-emitting device obtained using same |
CN102690113A (zh) * | 2012-06-06 | 2012-09-26 | 上海大学 | 镥铝石榴石透明闪烁陶瓷的低温真空烧结制备方法 |
CN104030693B (zh) * | 2014-06-16 | 2016-01-20 | 上海应用技术学院 | 一种三元阳离子Ce:LuAG陶瓷荧光粉的制备方法 |
CN107002978B (zh) * | 2014-11-11 | 2020-03-31 | 亮锐控股有限公司 | 具有陶瓷石榴石的照明设备 |
CN104496474B (zh) * | 2014-11-24 | 2016-10-12 | 南京工业大学 | 一种紫外转换白光led透明陶瓷材料及其制备方法 |
CN104557012B (zh) * | 2014-12-18 | 2017-03-08 | 徐州市江苏师范大学激光科技有限公司 | 一种Pr:LuAG闪烁陶瓷的制备方法 |
WO2017131693A1 (en) * | 2016-01-28 | 2017-08-03 | Ecosense Lighting Inc | Compositions for led light conversions |
CN108218417A (zh) * | 2016-12-14 | 2018-06-29 | 中国科学院上海硅酸盐研究所 | 一种低价态离子掺杂的LuAG:Ce,Me闪烁陶瓷及其制备方法 |
CN108410452B (zh) * | 2017-02-09 | 2021-03-19 | 有研稀土新材料股份有限公司 | 发光材料组合物以及发光装置 |
CN108863340B (zh) * | 2017-05-16 | 2020-10-23 | 中国科学院上海硅酸盐研究所 | 一种复合结构透明闪烁陶瓷及其制备方法 |
CN109205654A (zh) * | 2018-10-29 | 2019-01-15 | 山东力诺瑞特新能源有限公司 | 一种Ce、Sm共掺杂Lu3Al5O12纳米荧光粉的微波制备方法 |
CN109592978B (zh) * | 2018-12-03 | 2021-07-23 | 江苏师范大学 | 高功率led/ld照明用暖白光高显指荧光陶瓷及其制备方法与应用 |
CN111205081B (zh) * | 2020-01-21 | 2022-03-15 | 徐州凹凸光电科技有限公司 | 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用 |
-
2020
- 2020-08-18 CN CN202010829635.8A patent/CN111908910B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106459758A (zh) * | 2014-05-01 | 2017-02-22 | 东北泰克诺亚奇股份有限公司 | 发光体及辐射探测器 |
CN106520119A (zh) * | 2016-10-24 | 2017-03-22 | 兰州大学 | 一种可发出青色光的荧光粉及其制备方法 |
WO2019053242A1 (de) * | 2017-09-18 | 2019-03-21 | Merck Patent Gmbh | Mehrkomponentenleuchtstoffe als farbkonverter für festkörperlichtquellen |
Also Published As
Publication number | Publication date |
---|---|
CN111908910A (zh) | 2020-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113249125B (zh) | Ce3+掺杂的硅酸盐基绿色荧光粉及其制备方法和应用 | |
CN111908910B (zh) | 一种暖白光照明用高显指透明陶瓷及其制备方法 | |
CN111187622A (zh) | 白光led用单一基质磷酸盐荧光粉及其制备方法 | |
CN110041921A (zh) | 一种锰离子激活的绿色荧光粉及其制备方法 | |
TWI432555B (zh) | 鋁酸鹽類化合物螢光粉 | |
CN107384383A (zh) | 一种uv激发白光led用复合型荧光粉 | |
CN113999671B (zh) | 一种照明显示白光led用荧光粉及其制备和应用 | |
CN109370588B (zh) | 半导体发光用的氮化物荧光粉及其制备方法和发光装置 | |
WO2016065725A1 (zh) | 荧光材料及其制造方法和包含该荧光材料的组合物 | |
CN110527508A (zh) | 一种白光led用氮化物红色荧光粉及其制备方法 | |
CN109536169A (zh) | 一种白光led用单基质硅酸盐白光荧光粉及其制备方法 | |
CN115305088A (zh) | 基于石榴石结构衍生的荧光粉材料及其制备方法和应用 | |
CN110283588B (zh) | 一种照明显示用白光led用荧光粉及其制备和应用 | |
CN110373188B (zh) | 一种紫外激发的Eu单掺杂单相白光发射荧光粉及其制备方法 | |
CN102321478A (zh) | 一种氮氧化物荧光粉及其制备方法和应用 | |
CN105238401B (zh) | 基于紫外光或近紫外光激发的白光荧光粉及其制备方法 | |
CN106433623B (zh) | 一种硅基氮氧化物荧光粉及其制备方法和应用 | |
CN116925753B (zh) | 一种荧光材料的制备方法 | |
CN116396754B (zh) | 一种宽谱激发的窄带绿光氮氧化物荧光粉 | |
CN116814264B (zh) | 铕、铒单掺及铕铒共掺铟酸锶钇多晶荧光粉及其制备方法 | |
CN116144357B (zh) | 一种紫外激发的绿光发射荧光粉及其制备方法与应用 | |
CN103045258A (zh) | 一种白光led用红色荧光粉及其制备方法 | |
CN110028957B (zh) | 一种绿色锰掺杂硅酸盐荧光材料的制备方法和应用 | |
CN102719250A (zh) | 蓝光基单一荧光粉及其在制备白光led中的应用 | |
CN117343729A (zh) | 一种Eu2+掺杂高量子效率青色荧光粉及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |