[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN111905748B - 一种空心柱状ZnFe2O4/CaTiO3复合材料及其制备与应用 - Google Patents

一种空心柱状ZnFe2O4/CaTiO3复合材料及其制备与应用 Download PDF

Info

Publication number
CN111905748B
CN111905748B CN202010843218.9A CN202010843218A CN111905748B CN 111905748 B CN111905748 B CN 111905748B CN 202010843218 A CN202010843218 A CN 202010843218A CN 111905748 B CN111905748 B CN 111905748B
Authority
CN
China
Prior art keywords
solution
znfe
catio
composite material
leaves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010843218.9A
Other languages
English (en)
Other versions
CN111905748A (zh
Inventor
孙青�
占文卿
张俭
盛嘉伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202010843218.9A priority Critical patent/CN111905748B/zh
Publication of CN111905748A publication Critical patent/CN111905748A/zh
Application granted granted Critical
Publication of CN111905748B publication Critical patent/CN111905748B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了具有磁性可回收的空心柱状ZnFe2O4/CaTiO3复合材料及其制备方法与应用。本发明采用树叶叶脉为结构载体制备空心柱状复合材料,廉价易得的CaCO3为钙源替代可溶性钙盐,钛源中混有的酸溶解钙源获取钙离子,弱酸H2C2O4替代H2SO4或HNO3等强酸性调节剂,弱碱CO(NH2)2替代NaOH或KOH等强碱性调节剂,有效避免了制备过程中的强酸强碱污染,提供了一种节约能源、绿色环保、无需强酸强碱和高温煅烧制备具有吸附作用、磁性可回收、空心柱状ZnFe2O4/CaTiO3复合材料的方法,制得复合材料呈空心柱状且分布均匀,具有优良的磁性能,有效提高了复合材料的回收利用,还具有一定的吸附效果和良好的光催化性能,具有较好应用前景。

Description

一种空心柱状ZnFe2O4/CaTiO3复合材料及其制备与应用
(一)技术领域
本发明涉及一种空心柱状ZnFe2O4/CaTiO3复合材料及其制备方法与应用。
(二)背景技术
随着社会的不断发展,环境问题随之而来,水资源及其污染问题日益严峻,给人类的生产生活带来前所未有的挑战。传统的水处理方法价格高、能耗大、回收难且效率低,在此背景下寻求一种绿色高效和易回收的光催化剂具有重要意义。
钙钛矿因其优良的介电性能、催化性能、生物相容性和光学性能,被广泛应用于电瓷材料、光催化还原CO2、防腐、建筑涂料、低温共烧陶瓷、活细胞成像和降解有机污染物等方面。CaTiO3作为最早发现的钙钛矿型氧化物,受到国内外研究者们的广泛关注。如Pei J等以Ti(C4H9O)4、Ca(NO3)2、KOH等为原料制备了CaTiO3/Ca (OH)2复合光催化剂(Pei J,MengJ,Wu S,et al.Effects of Ca/Ti ratio on morphology control and photocatalyticactivity of CaTiO3/Ca (OH)2composite photocatalyst[J].Materials Letters,2020:128229.)。 SHU QIANG等以CaCO3和TiO2为原料,经1400℃煅烧2~12h,制备了CaTiO3(SHUQIANG,JIAO,KRISHNANKUTTY-NAIR,et al. Preparation and electricalproperties of xCaRuO3/(1-x)CaTiO3 perovskite composites[J].Materials ResearchBulletin, 2009:1738-1742.)。
ZnFe2O4作为一种磁性铁氧体,具有结构稳定、成本低廉等优势,可用作光催化材料载体,与光催化材料进行复合可增加光催化材料的循环利用率。对于ZnFe2O4的制备科研学者们也进行了诸多研究,如朱梅英等以 FeSO4和ZnSO4为原料,两次用NaOH调节pH,制备了ZnFe2O4材料(朱梅英,刘辉,魏雨.由氢氧化氧铁制备纳米级铁酸锌及产物性质研究[J]. 无机盐工业,2007,039(008):19-21.)。
树叶的叶脉能够为植物体运输水分、无机盐和有机养料等,相互连接交错组成了维管系统。以树叶作为生物膜板,使Fe离子和Zn离子等进入叶脉,通过调控反应条件,可使产物沿叶脉生长从而制备出具有特殊形状的ZnFe2O4/CaTiO3复合材料。如果能将CaTiO3和ZnFe2O4有效的结合在一起,一方面可以制备空心柱状的复合材料,另一方面可增加复合光催化材料的磁性可回收性能,因此开发一种具有磁性可回收的空心柱状 ZnFe2O4/CaTiO3复合材料的制备方法具有重要意义。
(三)发明内容
本发明目的是提供具有磁性可回收的空心柱状ZnFe2O4/CaTiO3复合材料及其制备方法与应用。
本发明采用的技术方案是:
一种以树叶叶脉为结构载体制备空心柱状ZnFe2O4/CaTiO3复合材料的方法,所述方法包括:
(1)新鲜树叶洗净,剪去边缘,剩下部分剪碎后避光保存备用;
(2)称取CaCO3、TiOSO4、ZnSO4·7H2O、FeSO4·7H2O、H2C2O4、 CO(NH2)2分别置于去离子水中,搅拌均匀得到钙源悬浮液、钛源溶液、锌源溶液、铁源溶液、H2C2O4溶液和CO(NH2)2溶液;
(3)将步骤(2)制备的锌源溶液、铁源溶液按照ZnSO4·7H2O: FeSO4·7H2O摩尔比为1:1.8~2.2混合均匀,得到混合溶液一;
(4)称取步骤(1)所得树叶碎片加入混合溶液一中,得到树叶共混溶液;
(5)将步骤(4)得到的树叶共混溶液置于恒温磁力搅拌器中75~90℃持续搅拌,滴加H2C2O4溶液得到附着在树叶上的ZnFe2O4前驱体,其中ZnSO4·7H2O与H2C2O4的质量比为1:1~1.4;
(6)将步骤(5)反应后的树叶取出依次用去离子水和无水乙醇进行洗涤后备用;
(7)将锌源溶液置于恒温磁力搅拌器中20~30℃持续搅拌下缓慢加入钙源悬浮液,搅拌均匀后得到混合溶液二;
(8)将CO(NH2)2溶液滴加到混合溶液二中,调节溶液的pH至 6.5~7.5,得到混合溶液三;
(9)将步骤(6)得到的附着有ZnFe2O4前驱体的树叶置于混合溶液三中,静置8~12h后,转移到反应釜中进行水热反应;
(10)步骤(9)水热反应产物经过滤洗涤干燥后,转移至马弗炉中煅烧,煅烧后经洗涤、干燥和研磨得到红棕色ZnFe2O4/CaTiO3固体粉末,即所述空心柱状ZnFe2O4/CaTiO3复合材料。
本发明采用树叶叶脉为结构载体制备空心柱状复合材料,廉价易得的 CaCO3为钙源替代可溶性钙盐,钛源中混有的酸溶解钙源获取钙离子,弱酸H2C2O4替代H2SO4或HNO3等强酸性调节剂,弱碱CO(NH2)2替代 NaOH或KOH等强碱性调节剂,有效避免了制备过程中的强酸强碱污染,提供了一种节约能源、绿色环保、无需强酸强碱和高温煅烧制备具有吸附作用、磁性可回收、空心柱状ZnFe2O4/CaTiO3复合材料的方法。
进一步,步骤(1)中,将树叶边缘剪去后,将树叶剪碎成3mm*3mm 左右的碎片,在避光处保存备用。
步骤(2)中钙源悬浮液的配制方法如下:将CaCO3置于去离子水中,室温下超声搅拌15~30min,得到CaCO3悬浮液;CaCO3与水的配比为 1g:10~30mL,超声功率为60~180W。
步骤(2)中钛源溶液的配制方法如下:将TiOSO4与去离子水混合,超声搅拌15~30min后,在20~40℃下继续搅拌,得到TiOSO4溶液;其中,TiOSO4与水的配比为1g:10~30mL,超声功率为60~180W。
优选的,步骤(2)中:锌源溶液中ZnSO4·7H2O与水的配比为1g: 20~40mL;铁源溶液中FeSO4·7H2O与水的配比为1g:20~40mL; H2C2O4溶液中H2C2O4与水的配比为0.5g:20~40mL;CO(NH2)2溶液中CO(NH2)2与水的配比为1g:10~15mL。
具体的,步骤(4)树叶共混溶液中ZnSO4·7H2O和树叶的质量比为 1:6~14。
优选的,步骤(7)混合溶液二中CaCO3和TiOSO4的质量比为1:1~2,搅拌时间20~40min。
优选的,步骤(9)所述水热反应在130℃~170℃下进行,反应时间 8~14h。
优选的,步骤(10)中所述煅烧在400~600℃下进行,时间2~3h。所述干燥为鼓风干燥箱干燥,干燥温度70~100℃,时间2~4h。
本发明还涉及按照上述方法制备获得的空心柱状ZnFe2O4/CaTiO3复合材料,以及所述空心柱状ZnFe2O4/CaTiO3复合材料在制备光催化剂中的应用,所述光催化剂可用于光催化处理水污染。
本发明的有益效果主要体现在:
(1)本发明方法采用树叶叶脉为结构载体,通过离子运输进入叶脉,使产物沿叶脉内壁生成,进而制备了ZnFe2O4/CaTiO3复合材料;
(2)本发明方法利用钛源试剂中混有的酸将钙源CaCO3溶解转化为钙离子,H2C2O4为pH调节剂,避免了使用H2SO4、HNO3等强酸物质;
(3)本发明方法采用弱碱性CO(NH2)2为pH调节剂,避免了NaOH、 KOH等为pH调节剂带来的强碱污染;
(4)本发明方法反应过程节约能源,绿色环保;
(5)本发明ZnFe2O4/CaTiO3复合材料呈空心柱状且分布均匀;
(6)本发明ZnFe2O4/CaTiO3复合材料具有优良的磁性能,有效提高了复合材料的回收利用;
(7)本发明ZnFe2O4/CaTiO3复合材料具有一定的吸附效果和良好的光催化性能。
(四)附图说明
图1为实施例1制得的空心柱状ZnFe2O4/CaTiO3材料的XRD图片。
图2为实施例1制得的空心柱状ZnFe2O4/CaTiO3材料的SEM图片。
图3为实施例1制得的空心柱状ZnFe2O4/CaTiO3材料的磁性效果图。
图4为实施例1制得的空心柱状ZnFe2O4/CaTiO3材料的光催化效果图。
图5为未加树叶制得的ZnFe2O4/CaTiO3材料的光催化效果图。
(五)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
实施例1:
(1)新鲜树叶先用去离子水洗净,用剪刀将树叶的边缘剪去,将树叶剪成3mm*3mm左右的碎片,在避光处保存备用;
(2)称取0.3525g CaCO3置于10mL去离子水中180W超声搅拌 20min得到钙源悬浮液,称取0.5287g TiOSO4置于10mL去离子水中180 W超声搅拌20min后继续在40℃下搅拌得到钛源溶液,称取0.1438g ZnSO4·7H2O溶解于5mL去离子水中得到锌源溶液,称取0.2781gFeSO4·7H2O溶解于8mL去离子水中得到铁源溶液,称取0.1796g H2C2O4置于10mL去离子水中搅拌溶解得到H2C2O4溶液,称取1.000g CO(NH2) 2置于10mL去离子水中搅拌均匀得到CO(NH2)2溶液;
(3)将步骤(2)制备的锌源溶液、铁源溶液混合搅拌均匀,得到混合溶液一;
(4)称取1.250g步骤(1)的备用树叶置于步骤(3)的混合溶液中,搅拌均匀静置12h,得到树叶共混溶液;
(5)将步骤(4)得到的共混溶液置于恒温磁力搅拌器中75℃下持续中速搅拌,滴加步骤(2)制备的10mL H2C2O4溶液得到附着在树叶上的ZnFe2O4前驱体;
(6)将步骤(5)反应后的树叶取出先后用去离子水和无水乙醇进行洗涤后备用;
(7)将步骤(2)制备的钛源溶液置于恒温磁力搅拌器中25℃持续中速搅拌下缓慢加入步骤(2)制备的10mL钙源悬浮液,搅拌20min 后得到混合溶液二;
(8)将步骤(2)制备的CO(NH2)2溶液滴加到步骤(7)持续中速搅拌的混合溶液中,调节溶液的pH至6.8得到混合溶液三;
(9)将步骤(6)得到附着有ZnFe2O4前驱体的的树叶置于步骤(8) 的混合溶液三中,静置10h后,转移至反应釜中160℃条件下水热反应 12h;
(10)将步骤(9)水热反应产物经过滤洗涤,在鼓风干燥箱中70℃下干燥4h后转移至马弗炉中600℃煅烧2h,样品经二次洗涤、70℃干燥4h后经研磨得到红棕色ZnFe2O4/CaTiO3固体粉末,其XRD谱图参见图1,SEM图片参见图2。
XRD谱图表明所制备的材料为ZnFe2O4/CaTiO3复合材料,SEM图片表明所制备的ZnFe2O4/CaTiO3复合材料形貌为均匀的空心柱状。
实施例2:
(1)新鲜树叶先用去离子水洗净,用剪刀将树叶的边缘剪去,将树叶剪成3mm*3mm左右的碎片,在避光处保存备用;
(2)称取0.5000g CaCO3置于15mL去离子水中180W超声搅拌 30min得到钙源悬浮液,称取0.7000g TiOSO4置于15mL去离子水中180 W超声搅拌30min后继续在40℃下搅拌得到钛源溶液,称取0.1650g ZnSO4·7H2O溶解于5mL去离子水中得到锌源溶液,称取0.3350gFeSO4·7H2O溶解于10mL去离子水中得到铁源溶液,称取0.2178g H2C2O4置于10mL去离子水中搅拌溶解得到H2C2O4溶液,称取1.000g CO (NH2)2置于15mL去离子水中搅拌均匀得到CO(NH2)2溶液;
(3)将步骤(2)制备的锌源溶液、铁源溶液混合搅拌均匀,得到混合溶液一;
(4)称取1.6000g步骤(1)的备用树叶置于步骤(3)的混合溶液中,搅拌均匀静置10h,得到树叶共混溶液;
(5)将步骤(4)得到的共混溶液置于恒温磁力搅拌器中80℃下持续中速搅拌,滴加步骤(2)制备的10mL H2C2O4溶液得到附着在树叶上的ZnFe2O4前驱体;
(6)将步骤(5)反应后的树叶取出用去离子水和无水乙醇进行洗涤后备用;
(7)将步骤(2)制备的钛源溶液置于恒温磁力搅拌器中30℃持续中速搅拌下缓慢加入步骤(2)制备的10mL钙源悬浮液,搅拌30min 后得到混合溶液二;
(8)将步骤(2)制备的CO(NH2)2溶液滴加到步骤(7)持续中速搅拌的混合溶液中,调节溶液的pH至6.9得到混合溶液三;
(9)将步骤(6)得到附着有ZnFe2O4前驱体的的树叶置于步骤(8) 的混合溶液三中,静置12h后,转移至反应釜中150℃条件下水热反应 14h;
(11)将步骤(9)水热反应产物经过滤洗涤,在鼓风干燥箱中80℃下干燥3h后转移至马弗炉中550℃煅烧2.5h,煅烧后样品经二次洗涤、 80℃干燥3h后经研磨得到红棕色ZnFe2O4/CaTiO3固体粉末。
实施例3:
(1)新鲜树叶先用去离子水洗净,用剪刀将树叶的边缘剪去,将树叶剪成3mm*3mm左右的碎片,在避光处保存备用;
(2)称取0.8000g CaCO3置于15mL去离子水中180W超声搅拌 25min得到钙源悬浮液,称取1.3280g TiOSO4置于15mL去离子水中 180W超声搅拌30min后继续在40℃下搅拌得到钛源溶液,称取0.2180g ZnSO4·7H2O溶解于8mL去离子水中得到锌源溶液,称取0.4500gFeSO4·7H2O溶解于15mL去离子水中得到铁源溶液,称取0.2870g H2C2O4置于12mL去离子水中搅拌溶解得到H2C2O4溶液,称取1.000gCO (NH2)2置于10mL去离子水中搅拌均匀得到CO(NH2)2溶液;
(3)将步骤(2)制备的锌源溶液、铁源溶液混合搅拌均匀,得到混合溶液一;
(4)称取2.000g步骤(1)的备用树叶置于步骤(3)的混合溶液中,搅拌均匀静置8h,得到树叶共混溶液;
(5)将步骤(4)得到的共混溶液置于恒温磁力搅拌器中80℃下持续中速搅拌,滴加步骤(2)制备的12mL H2C2O4溶液得到附着在树叶上的ZnFe2O4前驱体;
(6)将步骤(5)反应后的树叶取出用去离子水和无水乙醇进行洗涤后备用;
(7)将步骤(2)制备的钛源溶液置于恒温磁力搅拌器中20℃持续中速搅拌下缓慢加入步骤(2)制备的15mL钙源悬浮液,搅拌20min 后得到混合溶液二;
(8)将步骤(2)制备的CO(NH2)2溶液滴加到步骤(7)持续中速搅拌的混合溶液中,调节溶液的pH至7.3得到混合溶液三;
(9)将步骤(6)得到附着有ZnFe2O4前驱体的的树叶置于步骤(8) 的混合溶液三中,静置9h后,转移至反应釜中170℃条件下水热反应9h;
(11)将步骤(9)水热反应产物经过滤洗涤,在鼓风干燥箱中90℃下干燥2.5h后转移至马弗炉中500℃煅烧3h,煅烧后的样品经二次洗涤、 90℃干燥2.5h后经研磨得到红棕色ZnFe2O4/CaTiO3固体粉末。
性能测试实验:
催化剂的磁分离性能测试:称取0.045g实施例1制备的 ZnFe2O4/CaTiO3复合材料置于装有去离子水的透明玻璃瓶中,超声搅拌均匀得到悬浮液,将吸铁石靠近玻璃瓶一侧15s后,样品与溶液明显分离, ZnFe2O4/CaTiO3复合材料吸附在磁铁一侧,磁分离效果见图3,图3(a) 为不加磁铁,图3(b)为加磁铁15s后,可见该复合材料具有优良的磁性能,便于回收利用。
催化剂的暗吸附性能测试:在石英反应管中加入25mL初始浓度10 mg/L的亚甲基蓝溶液(MB),称取0.025mg实施例1~3制备的 ZnFe2O4/CaTiO3复合材料加入到上述25mL MB溶液中,超声5min后在黑暗条件下置于磁力搅拌器中持续搅拌1h,反应后经离心机离心取上层清夜,通过紫外分光光度计检测溶液的吸光度,根据标准曲线计算溶液中 MB的浓度,并计算出暗吸附效率。相同实验条件下测试了未加树叶制备 (其他参数同实施例1)的ZnFe2O4/CaTiO3复合材料的暗吸附效果,暗吸附效果见表1。
表1:样品的暗吸附检测分析结果
样品名称 暗吸附效率(%)
实施例1 38.2
实施例2 35.4
实施例3 36.6
未加树叶试样 24.8
通过表1中实施例1~3样品的MB暗吸附效率(%)检测分析结果可知,实施例1~3样品对MB暗吸附效率(%)大于35%,说明实施例1~3样品具有一定的吸附性能,不加树叶试样对MB暗吸附效率(%) 小于25%,低于实施例制备的ZnFe2O4/CaTiO3复合材料。
光催化性能测试:空心柱状ZnFe2O4/CaTiO3复合材料光催化性能测试是在光化学反应仪中进行的,首先在石英反应管中加入25mL初始浓度10mg/L的MB溶液,称取0.025g实施例中制备的空心柱状 ZnFe2O4/CaTiO3复合材料加入到上述25mL MB溶液中,暗吸附1h后,开启350w氙灯光照2.5h,通过紫外可见分光光度计测试溶液中光催化 2.5h后剩余的MB浓度,根据标准曲线计算光照2.5h后的降解率(%)。相同实验条件下,比较了空心柱状ZnFe2O4/CaTiO3复合材料和未加树叶的ZnFe2O4/CaTiO3复合材料的光催化效果,空心柱状ZnFe2O4/CaTiO3复合材料光催化效果图见图4,左侧为光催化前MB溶液,右侧为实施例1 样品光催化后MB溶液。未加树叶的ZnFe2O4/CaTiO3复合材料的光催化效果见图5,左侧为光催化前MB溶液,右侧为样品光催化后MB溶液,实验结果如表2所示。
表2:样品的光催化降解MB检测分析结果
样品名称 MB降解率(%)
实施例1 99.8
实施例2 97.2
实施例3 97.6
未加树叶试样 88.6
通过表2中实施例1~3样品的MB降解率(%)检测分析结果可知,实施例1~3样品对MB降解率大于97%,说明实施例1~3样品具有优良的光催化性能,不加树叶试样对MB降解率小于90%,低于实施例制备的ZnFe2O4/CaTiO3复合材料。
循环光催化性能测试:此外为了进一步考察所制备的光催化剂的可重复使用性,选择实施例1制备的ZnFe2O4/CaTiO3复合材料进行了循环光催化实验。在与光催化测试同等条件下重复使用3次,其光催化降解MB 的降解率如表3所示。
表3:样品的循环光催化性能检测分析结果
样品名称 MB降解率(%)
实施例1 99.8
重复1次 95.9
重复2次 93.7
重复3次 91.4
由表3可知实施例制备的ZnFe2O4/CaTiO3复合材料在重复使用3次后,其对MB的降解率仍然超过90%,表明ZnFe2O4/CaTiO3复合材料具有稳定的光催化性能。

Claims (7)

1.一种以树叶叶脉为结构载体制备空心柱状ZnFe2O4/CaTiO3复合材料的方法,所述方法包括:
(1)新鲜树叶洗净,剪去边缘,剩下部分剪碎后避光保存备用;
(2)称取CaCO3、TiOSO4、ZnSO4·7H2O、 FeSO4·7H2O、H2C2O4、CO(NH2)2分别置于去离子水中,搅拌均匀得到钙源悬浮液、钛源溶液、锌源溶液、铁源溶液、H2C2O4溶液和CO(NH2)2溶液;
(3)将步骤(2)制备的锌源溶液、铁源溶液按照ZnSO4·7H2O:FeSO4·7H2O摩尔比为1:1.8~2.2混合均匀,得到混合溶液一;
(4)称取步骤(1)所得树叶碎片加入混合溶液一中,得到树叶共混溶液;
(5)将步骤(4)得到的树叶共混溶液置于恒温磁力搅拌器中75~90℃持续搅拌,滴加H2C2O4溶液得到附着在树叶上的ZnFe2O4前驱体,其中ZnSO4·7H2O与H2C2O4的质量比为1:1~1.4;
(6)将步骤(5)反应后的树叶取出依次用去离子水和无水乙醇进行洗涤后备用;
(7)将锌源溶液置于恒温磁力搅拌器中20~30℃持续搅拌下缓慢加入钙源悬浮液,搅拌均匀后得到混合溶液二;混合溶液二中CaCO3和TiOSO4的质量比为1:1~2;
(8)将CO(NH2)2溶液滴加到混合溶液二中,调节溶液的pH至6.5~7.5,得到混合溶液三;
(9)将步骤(6)得到的附着有ZnFe2O4前驱体的树叶置于混合溶液三中,静置8~12 h后,转移到反应釜中进行水热反应;所述水热反应在130℃~170℃下进行,反应时间8~14 h;
(10)步骤(9)水热反应产物经过滤洗涤干燥后,转移至马弗炉中煅烧,煅烧后经洗涤、干燥和研磨得到红棕色ZnFe2O4/CaTiO3固体粉末,即所述空心柱状ZnFe2O4/CaTiO3复合材料;所述煅烧在400~600℃下进行,时间2~3h。
2.如权利要求1所述的方法,其特征在于步骤(2)中钙源悬浮液的配制方法如下:将CaCO3置于去离子水中,室温下超声搅拌15~30 min,得到CaCO3悬浮液;CaCO3与水的配比为1 g:10~30 mL,超声功率为60~180 W。
3.如权利要求1所述的方法,其特征在于步骤(2)中钛源溶液的配制方法如下:将TiOSO4与去离子水混合,超声搅拌15~30 min后,在20~40℃下继续搅拌,得到TiOSO4溶液;其中,TiOSO4与水的配比为1 g:10~30 mL,超声功率为60~180 W。
4.如权利要求1所述的方法,其特征在于步骤(2)中:锌源溶液中ZnSO4·7H2O与水的配比为1 g:20~40 mL;铁源溶液中FeSO4·7H2O与水的配比为1 g:20~40 mL;H2C2O4溶液中H2C2O4与水的配比为0.5 g:20~40 mL;CO(NH2)2溶液中CO(NH2)2与水的配比为1 g:10~15mL。
5.如权利要求1所述的方法,其特征在于步骤(4)树叶共混溶液中ZnSO4·7H2O和树叶的质量比为1:6~14。
6.按照权利要求1~5之一方法制备获得的空心柱状ZnFe2O4/CaTiO3复合材料。
7.权利要求6所述空心柱状ZnFe2O4/CaTiO3复合材料在制备光催化剂中的应用。
CN202010843218.9A 2020-08-20 2020-08-20 一种空心柱状ZnFe2O4/CaTiO3复合材料及其制备与应用 Active CN111905748B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010843218.9A CN111905748B (zh) 2020-08-20 2020-08-20 一种空心柱状ZnFe2O4/CaTiO3复合材料及其制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010843218.9A CN111905748B (zh) 2020-08-20 2020-08-20 一种空心柱状ZnFe2O4/CaTiO3复合材料及其制备与应用

Publications (2)

Publication Number Publication Date
CN111905748A CN111905748A (zh) 2020-11-10
CN111905748B true CN111905748B (zh) 2022-09-02

Family

ID=73278462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010843218.9A Active CN111905748B (zh) 2020-08-20 2020-08-20 一种空心柱状ZnFe2O4/CaTiO3复合材料及其制备与应用

Country Status (1)

Country Link
CN (1) CN111905748B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113145141B (zh) * 2021-04-28 2023-09-22 武汉理工大学 用于CO2还原的CsPbBr3量子点/纳米CuCo2O4复合光催化剂及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105233831A (zh) * 2015-10-30 2016-01-13 江苏大学 一种磁性ZnO@ZnFe2O4复合光催化剂及其制备方法和应用
CN108479779A (zh) * 2018-04-10 2018-09-04 浙江工业大学温州科学技术研究院 一种磁性Fe2TiO5光催化材料的制备方法
CN108636432B (zh) * 2018-04-27 2021-01-29 湘潭大学 一种铁酸锌/碳酸银复合可见光催化材料及其制备方法和应用
CN111468094B (zh) * 2020-04-09 2022-09-02 浙江工业大学 一种CaTiO3/CaO复合材料及其制备方法、应用
CN111468096B (zh) * 2020-04-09 2022-05-31 浙江工业大学 一种Zn2TiO4/TiO2复合材料及其制备方法、应用

Also Published As

Publication number Publication date
CN111905748A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
CN107899590B (zh) 金属Ag纳米颗粒沉积NiCo-LDH复合光催化剂的制备及其应用
CN111468096B (zh) 一种Zn2TiO4/TiO2复合材料及其制备方法、应用
CN101711977A (zh) 以微生物及藻类为模板制备介孔二氧化钛光催化剂的方法
CN111530501B (zh) 一种Fe/Zn-MOF衍生的磁性光催化材料及其制备方法和应用
CN106732509A (zh) 改性氧化铝载体的制备方法、催化臭氧氧化催化剂及其应用
CN107715906B (zh) 一种氮化碳/钛酸锌/氧化钛三明治状直接z型异质结复合光催化剂的制备方法
CN100591419C (zh) 可见光响应铁酸锌纳米晶溶胶的制备方法
CN111905748B (zh) 一种空心柱状ZnFe2O4/CaTiO3复合材料及其制备与应用
CN104927097A (zh) 一种微波水热法制备纳米二氧化钛/壳聚糖复合材料的方法
CN105056986A (zh) 一种制备片状羟基硝酸氧铋光催化剂的方法及催化剂用途
CN111468094B (zh) 一种CaTiO3/CaO复合材料及其制备方法、应用
CN101716501B (zh) 一种钛酸锌微纳光催化材料及其制备方法
CN103785425A (zh) 一种花状Bi2O(OH)2SO4光催化剂的制备方法及应用
CN101532176A (zh) 一种制备多晶纳米钙铝氧化物的方法
CN105776311A (zh) 一种氧化铜纳米材料的制备方法
CN101016637A (zh) 用阳极氧化方法制备TiO2纳米管阵列的方法
CN111359676B (zh) 一种mof基复合材料及其制备方法和应用
CN103752301B (zh) 纳孔碱金属/碱土金属钛酸盐光催化剂及其制备方法
CN103936077B (zh) 一种铌酸锰纳米花的制备方法
CN106478151A (zh) 一种基于可见光利用的TiO2光催化瓷砖的制备方法
CN113926449B (zh) 一种用于可见光催化杀菌钒酸铋黄色颜料的制备方法及其制得的产品
CN107020081B (zh) 一种以混凝土为基体的可见光催化涂层及其制备方法
CN104445415A (zh) 一种新型Bi3.84W0.16O6.24纳米材料及其制备方法和应用
CN112108140B (zh) 一种以生鸡蛋壳为钙源绿色合成棒状CaTiO3材料的方法
CN111744467A (zh) 一种CaTiO3/CaO/TiO2复合材料的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant